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Abstract—We consider self-organization problems, where
agents try to agree about the value of a configuration space
variable. Problems of consensus and synchronization belong to
this category. These are the problems which would often be
trivial to solve in a centralized setting, and non-trivial aspects
are often directly induced by the process of self-organization
itself. We discuss topological reasons as to why simple locally
greedy algorithms are not able to create long-range order. The
reason why greedy synchronization of a real-valued variable
works in a straight forward manner, whereas greedy phase
synchronization does not, is topological; in the latter non-trivial
homotopy classes in mappings from the interaction graph of
the agents to the configuration space exist. We identify higher-
dimensional configuration spaces with such non-trivial homotopy
classes. However, we find that greedy self-organization is able to
create long-range order for any higher-dimensional configuration
space that does not have circular components.

I. I NTRODUCTION

In self-organizing systems, the actions of agents are based
on their interactions with their respective peers, depending
on rules and policies guided by local information leading to
an emergence of a global pattern [1]. Synchronization and
consensus problems are some of the simplest self-organization
problems, and offer a platform for studying different issues
that arise from self-organization.

In consensus problems, agents aim at reaching an agree-
ment on the values of variables. It is a fundamental problem
in areas of distributed computing and complex networks and
therefore, has been of historical research interest [2], [3]. It
has wide-ranging applications in the practical self-organizing
systems. These include wireless sensor networks, unmanned
air vehicles, air-traffic control—to name a few. A closely
related problem is the network synchronization problem, in
which a number of agents strive to achieve synchrony in their
respective clocks. Mutual event synchronization is a special
case of network synchronization, where nodes are peers and
synchronize to each other. Existing approaches to tackle the
problem are inspired by biological oscillators such as fireflies
and pacemaker cells of heart. Most studies on synchronization,
or consensus, have been either for one-dimensional configura-
tions (real variables, or phases), or for Euclidean spaces.The
effects of the communication topology on the convergence of
such algorithms was studied in [4]. Here, in addition, we study
more generic problems, where the variable to be agreed upon
takes values in a higher-dimensional sphere. This has been
addressed in [5], [6], and for more generic Riemann manifolds
in [7], [8]. This general set of problems has relevance to
swarm dynamics [5], synchronization of satellite orbits [7],
or agreeing about postures in photos [9]. The problem would
also be interesting for a set of wireless receivers to agree about

the best transmission method of a multiantenna transmitter.
The parameter space of a two-element transmitter can be
understood as a 2D sphere, see e.g. [10].

A major challenge lies in addressing these problems in
a self-organized manner, where each agent has a limited
knowledge of the network. Such considerations are relevantto
the practical aspects of real world systems, such as scalability
and minimization of overhead related to message passing. Ina
centralized setting, both synchronization and consensus prob-
lems are straight forward to solve, the centralized controller
may collect the information, and directly dictate the result. This
is in contrast to distributed schemes that hinge upon limited
cooperation based on local interactions among the neighboring
nodes to minimize the amount of message passing in network.
It is worth noting that under such conditions, convergence to
a global optimum is not guaranteed, and is even impossible
in certain cases especially when agents behave in a greedy
way. From this perspective, these problems are particularly
appealing—as the centralized version is trivial, all problems
with finding a solution stem from the self-organization prin-
ciple itself. This phenomenon can be explained by studying
the structure of the interaction graph of the agents, which
reveals the dynamics of interaction between them. Thus, the
underlying topology that ensues when agents act in a self-
organized manner to reach a solution, determines convergence
characteristics of greedy self-organization. In particular, exis-
tence of cycles in the interaction may result in an impediment
to the convergence.

In this paper, we focus on the convergence aspects of
self-organization of consensus and synchronization problems.
The topological aspects that obstruct the convergence to a
global optimum in self-organizing systems are highlighted,
followed by a discussion on how the change in topology can
help in avoiding them. We start by analyzing one-dimensional
systems. For cycle graphs, we identify multiple families of
fixed points for both best response and gradient descent based
self-organizing algorithms. Next we turn to higher-dimensional
configuration spaces. We observe that when the network is a
planar graph, and the configuration space is the surface of
2D sphere, it is possible that the graph wraps non-trivially
around the configuration space. However, we show that when
the power of the cost of disagreement between two neighbors
is p ≤ 2, greedy self-organizing algorithms will be able to
order the network. However, for cost functions with a larger
power in the cost of disagreement, network non-aligned net-
work configurations that are fixed points of self-organization
algorithms may exist.

