Distributed Algorithm for Downlink Resource
Allocation 1n Multicarrier Small Cell Networks

Furqan Ahmed, Alexis A. Dowhuszko, and Olav Tirkkonen
Department of Communications and Networking (Comnet), Aalto University
P.O. Box 13000, FI-00076 Aalto, Finland
E-mail: {furqan.ahmed, alexis.dowhuszko, olav.tirkkonen}@aalto.fi

Abstract—In small cell networks (SCNs) co-channel interfer-
ence is an important issue, and necessitates the use of interference
mitigation strategies that allocate resources efficiently. This work
discusses a distributed utility-based algorithm for downlink re-
source allocation (i.e., power and scheduling weights per carrier)
in multicarrier SCNs. The proposed distributed downlink resource
allocation (DDRA) algorithm aims to maximize the sum utility
of the whole system. To achieve this goal, each base station (BS)
selects the resource allocation strategy to maximize a surplus
function comprising both, own cell utility and interference prices
(that reflect the interference that is caused to neighboring
cells). Two different utility functions are considered: max-rate
and proportional fair-rate. For performance evaluation, a SCN
deployed in a single story WINNER office building is considered.
Simulation results show that the proposed algorithm is effective
in enhancing not only the sum data rate of a SCN, but also the
degree of fairness in resource sharing among users.

I. INTRODUCTION

The evergrowing demand for higher data rates, lower power
consumption, and better coverage imposes new challenges in
the design of future mobile networks. It is well known that
conventional macrocellular approach is not able to provide
adequate coverage indoors, due to the high penetration losses
that indoor mobile stations (MSs) usually experience. Deploy-
ment of low-cost and low-power base stations (BSs), to serve
small areas in the interior of buildings, has been proposed as
a solution [1], [2]. The transmission range of small cell BSs
enables superior signal reception at indoor MSs. In addition,
the use of small cell BSs reduces the load of the macrocellular
network, thereby decreasing the capital expenses (CAPEXs)
and operational expenses (OPEXs) for the network service
provider. The promising aspects of low-power BSs motivate
the paradigm of small cell networks (SCNs) for improvement
of coverage and capacity in indoor environments.

Although SCNs can provide significant benefits, their use
in practice comes with several challenges. A major factor that
may compromise the performance of a SCN is the possibility
of having severe (co-channel) interference, emanating from
macrocell layer (i.e. cross-layer interference) [3] or other small
cells deployed nearby (co-layer interference) [4]. Moreover,
the use of closed-access modes further aggravates the inter-
ference problem, since handover operations are not allowed
to those MSs that are not identified as member of the closed
subscriber group (CSG) [5]. The cross-layer interference can
be kept under control, to some extent, by orthogonalization of

resources between macro- and small cell layer [6]. On the con-
trary, more sophisticated interference management techniques
are required to alleviate the co-layer interference in SCN.

In SCNs, due to potentially limited backhaul, self-
organizing interference management techniques are important.
For example, SCNs are able to adapt the operating parameters
(e.g., allocation of resources) to improve the situation of
MSs that experience low signal-to-interference plus noise
power ratios (SINRs). With a minimal exchange of control
information among neighboring cells, the resource allocation
of BSs can be adapted to mitigate the co-layer interference [7],
[8].

Power allocation problems in cellular networks are usually
non-convex optimization problems, as the received SINRs
at the MSs are coupled. The complexity of the problem is
even higher in a multicarrier case, making it difficult to find
methods that converge to a global optimal solution, even in
a centralized way. The problem has been addressed in the
literature in the context of ad hoc networks, see [9]-[14].
In most of these works, the system model is composed of
multiple transmitter-receiver pairs randomly placed in a certain
area, and the aim is to distributively allocate the total transmit
power (of each node) over the available channels. For example,
the authors of [9], [10] develop a distributed algorithm for
a multi-channel ad hoc network, based on finding a (local
optimal) power profile solution that satisfies the Karush-Kuhn-
Tucker (KKT) conditions of the problem. A different approach
is proposed in [11], where a simulated annealing-based method
is used for power allocation in a single-channel network. In
general, the non-convex resource allocation problem can also
be solved using the decomposition-based methods that were
discussed in [12], [13] for distributed optimization of coupled
systems.

