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the best transmission method of a multiantenna transmitter
The parameter space of a two-element transmitter can be
understood as a 2D sphere, see e.g. [10].

Abstract—We consider self-organization problems, where
agents try to agree about the value of a configuration space
variable. Problems of consensus and synchronization belong to
this category. These are the problems which would often be

trivial to solve in a centralized setting, and non-trivial aspects
are often directly induced by the process of self-organization
itself. We discuss topological reasons as to why simple locally
greedy algorithms are not able to create long-range order. The
reason why greedy synchronization of a real-valued variable
works in a straight forward manner, whereas greedy phase
synchronization does not, is topological; in the latter non-trivial
homotopy classes in mappings from the interaction graph of
the agents to the configuration space exist. We identify higher-
dimensional configuration spaces with such non-trivial homotopy
classes. However, we find that greedy self-organization is able to

A major challenge lies in addressing these problems in
a self-organized manner, where each agent has a limited
knowledge of the network. Such considerations are releant
the practical aspects of real world systems, such as stiglabi
and minimization of overhead related to message passira. In
centralized setting, both synchronization and consensuis- p
lems are straight forward to solve, the centralized colarol
may collect the information, and directly dictate the résTiis
is in contrast to distributed schemes that hinge upon lginite
cooperation based on local interactions among the neigidpor

create long-range order for any higher-dimensional configuratio

nodes to minimize the amount of message passing in network.
space that does not have circular components.

It is worth noting that under such conditions, convergerce t
a global optimum is not guaranteed, and is even impossible
in certain cases especially when agents behave in a greed
way. From this perspective, these problems are partigularl
In self-organizing systems, the actions of agents are baseghpealing—as the centralized version is trivial, all profse
on their interactions with their respective peers, depsndi with finding a solution stem from the self-organization prin
on rules and policies guided by local information leading tociple itself. This phenomenon can be explained by studying
an emergence of a global pattern [1]. Synchronization anghe structure of the interaction graph of the agents, which
consensus problems are some of the simplest self-orgamizat reveals the dynamics of interaction between them. Thus, the
problems, and offer a platform for studying different issue underlying topology that ensues when agents act in a self-
that arise from self-organization. organized manner to reach a solution, determines conveggen

characteristics of greedy self-organization. In partcuéxis-

In consensus problems, agents aim at reaching an agregs, .. "¢ cycles in the interaction may result in an impedimen
ment on the values of variables. It is a fundamental problen(gO the convergence

in areas of distributed computing and complex networks an

therefore, has been of historical research interest [3], If3 In this paper, we focus on the convergence aspects of
has wide-ranging applications in the practical self-oflgag  self-organization of consensus and synchronization probl
systems. These include wireless sensor networks, unmanngfle topological aspects that obstruct the convergence to &
air vehicles, air-traffic contro—to name a few. A closely giopal optimum in self-organizing systems are highlighted
related problem is the network synchronization problem, infgjlowed by a discussion on how the change in topology can
which a number of agents strive to achieve synchrony in theipe|p in avoiding them. We start by analyzing one-dimendiona
respective clocks. Mutual event synchronization is a speci systems. For cycle graphs, we identify multiple families of
case of network synchronization, where nodes are peers afed points for both best response and gradient descenti base
synchronize to each other. Existing approaches to tackle thse|f-organizing algorithms. Next we turn to higher-dimiens!
problem are inspired by biological oscillators such as feefl  configuration spaces. We observe that when the network is a
and pacemaker cells of heart. Most studies on synchroaizati planar graph, and the configuration space is the surface of
or consensus, have been either for one-dimgnsional coafigurop sphere, it is possible that the graph wraps non-trivially
tions (real variables, or phases), or for Euclidean spalies.  around the configuration space. However, we show that when
effects of the communication topology on the convergence ofhe power of the cost of disagreement between two neighbors
such algorithms was studied in [4]. Here, in addition, welgtu js , < 2, greedy self-organizing algorithms will be able to
more generic problems, where the variable to be agreed upQstder the network. However, for cost functions with a larger
takes values in a higher-dimensional sphere. This has beeﬂbwer in the cost of disagreement, network non-aligned net-

addressed in [5], [6], and for more generic Riemann marsfold yyork configurations that are fixed points of self-organizati
in [7], [8]. This general set of problems has relevance toggorithms may exist.