The rest of paper is organized as follows: Section II
describes the system model and formulation of the greedy



self-organization problem for different topologies. Section III
considers one-dimensional configuration spaces—the real line,
and the circle. Section IV discusses the higher dimension
configuration spaces, showing simulation results for a nu-
merical example from self-organizing network, as well as an
approximative analysis. We conclude in Section V.

II. SYSTEM MODEL: GREEDY SELF-ORGANIZATION &
CONSENSUS

Consider a multiagent system comprising of a setV of
nodes. Each agent communicates with a subset of the nodes
with fixed and static topology, represented by a graphG(V, E),
whereE is the set of edges, i.e. communicating pairs of nodes.
The adjacency matrix of this graph isA. For simplicity we
assume bidirectional non-weighted communications, so that
the adjacency matrix elementsaij ∈ {0, 1} are symmetric. We
define the neighborhood of nodei asNi = {j ∈ V | aij = 1}.
Each nodei has an opinion of a variablexi taking values in
the node-configuration spaceM. The network configuration is
represented by the collection of variablesX = [xi]i∈V , which
may be interpreted as a matrix, or a vector, depending on the
dimensionality ofM.

Without loss of generality, we focus on the self-organized
network synchronization problems, where the objective of the
agents is to agree about this value:xi = x̂, ∀ i. For graphs with
the same in-degree and out-degree, the greedy algorithms con-
sidered here can be easily generalized to consensus algorithms,
see [2], [5]. In consensus not only agreement matters, but the
quality of the agreement is also important. Thus, the agreement
x̂ should represent the set of individual initial opinions as
well as possible, subject to a suitable norm. To understand the
difference between synchronization and consensus, a couple
of examples from wireless communications are in order. In
synchronization, the objective is that the nodes agree upon
the value of a variable, but it does not matter what precise
value is agreed upon. As an example, consider frequency
synchronization, where each node has an opinion of a real-
valued clock frequencyxi, a parameter related to the local
oscillator. The aim is to find a common understanding on the
carrier frequency used for communication. From the perspec-
tive of communication it does not matter, which precise value
x̂ is agreed upon. It may be one of the originalxi, or some
other value. As an consensus problem [2], one may consider a
protocol where the nodes change their communication pattern
based on a perceived average network load. Each node has
an opinionxi of the local network load, and the task of the
network is to reach consensus regarding the average load. In
this case, it is important that all nodes agree onx̂, but in
addition, the value of̂x should represent the average ofxi.

To address synchronization in a self-organized greedy
manner, we define a local cost function for alli ∈ V

ci(X) ,
1

2

∑

j∈Ni

||xi − xj ||p , (1)

and the total network cost is

C(X) =
∑

i

ci(X) =
1

2

∑

(i,j)∈E

||xi − xj ||p . (2)

Here || • || is a distance norm onM, and the exponentp > 0
indicates how large and small disagreements are compared. A

typical value would bep = 2, indicating that nodei minimizes
the mean square distance to its neighbors. It is straight-forward
to show that if the nodes are interpreted as particles in a swarm,
if ci is interpreted as a potential energy, and kinetic energy is
as usual, the particles follow the integrator dynamics studied
in [5]. Here we are not interested in the particulars of swarm
dynamics. We consider the simplest and most elementary
greedy dynamics for reaching synchronicity, or consensus.We
will see that in many cases, topological properties prevent
convergence of these algorithms. This is the reason why more
involved phase-locking algorithms are necessary, especially in
the case of event synchronization [11]. For simplicity we shall
consider a greedy algorithm, where each node tries to directly
minimize (1). Note that in [5], a global order parameter was
constructed:

ρ = ||
∑

i

xi|| (3)

and a Lyapunov potentialV = 1− ρ2 was considered. Using
this, convergence to an aligned state could be proved when the
communication graph was fully connected. For this graph, (2)
equals this Lyapunov potential.

In this system model, there are two objects of interest
which may have a non-trivial topology. First, for synchroniza-
tion and consensus, the node-configuration space is a smooth
manifold, which has a set of topological properties such as
the number of connected components, openness/compactness.
We are particularly interested in the homotopy structureM.
Second, we have the graphG(V, E), which may have a trivial
topology, or may have one or more cycles. Any graph can
be proven to be topologically equivalent to a so-called wedge
sum of multiple circles, i.e., a the space acquired when gluing
together a number of circles at one point [12]. The aim is
to investigate potential non-trivial phenomena arising inself-
organization problems, that are caused by non-trivial interac-
tions of these two topologies. Any network configurationX
gives rise to a mapping

M(X) : G(V, E) 7→ M (4)

where not only the vertices, but also the edges of the com-
munication graph are mapped toM. Non-trivial properties of
this mapping may prevent emergence of global order.