The downlink resource allocation problem for a cellular
network has been addressed in a number of works, such
as [15]-[17] and references therein. These works focus on
intra-cell resource allocation, aiming to optimize the power
levels and the allocation of sub-carriers (for the OFDM case) to
serve the users within a single cell. In a multicellular context,
autonomous carrier selection has been discussed in e.g. [7].
There, a carrier is either used or not, and there is no joint
power constraint on the carriers.

Here we consider both inter- and intra-cell resource allo-
cation in a cellular network, with a joint power constraint



over multiple carriers. We and propose a joint optimiza-
tion framework, optimizing power and scheduling weights
per carrier, to improve the downlink system utility. Both
maximum sum rate and proportionally fair utility functions
are considered. We present a distributed downlink resource
allocation (DDRA) algorithm that can be used to mitigate
the co-layer interference in SCNs. The approach extends the
work presented in [9], [10] (originally for ad hoc networks)
to the downlink of a cellular systems scenario. The proposed
DDRA algorithm gives a solution of the underlying resource
allocation problem in a distributed way, taking into account
the interference pricing information that the neighboring BSs
report. Interference pricing information represents low-rate
control signaling that is exchanged among neighboring cells,
and reflects the way in which power allocation decisions in
certain BS affects the local utility of its neighboring BSs.

The rest of paper is organized as follows: Section II dis-
cusses the system model and presents the utility functions con-
sidered for resource allocation. Section III introduces the inter-
ference pricing concept and explains the DDRA algorithm for
a multicarrier cellular system in detail. The convergence proof
for the DDRA algorithm when using small adaptation steps
per iteration is presented in this section as well. Section IV
shows the simulation results for a single story WINNER office
building and analyzes its performance. Finally, conclusions are
drawn in Section V.

II. SYSTEM MODEL

We consider a cellular system comprising of BSs de-
ployed in a small cell environment (following a pre-defined
pattern), with indices Z = {1,...,4,...,I}. The total band-
width is divided into K equal-size carriers with indices
K={1,...,k,...,K}. Tt is assumed that the maximum
transmit (Tx) power Pp.x of all BSs is identical, and can
be distributed over all carriers such that
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is verified, where p¥ is the power that BS 4 uses on carrier k.
During the resource allocation procedure, a BS allocates its
Tx power (across the multiple carriers) taking into account
the effect of its strategy on the local utility of the neighboring
cells. In this paper, neighboring cells are all those cells that
experience a significant impairment/improvement in their own
utility, whenever the original cell changes its power profile
across the different carriers !. Without loss of generality, we
assume that the set of neighboring cells for BS 7 is denoted
as J; (with 7; C 7).

The intra-cell scheduling decisions per carrier £ € K, are
reflected in the selection of the scheduling weights wf that
BS i performs for each associated user in set £; C L. Note
that {£, : 4 € T} represents a partition of set £ = {1,..., L},
which contains the (global) indices of all MSs in the system.

!In a practical system implementation, a generic MS may identify the IDs of

neighboring cells measuring the received strength of pilot signals and decoding
the broadcast messages of the surrounding BSs.

To simplify the analysis, we consider that carriers are infinitely
divisible and shared orthogonally among the users of each cell.
In addition, we assume that each BS distributes its resources
of IC carriers among its active users, verifying
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at each iteration of the resource allocation algorithm. The
analysis carried out in this paper focuses on the normalized
data rate per user (i.e., spectral efficiency in [bps/Hz]). Nev-
ertheless, results can be easily extended to actual data rates
scaling them by the corresponding bandwidth of the system.

The aim is to maximize the sum-utility of the cellular system
in the downlink, i.e.,

Usum (P, W) = Y " U; (P, W), 3)
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where P € RI*K and W € REXK contain the power levels

and scheduling weights that are applied in transmission by all
BSs in the system, respectively, while

Ui(P,W)=> u (P, W) @)
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represents the sum-utility for the users served by BS .
In the system model, the SINR that MS [ (served by BS %)
experiences on channel k is given by
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where hﬁ ; is the channel gain between BS i and MS [ on
carrier k, Ny is the (flat) backgnoise power, and
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denotes the interference level of user [ on carrier k.