III. O NE-DIMENSIONAL EXAMPLES

A. Mutual Synchronization: Real Line Topology

We first consider the simplest configuration space topology,
where the variable at each nodei ∈ V is a real numberxi ∈ R.
Thus, the cost of non-agreement for nodei with neighborhood
Ni is

ci (x) =
1

2

∑

j∈Ni

(xj − xi)
p
. (5)

The aim is to minimize the network cost. As this is a simple
optimization over the real line, it can be solved optimally by
employing best-responseupdates. The best response update
constitutes selfish behavior where each node acts in a non-
cooperative way and attempts to minimize its cost function
responding to the strategies of other (neighboring) nodes.For
nodei ∈ V, the best response update is given by

x∗
i = argmin 1

2

∑

j∈Ni
(xj − x)

2

x
(6)
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Fig. 1. Event synchronization can be mapped to phases on a circle.

Proposition 1. For a real line topology, the best response
update converges to an aligned statexi = x∗ ∀ i.
Proof. Consider a fixed pointx∗ of the best response update
scheme. As the configuration space is the real line, there is a
unique order of the variablesxi, and thus there is a largest and
a smallest value. If there is a fixed point such that the maximum
and minimum are not the same, and the network graph is
connected, at least one of the nodes having a maximum value
has a neighbor with a smaller value. The best response of this
node is smaller than the maximum value. Thus the maximum
and minimum are the same in a fixed point. This proves that
any fixed point is aligned:

xi = x∗ ∀ i ∈ V. (7)

Furthermore, a Cauchy sequence argument can be used to
prove convergence to such a fixed point with probability one.

B. Mutual Event Synchronization: Circular Topology

Event-synchronization is a widely studied self-organization
problem. The configuration space is one-dimensional, and with
a non-trivial topology—the node configuration spaceM is the
circleS1. It is well-known that consensus and synchronization
problems on the circle may not converge to an agreement, see
e.g. the recent paper [8]. Here we shall enumerate all fixed
points of greedy self-organization algorithms on a circle.

The variables on the circle can for example be represented
by phases,φi ∈ [0, 2π]. The vector of phases for the whole
graph is denoted byΦ. In Fig. 1, a cycle graph, and its
mapping to a circle is represented. Many distances can be
defined on the circle, and as observed in [13], details of
convergence performance may depend on the norm chosen,
but the main principles are essentially the same. For simplicity,
we here consider thegeodesic distance, which is intrinsic to
the manifold. The distance between two pointsφ1 andφ2 on
the circle can be calculated along two paths, and the geodesic
distance is the smaller. Thus we define

||φ1 − φ2||G = min (|φ1 − φ2|, |2π − φ1 + φ2|) (8)

which can be regarded as timing difference or a measure of
asynchrony between two nodes. The local cost due to non-
alignment at a node is thus

ci (φ) =
1

2

∑

j∈Ni

||φi − φj ||pG . (9)

However, in an aligned state, all phases are the same as
illustrated in Fig.1.

Algorithm 1 Synchronous best response self-organization

1: Initialize φi ∈ [0, 2π], ∀ i ∈ V
2: At t[n], all nodesi ∈ V update

φi = argminφ
∑

j∈Ni
||φj − φ||pG

3: Repeat until convergence orn = MaxIters.

C. Greedy Self-organization Algorithms

In greedy self-organization, each node tries to minimize
its cost (9). Assuming that the nodes change their variables
at discrete times, a straight-forward approach is that each
nodei ∈ V performs the following best-response update

φi = argmin
φ

∑

j∈Ni

||φj − φ||pG (10)

To make the update formulation complete, we note that if the
minimum is not unique, random selection is used. There are
multiple alternatives related to the timing of the update of
node i. If the variableφ represents node timing, as in true
synchronization problems, the time of update may depend on
φi. If φ represents a more general variable, updates may be
synchronous or asynchronous.
Proposition 2. With synchronous best response updates, the
greedy algorithm for mutual event synchronization may not
converge on a circular topology.
Proof: At each instantt, due to selfish updates the total costCφ

is not non-increasing. This results in oscillatory behaviour,
as shown in Fig. 2, where all the nodes update their phases
simultaneously by jumping on the mid-point of arc joining
their respective neighbors.
In an asynchronous version, nodes would update their phases
at unique time instantsti[n] in a given iteration. To this
end, the synchronous and the asynchronous best response
algorithms are summarized asAlgorithm 1 andAlgorithm 2 ,
respectively. A simpler algorithm for greedy self-organization,
would be the local gradient descent. The gradient descent based
update rule for nodei is given by

φi = [φi + β∇φi
C (φ)]

S
(11)

where [•]S is the projection on the feasible setS , [0, 2π],
and∇φi

C (φ) is the gradient with respect toφi given by

∇φi
C (φ) =

∂ci (φ)

∂φi

+
∑

j∈Ni

∂cj (φ)

∂φi

(12)

In the problem at hand, the cost of a node is perfectly aligned
with the network cost, so no signaling is needed to devise
gradient descent updates. The nodes simply take a small step
to a direction where the cost is reduced. The updates in this
case can also be synchronous or asynchronous. As opposed

Algorithm 2 Asynchronous best-response self-organization

1: Initialize φi ∈ [0, 2π], ∀ i ∈ V
2: At ti[n], nodei ∈ V updates

φi = argminφ
∑

j∈Ni
||φj − φ||pG

3: Repeat until convergence orn = MaxIters.
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Fig. 2. Synchronous updates lead to unstable (oscillatory)behavior

to the best response algorithm, synchronous gradient descent
will not be dramatically different from a asynchronous gradient
descent, if the step size is small. The step-size governs how
close to the minimum cost a fixed point could possibly be. A
gradient descent with infinitesimal step size would give rise
to a particle swarm dynamical system, of the type considered
in [2].

D. Fixed Points of Cycle Graphs

The circular topology differs from the real line in that
no unique order exists between phases. Accordingly, the best
response and gradient descent have non-aligned fixed points,
when the graphG(V, E) has cycles. For simplicity we consider
a graph consisting of one cycle only, as depicted in Fig. 1. In
this graph, each node has exactly two neighbors.

First, we note that ifp > 1, at a fixed pointΦ∗, the
distances between two neighboring points are all the same.
To see this, it is sufficient to observe that for a node with two
neighbors, andp > 1, the functionc(φ) =

∑2
j=1 ||φ − φj ||pG

has two local minima, the two midpoints on the two segments
of the circle connecting the phasesφ1 and φ2 of the two
neighbors. One of these is the global minimum, found by the
best response algorithm. This is at a distanced ≤ π/2 from the
two neighbors. The other is at a distanceπ/2 ≤ d < π from
the neighbors. The sequence of points generated by gradient
descent may be attracted to any of these two local minima.
As a consequence of this, at a fixed point of the best response
update, allφi are at the closest midpoint of its two neighbors,
whereas for a gradient descent fixed point, it is sufficient for
all φi to be at one of the two midpoints of its two neighbors.
As the neighborhood relation on a cycle graph is cyclic, this
leads to the following characterizations of fixed points.
Proposition 3. Consider a cycle graph withI = |V| nodes,
and a network configuration characterized by phase variables
{φi}Ii=1. The best response update algorithm has

⌈

I
4

⌉

− 1
families of fixed points, with configurations

φ∗
i = i

n2π

I
+ ϕ , (13)

wheren is an integer with|n| < I
4 , andϕ is a common phase.

Proof.The difference between two consecutive phases is fixed,
and< π/2. If the difference is exactlyπ/2, random breaking
of evens in the best response algorithm will change the system
configuration.
Proposition 4. Consider the same cycle graph. The gradient
descent algorithm has

⌈

I
2

⌉

− 1 families of fixed points, with
configurations of the form (13) wheren is an integer with
|n| < I

2 .
Proof. Straight forward verification.

Note that in both cases, only the fixed point withn = 0 is
an aligned state. If the initial points are selected randomly, each

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Wrapping number

P
ro

ba
bi

lit
y

 

 
I = 3
I = 6
I = 12
I = 24
I = 48

Fig. 3. Probability of convergence to fixed points with different wrapping
number, for different number of nodesI. Asynchronous gradient descent
updates.

of the possible fixed points characterized byn has an attraction
pool of initial points with non-zero probability. This can be
seen as follows. For the best response update, consider an angle
α = min

(

nπ
I
, π
4 − nπ

I

)

. Now any configuration within2π
I

−
α < φi < in2π

I
+ α will converge to (13). This follows from

the fact that with these initial conditions, the best response
algorithm will not change the order of theφi, nor change any
of the φi to the opposite side of the circle. For the gradient
descent, a similar argument can be given.