The utility function for the users should be selected accord-
ing to the performance metric to be maximized. Two different
types of utility functions are considered in this paper: max-rate
utility and proportional fair-rate utility [18], [19].

The max-rate utility function seeks the maximization of the
sum rate of each individual cell, leaving aside fairness issues
on the individual rates that each user perceives. The max-rate
utility function for user ! (served by BS i) is then given by

w (P,W3) =Y wilogy [1++f(P)] 1€L, (D
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where wlk € W, is the scheduling weight that BS ¢ allocates

to user [ on carrier k. It should be noted that all the interference
is caused by the neighboring cells as users within cell are
sharing resources orthogonally.

As discussed in references like [20], [21], the proportional
fair-rate utility function can be employed to enhance the fair-
ness in sharing common resources (i.e., power and scheduling
weights per carrier) among the active users of each cell. To



achieve this goal, the proportional fair-rate utility function can
be formalized as

w (P,W;)=log, { 3" wf log, [1+7;€(P)}} L€ Li (8)
ke

Note that the log,{-} function that appears in (8) allows to
improve the situation of those users that are experiencing low
data rates (due to high co-layer interference situations in all
channels). Nevertheless, this logarithmic function makes the
proportional fair-rate utility a non-separable one, increasing
the complexity of DDRA.

III. UTILITY-BASED DISTRIBUTED RESOURCE
ALLOCATION

In this section, we discuss the concept of interference pric-
ing and derive the pricing equations for both utility functions.

A. Interference Pricing Information

The essential observation when designing an interference
coordination algorithm for a downlink cellular system is that,
in each cell, co-channel interference originated in neighboring
cells is experienced by all active users. In addition, it should
be noted that a change in the scheduling weights W, does
not affect the interference caused to the users in the neigh-
boring cells J;, but may change the price of interference that
BS ¢ reports to the neighbors. Here, we design a distributed
scheduling and power control algorithm, which attempts to
maximize the total utility of network for the utility functions
presented in Section II.

The centralized optimization problem is given by

maximize Y., . U; (P, W)
P.W
. . . ©)
subject to >, i PF < Prax, Py >0,
k

_ k
tec, W =1, w2 0,

where the sum utility for BS ¢ is given by the sum of the
utilities of the users that belong to L;, see (4). Note that
this problem is in general non-concave, even in presence of
concave utility functions. A local optimal solution could be
found using non-convex optimization algorithms. However,
such an approach is not appropriate for our system model
since the optimization needs to be carried out in a distributed
way.

Any local optimum of optimization problem (9) must satisfy
the KKT conditions of the problem. Then, following the
analysis presented in [9], [10], it is possible to see that the
KKT conditions of the centralized problem (9) are equivalent
to the KKT conditions of the distributed problem

maximize U, (p;, W;|P_;)
Pi. Wi = b {Zjeji W.;'CJ(P’Wj)} (10)
subject to Y, o PF < Prax, P >0,
Siepwh =1, wh >0,

where P_; denote the fixed power profiles for all users rather
than ¢, and

U, (P, W)
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is the interference price that neighboring BS j reports to BS 1.
This interference price can be interpreted as a marginal cost
that BS ¢ needs to afford per unit of power it uses on the
k-th carrier (due to the additional co-layer interference that
is generating in the network). It is important to note that the
objective in the distributed optimization problem (10) is still
non-concave, and therefore may have multiple local optima
that satisfy the KKT conditions.

The procedure can be interpreted as follows: The original
problem (9) is decomposed in I sub-problems that are solved
locally by each BS. During each iteration of the distributed
algorithm, only user ¢ adjusts its power profile p; and schedul-
ing weights W (taking into account the interference prices of
neighbors). As expected, this procedure modify the objective
functions of the neighboring BSs, that are going to be updated
according to the new interference prices that BS ¢ reports after
its power and scheduling weight update.

In case of max-rate utilities, the price of interference that
BS 7 reports to BS j on carrier £ is
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where p* denote the power profile of all BSs on channel k.