Accordingly, any greedy self-organizing synchroniza-
tion/consensus algorithm of a graph with cycles and circular
configuration variables will face problems with converging
to an aligned state. To proceed with synchronization, the
symmetry between neighbors has to be broken. This is done
in phase-locking algorithms [14], such as the classical firefly
synchronization algorithm [11] by deliberately considering
neighbors with slightly more advanced phase values more than
neighbors with less advanced phase values.

Monte Carlo studies were performed studying the prob-
ability of the converged state to be a fixed point (13) that
wraps around the configuration spacen times. Results for
asynchronous gradient descent are reported in Fig. 3, and
results for asynchronous best response in Fig. 4. The initial
states consist of random phases, and the algorithms are run
for k = 200 iterations. Convergence to fixed points with the
largest wrapping numbersn is very improbable. However,
convergence to fixed points with moderate wrapping numbers
is rather probable, and as predicted more probable for the
gradient descent than for best response updates.

E. Homotopy Classes in Circular Topology

The integern in (13) characterizes the mappingM(Φ) of
(4), i.e. how the graph maps to the node configuration space.
When both the graph and the configuration space are topo-
logically non-trivial, as in this case, this mapping may have
different homotopy classes. Two mappings are homotopic, if
one can be continuously deformed into the other. A collection
of homotopic mappings is called a homotopic class.
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Fig. 5. Two mappings from a cycle graph to a circle, with wrapping number
0 and 1.

For the cycle graph and circular variables, the homotopy
classn is characterizing how many times the graph wraps
around the circle. Generically a circle may wrap around
another circle infinitely many time, i.e.n may take any integer
values. In the problems addressed here, the edges between
the links are logical, however, and indicate a communication
relationship. Thus an edge is always assumed to go between
two neighbors along the shortest route. As a consequence of
this, a cycle graph cannot wrap around a circle an infinite
number of times.

Once the edges are drawn along the shortest path, we have
a mapping of a circle to a circle. The wrapping number of this
mapping can be easily calculated by calculating theindex of
a point in the configuration space [12]. With the configuration
{φi}, and the angles taking values between0 and2π, it is most
straight forward to calculate the index of the pointπ. This
is a signed sum of the number of edges that goes through
the point π. If φi < π < φi+1, and φi+1 − φi < π this
interval contributes+1 to the index, ifφi+1 < π < φi, and
φi − φi+1 < π, it contributes−1 to the index. It is easy to
convince oneself that the wrapping number equals the index
of any point. In Fig. 5, two configurations of a cycle graph
are depicted, with the same five values ofφ, but in a different
order. The connections between neighbors in the graph are also
depicted. One order gives rise to a mapping from the cycle to
the circle with wrapping number 0, the other has wrapping
number 1.

Gradient descent induces a continuous transformation of

this mapping of the graph to the circle, by smoothly mov-
ing the vertices of the graph, and accordingly stretching or
shrinking the edges. Thus, according to elementary homotopy
theory [12], the wrapping number is not changed by gradient
descent. A topological interpretation of the best response
algorithm is more delicate. In addition to changes where the
updated point lies on the same circular segment between the
two neighbors as the previous point, there is the possibility
that the updated point jumps to the opposite line segment as
shown in Fig. 6. The former can be interpreted as continuous
deformations of the mapping from the graph to the circle. The
latter, however, are discontinuous deformations, that change
the homotopy class. However, once the best response algorithm
has converged to a configuration where no jumps to the other
side happen anymore, the best response updates preserve the
wrapping number. Such configurations exist, and have a non-
vanishing probability, as discussed in the context of Propo-
sition 3. Note that in the gradient descent, no discontinuous
changes of the homotopy class happen after initialization,a
point moves always towards the midpoint of its two neighbors
on the circle segment that it is situated on.

IV. H IGHER DIMENSIONAL CONFIGURATIONS

For one-dimensional configuration spaces, we observed
that if the graphG(V, E) describing the communication topol-
ogy has cycles, problems with aligning nodes may arise
when the configuration space was circular, and thus had a
non-trivial topology. It is an interesting problem to address,
what happens in higher-dimensional configuration spaces. We
consider smooth and homogeneous manifoldsM, in particular
spheres and hyperspheres.

If the communication graph is literally interpreted as a
topological collection of glued circles, the answer is clear.
A mapping of a circle to a sphere or hypersphere can be
continuously deformed to a point. The same holds for a
collection of glued spheres. Pictorially speaking, each circle
slips over the sphere, and can be contracted to a point.
However, as we saw above, when discussing mappings of
communication graphs to circles, the topological interpretation
of the edges in communication graphs is not straight forward.
The problem thus merits a deeper study. Some graphs, allow
for another topological interpretation. If in addition to the

φ1

φ2

φ3

Best response

Gradient descent

Fig. 6. Some best response updates may be seen as discontinuoustrans-
formations of the mapping of the cycle to the circle—the ones involving a
jump to the opposite side. Gradient descent always gives riseto a continuous
transformation of this mapping.



Fig. 7. Random planar Graph withI = 500 nodes.

vertices and edges, a natural geometrical definition of an face
of a graph can be given, an Euler characteristicχ = V −E+F
can be calculated for a graph, whereV is the number of
vertices,E the number of edges, andF the number of faces.
In particular, any planar graph hasχ = 2, indicating that a
planar graph can be understood as a discretization of S2, the
two dimensional sphere in three Euclidean dimensions [12].In
this interpretation, the part of the 2D plane that is “outside” of
the planar graph, is interpreted as a face, which is surrounded
by the vertices on the perimeter of the graph, i.e. the area
outside the graph itself is one face of the discretization ofthe
sphere.

Figure. 7 shows a random planar graph, which can be
understood as a discretization of a 2D sphere. It is created
by droppingI = 500 nodes uniformly and at random in a
rectangular area, performing a Voronoi tesselation of the area,
and connecting nodes that share a boundary. If a planar graphis
interpreted as a discretization of a sphere, and the configuration
spaceM is a sphere as well, mappings from the graph to
M may have a non-trivial homotopy class, characterized by
a wrapping numbern. It is not clear whether such wrapping
numbers would have an effect on fixed points of greedy self-
organization algorithms.

A. Planar Graph & Spherical Configurations

To get an understanding on the self-organization character-
istics, we perform simulations on random planar graph, where
the configuration space variablesxi ∈ R

m are constrained to
have unit norm. The planar graph is mapped on the sphere
and nodes interact according to the neighborhood relations
N − i determined by the graph. Thus when a node changes
its variablexi, the node moves on the surface on sphere. With
p = 2 in (1), a best response update is given by

x
∗
i =

∑

j∈Ni

xj/||
∑

j∈Ni

xj || (14)

Here, the new value is the linear combination of the neighbor
vectors, normalized to have unit norm.

Fig. 8. Sphere Packing: Convergence to a fully aligned statewith asyn-
chronous gradient descent self-organization.

To study configuration of self-organization on a random
planar graph, we consideredM , S2, i.e. the variablesxi

at the nodes can be represented by e.g. real 3D unit norm
vectors. This gives rise to a mapping of the planar graph
to the 2D sphere. The resulting mapping or initial from a
random selection of pointsxi is shown in Fig. 8 forI = 500
nodes. Note that the edges in the communication graph are
not drawn in the figure, and nodes that are close to each other
on the sphere are not necessarily neighbors in the graph. The
network is in complete disorder initially due to the random
position of nodes on the sphere. The asynchronous gradient
descent algorithm is run with step-sizeβ = 0.05 and total
iterationsk = 15000. The snapshots at different iterations are
captured as the network evolves to a completely ordered state.
In Fig. 9 we depict the convergence towards an ordered state
in a random planar graph with random initial points on the
sphere, with different numbersI of nodes in the network. The
power in the cost function isp = 2. A best response dynamic
is used, and convergence is universal, and smooth.

As the random planar graph in this example has a very
long perimeter, it is a bit dubious, how good a discretization
of the sphere the graph is. There is one face, the face with the
infinity point, which is surrounded by a very long cycle. To
consider a more homogeneous discretization of a sphere, we
consider a sphere packing. We take the best known packing
with 32 points, from [15]. Thus each vertexi is characterized
by a point vi on the circle. The communication topology
is given by a nearest neighbor rule in the packing. As the
objective is to understand whether the topology of the mapping
from the graph to the sphere has a similar meaning as for
the circle, we start with hand-crafted initial states wherethe
planar graph wraps around the sphere. For this, we consider a
configuration where each vertexi has exactly the configuration
space variable corresponding to the vertex. The hand-crafted
fixed point is unstable against any infinitesimal perturbation
of the initial conditions,xi = vi + ǫi. In this case, the intial
condition, some intermediate states, and the convergence point
of the best response dynamic (14) are depicted in Fig. 10.
From this figure we see how all the points are gradually
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collected to one hemisphere, so that the sphere representing
the configuration space squeezes through one of the faces of
the planar graph. With the best response dynamic the density
of the points on one hemisphere decreases, until suddenly all
points jump to one hemisphere, and the convergence is rapid.