On the other hand, for the proportional fair-rate utility, the
price of interference that BS ¢ reports to BS j on carrier k
can be expressed as

7t (P,W,) = .
! ) lezg:i uw (P, W) [1+~F(p*)] [Izk(plfi)‘*‘]\’o]z
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It is important to note that, according to the previous equations,
the sum-rate utility attains the form of a separable utility
function, while the proportional fair-rate utility represents a
non-separable utility case.

s (12)

27

kpk pk
wik p; hyy hj,z

B. Interference Pricing-Based Algorithm

Our approach is an extension of [9], where each BS only
maximized a surplus function over its power profile (followed
by the calculation and announcement of new interference
prices). In DDRA, however, the surplus is maximized over
both powers and scheduling weights. After the update of
powers and scheduling weights, separate prices are calculated
and communicated to neighboring BSs. The two main steps of
power update and weight update can be expressed as follows:

1) Power update part of DDRA algorithm: In the first
part, a randomly selected BS ¢ determines its best response
according to

pi(n+1)= argmax s;[p;|P_i(n), W(n)]
Pi
subject to >, e PF < Prax,  pF >0,

(14)



where

si [pi|P—i(n), W(n)] = Ui[pilP-i(n), Wi(n)]
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Then, each BS chooses its new power profile by forming a

convex combination between its best response p;(n + 1) and
the current power profile, i.e.,

pi(n+1) = (1 —a;)pi(n) +a; pi(n + 1), (16)

where «; € [0,1] is a fixed parameter that represents the
step-size of the power update part of our DDRA algorithm.

2) Scheduling weight update part of DDRA algorithm: In
the second part, the randomly selected BS ¢ of the previous
part determines its best response according to

\NNZ(TL +1)= argmax s [Wilpi(n+ 1), P_;(n)]
W;
subject to >, wr =1, wF >0,
(17
where
5i [Wilpi(n+1),P_;(n)] = U; [W;|pi(n+1),P_;(n)].
(18)

Note that in the latter expression, the prices of interference
from neighboring users do not affect the objective function.
As in the previous case, the scheduling weights are determined
by taking a convex combination of the best response and the
current values, according to

Wi(n+1) = (1-B) Wi(n) + 8 Wi(n+1), (19

where §; € [0,1] is represents the step-size of the scheduling
weight update part of our DDRA algorithm.

The proper selection of the step sizes «; and 3; allow us to
control the speed of convergence of the algorithm. An optimal
value for the step sizes should be determined in practice, to
ensure convergence of DDRA algorithm. The complete DDRA
algorithm is summarized as Algorithm 1.

C. Convergence Analysis

In this section we show that for small enough values
of step-size a; (and f;), the DDRA algorithm converges
monotonically to a fixed point. The convergence proof for
the DDRA algorithm consists of two parts: power update part
and the scheduling weight update part. Since the convergence
analysis is similar in both situations, in this section we focus
on showing convergence for the former one.

Let us first define Usm)n( ) as the sum-utility of the cellular
system at the n-th iteration after power update has been
performed. Based on the algorithm presented in Section III-B,
it is possible to see that

Ugg,ll(n +1) = max Zleﬁi u; [pi|P—i(n), Wi(n)]
Pi+ 3, { Diee, w [pilP-i(n), Wj(n)] |

s.t. Z:]ge](jpi'c Spmaxa pf ZO VE.
(20)

Algorithm 1 Distributed Downlink Resource Allocation

1: Each BS i € Z chooses the initial power profile p,(0)
and scheduling weights W;(0). Then, it calculates the
prices ¥ ;(0) that should be reported to neighbors j € J;

2: At 1terat10n n, only BS ¢ updates its power profile and
scheduling weights according to

pi(n+1) <« (1—a;)pi(n)
+ oy argn;&}xsi(pi\P,i(n),W(n))
+ B argH‘}ngi(Wﬂpi(n +1),P_i(n))
p—i(n+1) < p_i(n)

W_i(ﬂ + 1) — W_i(n)
3: BS 1 updates and communicates its new interference prices
(n+1) — _W{U [P(n+1),W;(n+1)]}
4: Go to 2, and rcpeat until convergence is achieved