B. Approximative analysis

To understand the convergence of mappings of planar
communication graphs to a 2D spherical configuration space,
we focus on an approximative formulation of the underlying
system dynamics, and concentrate on infinitesimal gradient
descent withp > 1.

As discussed above for the circular case, a gradient descent
is a continuous deformation of the mapping of the graph to
the configuration space. In the situation of interest here, the
points corresponding to the mapping of the vertices to the

Fig. 10. Sphere Packing: Convergence to a fully aligned state with
asynchronous best-response self-organization.

Fig. 11. A spherical cap.

sphere, move continuously, and the arcs representing the edges
of the graph, span along great circles. To get from a disordered
state to an ordered one, the configuration sphere has to push
through one of the faces of the planar graph. The gradient
descent guarantees that all nodes move towards a lowest cost
point, with respective to the positions of the neighbors. Atany
stage of the gradient descent, consider1−h to be the fraction
of the surface area of the configuration space covered by the
graph, andh fraction of the area of the largest face, i.e. the
part of the configuration space without any nodes. Assume that
there is a cycle ofL nodes surrounding this largest face. With
a fixed h, the least cost configuration is one where theseL
nodes form a regularL-gon, and the part of the configuration
space not having nodes is an approximative spherical cap. Thus
an infinitesimal gradient descent would have developed to this
spherical cap configuration, once it reached the point where
the fraction covered by nodes inh.

Consider a spherical cap as depicted in Fig. 11. Without
loss of generality, we assume that the radius of the configura-
tion space is 1. The height of the cap ish, and the radius of the
boundary circle of the cap isa = 2

√

(h− h2). The surface
area of the cap is4πh, and the area of the complement cap is

A = 4π(1− h) , (15)

and h is indeed the fraction of the surface area occupied by
the cap.

Assume thatL is the length of the cycle surrounding the
largest face, i.e. the cycle that the configuration sphere is
squeezed through. The minimum cost regularL-gon has angle
α = π − 2π/L between the vertices, and the length of a side
is

s = 2a sin
[π

L

]

= 4
√

(h− h2) sin
[π

L

]

. (16)

This gives us directly the cost of theL-gon.

To get an approximation of the network cost (2) of dis-
agreement, we need an estimate of the cost of the bulk of
the nodes. To get an estimate of this, we assume that the
communication graph is a perfect uniform sphere packing of
the kind discussed above. The degree of each node is the
same—each nodei has|Ni| = d neighbors. We assume that in
a minimum cost configuration it is possible that all neighbors
are as far from each other. This distance scales as a square
root of the area that the nodes are covering. Thus we would
have

||xi − xj || ≈ c
√
1− h, ∀(i, j) ∈ E , (17)



Fig. 12. Estimated minimum cost of graph covering fraction1−h of sphere.
Cost is powerp = 2 of distance.

for some constantc. This gives an estimate of the cost of the
nodes in the bulk. The total cost of the network configuration
that is uniformly covering the fraction1 − h of the sphere,
would thus be estimated as

C(h) = Lsp +

(

L (d− 2) +
1

2
(I − L) d

)

(

c
√
1− h

)p

.

(18)
The first term is the cost of theL-gon cycle, and the second

term is the cost of the node of the bulk. Each node on the
L-gon is connected tod−2 nodes in the bulk, and each of the
I−L nodes in the bulk tod neighbors. To get a feasible lower
bound to the constantc, we assume the well-known Hamming
bound. We assume that the area (15) covered by the nodes is
divided intoI−L/2 circles with the same area, with no space
in between. The area of one such circle is4π(1−h)/(I−L/2),
and the radius is2

√

(1− h)/(I − L/2). An estimate of the
distance between nearest neighbors, which would make sense
up to d = 6, would then be approximately twice this radius,
leading to:

c =
4

√

I − L/2
. (19)

This gives us an estimate of the cost of the minimum cost
configuration covering the fraction1− h of the configuration
space. The estimated minimum cost forp = 2 is depicted in
Fig. 12, and the estimated minimum cost forp = 3 in Fig. 13.
It is remarkable that withp = 2 the cost is monotonically
decreasing, when the fraction of the sphere covered by the
network decreases. This indicates that a configuration would
align to an ordered state. However, withp > 2, (in the example
p = 3), it is interesting that if the network is in a state with a
non-trivial wrapping number, it will not be able to escape that
state. Thus, it can be concluded that for a network having a
planar graph topology, the ability to self-organize to an ordered
state depends on the powerp of the disagreement in the cost
function (1). If the objective is just to find an aligned state,
this power should be chosen to bep ≤ 2.

V. CONCLUSION

We analyze the topological aspects of convergence in
greedy self-organization algorithms for network synchroniza-
tion and consensus problems. First, we thoroughly analyzed
the case where the network is a simple cyclic graph, and the
configuration space is a circle. Different identified families

Fig. 13. Estimated minimum cost of graph covering fraction1−h of sphere.
Cost is powerp = 3 of distance

of non-aligned fixed points of self-organization algorithms
are identified, where the cyclic network wraps around the
configuration space. Both asynchronous best response, and
asynchronous gradient descent updates are considered. We
interpreted these fixed points in terms of homotopy classes
(“wrapping numbers”) of the mapping of the cyclic graph to
the circular configuration space. The best response dynamics
suffered less from such non-aligned points than the gradient
descent, as the best response strategy has the possibility to
change the wrapping number. However, best response dynam-
ics are only of interest for synchronization, not for consensus.

It should be noted, though, that the presented analysis is
only for cyclic graphs. For generic communication topologies,
the graph typically involves multiple cycles. Topologically
such a graph can be seen as a collection of cycles that are glued
together. Any of these cycles may prevent synchronization due
to the non-trivial topological configurations discussed here,
leading to a limit-cycle behavior. In [13], for example, greedy
synchronization algorithms were investigated, and limit cycle
behavior was a dominating phenomenon in multi-cycle graphs.
Thus, when considering synchronization of values on a circle,
the topology of the circle prevents synchronization based on
simple greedy algorithms. Symmetry breaking algorithms are
needed for event synchronization, as is well known in the
literaure [11], [14]. Also, we conclude that finding consensus
of a variable taking values on a ring, following the approaches
of [2], [5] may sometimes be impossible due to topological
obstructions.

Next, we investigated whether similar phenomena would
happen in higher dimensional configuration spaces. We iden-
tified the possibility that a planar graph may wrap around an
S2 configuration space, i.e. when the configuration space is
the surface of a 3D ball. However, it was found that when
the cost of the distances to different neighbors are added
with a power p = 2, such configuration rapidly converge
to an aligned state. Based on an analytical approximation
we argued that with largerp, this would not be the case.
Again, a generic graph is not planar, but can be seen as a
collection of planar graphs glued together. It is likely that
in a generic graph, any of the individual planar parts may
prevent synchronization/consensus forp > 2, just as any of
the cycles may prevent synchronization on a circle. When
the configuration spaces are spheres with higher dimension



than 2, it is likely that the higher dimensionality enables
greedy algorithms to overcome the topological obstructions
and converge to an ordered state. The approach of this paper
may be generalized to problems with more generic compact
configuration spaces [7]–[9], [16], which merits a separate
study.
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[10] R.-A. Pitaval, H.-L. M̈aätẗanen, K. Schober, O. Tirkkonen, and R. Wich-
man, “Beamforming codebooks for two transmit antenna systems based
on optimum Grassmannian packings,”IEEE Trans. on Inf. Th., vol. 57,
no. 10, pp. 6591–6602, Oct. 2011.

[11] R. E. Mirollo and S. H. Strogatz, “Synchronization of pulsecoupled
biological oscillators,”SIAM J. Appl. Math., vol. 50, no. 6, pp. 1645–
1662, Dec. 1990.

[12] A. Katok and A. B. Sossinsky,Introduction to Modern Topology and
Geometry. Online, 2007.

[13] J. Yu and O. Tirkkonen, “Self-organized synchronization in wireless
network,” in Proc. 2nd IEEE Int. Conf. on Self-Adaptive and Self-
Organizing Systems (SASO’08), Oct. 2008, pp. 329–338.

[14] J. A. Acebŕon, L. L. Bonilla, C. J. Ṕerez Vicente,
F. Ritort, and R. Spigler, “The Kuramoto model: A
simple paradigm for synchronization phenomena,”Rev. Mod.
Phys., vol. 77, pp. 137–185, Apr 2005. [Online]. Available:
http://link.aps.org/doi/10.1103/RevModPhys.77.137

[15] N. J. A. Sloane et al., “Tables of spherical codes,” published electron-
ically at www.research.att.com/ njas/packings/.

[16] A. Sarlette, “Towards coordination algorithms on compact lie groups,”
Tech. Rep., 2007.