Let us assume that the step-size «; is set to a very low value.
In this situation, the linearized version of the utility function

u [pi|P—i(n), Wi(n)] = w [P(n), W;(n)]
+ [pi — pi(n)]" Vp, {w [P(n), W(n)]}
= w [P(n), W;(n)]
+ [t 0)] 5 [P

keK

around the current power profile p;(n) becomes accurate
enough, where V,, {u; [P(n), W(n)]} is the gradient of util-
ity w; at iteration n with respect to power profile p;. Then,
combining (20) with (21), we have that

USh(n+1) = URL () + Ay (n+1),  (22)
where

AUéE,)],(n+1) = max Y, o [P —pE(n)] { 7Tu n)}
Pi + 2 kek Zj;é@ [pz Py ] { 71'

S't' Zke}(jp? SPmaxvp? 20 Vk7

(23)
with
mh(n) = Z _8ip’.“ {u; [P(n), W;(n)]} <0, (24)
leL; ?
m) = 3?0@{1” [P(n), W(n)]} > 0. (25)

leL;

As expected, objective function (23) equals 0 when
p: = pi(n). Then, it is straightforward to conclude that
AU%,)) (n + 1) > 0 for all n, and that the sum-utility function
U(P

sum(n + 1) will be monotonically increasing if the power

update is done with small step-sizes (i.e., when a; — 0™).
We note that the convergence proof for the schedul-

ing weight update part of the DDRA algorithm (when

step-sizes B; — 07) can be derived following the same steps.
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Fig. 1. Layout for the single-story WINNER office building that is used in
this paper. The dots in the figure represent small-cell BSs, and the (distance
dependent) range of each closed-access group is demarcated using red lines.

IV. NUMERICAL RESULTS

In this section we analyze the performance of DDRA
algorithm for both, max-rate and proportional fair-rate utility
functions. We first present the simulation scenario, followed
by the analysis of results.

A. Simulation Scenario

We consider a small-cell network comprising of 4 BSs
with 2 users each, deployed in a single story building with
WINNER office characteristics. The total bandwidth of the
system is equally divided into 5 carriers. For sake of simplicity,
we assume that the coherence bandwidth of the wireless
channel is larger than the bandwidth of each carrier. In
addition, the frequency selectivity across carriers is modeled
as an exponentially distributed random variable with unitary
mean. Note that this approach is reasonable, e.g., when we
consider that the total available bandwidth is composed by
non-contiguous carriers. We assume that each BS serves it
users in a CSG configuration, such that we may have visiting
MSs within the coverage region that are not allowed to perform
a handover operation to the corresponding BS (due to they
are not identified as members of the CSG). The probability of
having a visiting MS within the coverage region is set to 20 %.
The BS locations and CSG coverage areas are illustrated in
Fig. 1.

The propagation characteristics inside the buildings are
modeled according to Winner Al office model; see [22] for
more details. The distance dependent path loss attenuation is
calculated according to the following formula:

PL [dB] = A log,(d) + B + C'logy, <J;c> ,+X  (26)
where d [m] is the distance between the transmitter and
receiver, f. [GHz] is the carrier frequency of the system in,
X [dB] identifies the (discrete) loss that is produced by walls
and windows (see Table I for more details). The modeled
small cell system is a three-dimensional one, with wrap-around
boundary conditions in all directions. The shadow fading effect
is also considered in the model. Details of system parameters
are given in Table II.

TABLE I
WINNER 2 PATH LOSS MODEL
100 [m] x 50 [m]
10 [m] x 10 [m]

Building dimensions
Room dimensions

Corridor width 5 [m]
Room height 3 [m]
BS antenna height 2 [m]
MS antenna height 1 [m]

Number of floors 1

Antenna patterns omni directional

Carrier frequency 2.6 [GHz]

Line-of-sight in same room/corridor

Path loss coefficients A = 18.7, B = 46.8, C' = 20
Inner wall loss 5 [dB] per wall

TABLE 11

SIMULATION PARAMETERS
Number of BSs 4
Number of UEs 8
Number of Carriers 5
Bandwidth 1.25 [MHz]
Bandwidth Efficiency 0.85
Maximum Transmit Power 20 [dBm]
Noise Figure 9 [dB]
Thermal Noise —174 [dBm/Hz]
Shadow Fading Correlation 0.5
Shadow Fading Standard Deviation 3 [dB]

B. Performance Analysis

The results are presented for 1000 random network instanti-
ations, generated according to the aforementioned parameters.
The data rates that are experienced by individual users are
collected and used to plot the rate cumulative distribution
functions (CDFs) for max-rate and proportional fair-rate utility
functions. Four cases are analyzed:

1) Fixed power allocation (i.e., equal power in all carriers)
with fixed scheduling (i.e., identical scheduling weights),

2) Adaptive power allocation (i.e., power control part of
DDRA algorithm) with fixed scheduling,

3) Fixed power allocation with adaptive scheduling (i.e.,
scheduling control part of DDRA algorithm), and

4) Adaptive power allocation and adaptive scheduling (i.e.
both, power control part and scheduling control part of
DDRA algorithm).

Figure 2 shows the performance curves when the different
combinations of DDRA algorithm are applied with max-rate
utility functions. As expected, the best mean rate performance
is obtained when all BSs in the system apply both, power
control part and scheduling control part of DDRA algo-
rithm (i.e., A-PA + A-SCH case). Note that in terms of mean
rate, the implementation of only one of those features (i.e.,
A-PA +F-SCH and F-PA + A-SCH cases) provides almost the
same performance. Nevertheless, it is important to observe that
the use of adaptive scheduling with max-rate utility functions
increases the probability of having users equipments in outage,
but improves considerably the data rate of those users that are
receiving resources effectively in the system (i.e., users that are
not in outage). Note that the use of power control in presence
of fixed scheduling provides an improvement of 30 % in the
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Fig. 2. Cumulative distribution function for normalized data rates of
users when different versions of DDRA algorithm are used with max-rate
utility functions. A/F-PA: Adaptive/Fixed Power Allocation. A/F-SCH: Adap-
tive/Fixed Scheduling (full carrier allocation).

5 %-tile outage capacity of the system (i.e., A-PA+F-SCH
versus F-PA + F-SCH).

Figure 3 shows the performance curves when the dif-
ferent combinations of DDRA algorithm are applied with
proportional fair-rate utility functions. Again, the use of both
control features of DDRA algorithm (i.e., A-PA+ A-SCH)
provides the best performance in terms of mean data rate
and outage capacity, followed by the scheme that implements
the adaptive scheduling part of DDRA algorithm with fixed
power allocation in all carriers (i.e., F-PA+ A-SCH). The
scheme that implements the power control part of DDRA al-
gorithm with fixed scheduling weights lies in the third position
(i.e., A-PA +F-SCH), and the fourth place corresponds to the
scheme that do not perform resource allocation at all (i.e.,
F-PA + F-SCH). Since in this case we are using proportional
fair-rate utility functions, there are no users in outage in
any case. Note that the use of power control in presence of
fixed scheduling does not provide a significant improvement
in the mean data rate, but results in a gain of 40 % in the
5 %-tile outage capacity of the system (i.e., A-PA+F-SCH
versus F-PA + F-SCH). On the other hand, the use of power
control in presence of adaptive scheduling increases slightly
the mean data rate of the system, but improving considerably
the situation of those users that experience the lower data rates
(e.g., the 5 %-tile outage capacity improves around 30 % when
comparing A-PA + A-SCH with F-PA + A-SCH).

V. CONCLUSION

We have proposed a utility-based distributed algorithm to
allocate resources (i.e., transmit power and spectral bandwidth)
in the downlink of a multicarrier small cell networks (SCNs),
and proved its convergence for small adaptation steps. Dif-
ferent utility functions and resource allocation strategies are

Proportional Fair—Rate Utility Function
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o
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Fig. 3. Cumulative distribution function for normalizeddata rates of users
when different versions of DDRA algorithm are used with proportional
fair-rate utility functions. A/F-PA: Adaptive/Fixed Power Allocation. A/F-
SCH: Adaptive/Fixed Scheduling (full carrier allocation).

considered for performance evaluation under a practical SCN
scenario. The simulation results show that with an appropriate
utility function, the proposed algorithm can allocate resources
efficiently to improve the sum data rate as well as fairness
among users. It is important to highlight that both, transmit
power and spectral bandwidth should be assigned jointly to
maximize the utility function of the system in a proper way.
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