swarm dynamics [5], synchronization of satellite orbitg, [7
or agreeing about postures in photos [9]. The problem would The rest of paper is organized as follows: Section I
also be interesting for a set of wireless receivers to agveata describes the system model and formulation of the greedy

I. INTRODUCTION



self-organization problem for different topologies. Sewtlll typical value would be = 2, indicating that node minimizes
considers one-dimensional configuration spaces—the regl li the mean square distance to its neighbors. It is straightaial

and the circle. Section IV discusses the higher dimensiomo show that if the nodes are interpreted as particles in amswa
configuration spaces, showing simulation results for a nuif ¢; is interpreted as a potential energy, and kinetic energy is
merical example from self-organizing network, as well as aras usual, the particles follow the integrator dynamics istlid

approximative analysis. We conclude in Section V. in [5]. Here we are not interested in the particulars of swarm
dynamics. We consider the simplest and most elementary

Il. SYSTEM MODEL: GREEDY SELF-ORGANIZATION & greedy dynamics for reaching synchronicity, or consendigs.
CONSENSUS will see that in many cases, topological properties prevent

convergence of these algorithms. This is the reason why more

Consider a multiagent system comprising of a ¥ebf . volved phase-locking algorithms are necessary, esheiia
nodes. Each agent communicates with a subset of the nod P g aigorith sary, ¢
e case of event synchronization [11]. For simplicity walkh

with fixed and static topology, represented by a gréfjhy, £), ! . . .
where€ is the set of ets)ges?)i/.e. fommunicati)llng ga?rg of r)lodes(.:o.n.s'o!er a greedy algorithm, where each node tries to direct
The adjacency matrix of this graph i$. For simplicity we minimize (1). Note that in [5], a global order parameter was

assume bidirectional non-weighted communications, st thaconstructed:
p=11_ xill (3)
%

the adjacency matrix elemenis; € {0, 1} are symmetric. We
define the neighborhood of nodasN; = {j € V | a;; = 1}.
Each node has an opinion of a variable; taking values in  and a Lyapunov potentidl = 1 — p? was considered. Using
the node-configuration spagel. The network configuration is this, convergence to an aligned state could be proved wleen th
represented by the collection of variabl¥s= [x;],.,,, which  communication graph was fully connected. For this graph, (2
may be interpreted as a matrix, or a vector, depending on thequals this Lyapunov potential.

dimensionality ofM. In this system model, there are two objects of interest

Without loss of generality, we focus on the self-organizedwhich may have a non-trivial topology. First, for synchmasi
network synchronization problems, where the objectivehef t tion and consensus, the node-configuration space is a smoot|
agents is to agree about this valse:= x, V i. For graphs with  manifold, which has a set of topological properties such as
the same in-degree and out-degree, the greedy algorithms cathe number of connected components, openness/compactnes
sidered here can be easily generalized to consensus higerit We are particularly interested in the homotopy structiwe
see [2], [5]. In consensus not only agreement matters, leut thSecond, we have the gragh(V, £), which may have a trivial
quality of the agreement is also important. Thus, the ages¢m topology, or may have one or more cycles. Any graph can
x should represent the set of individual initial opinions asbe proven to be topologically equivalent to a so-called veedg
well as possible, subject to a suitable norm. To understaad t sum of multiple circles, i.e., a the space acquired whemglui
difference between synchronization and consensus, a eouplogether a number of circles at one point [12]. The aim is
of examples from wireless communications are in order. Irto investigate potential non-trivial phenomena arisingsdt-
synchronization, the objective is that the nodes agree upoarganization problems, that are caused by non-trivialraute
the value of a variable, but it does not matter what precisdions of these two topologies. Any network configuratin
value is agreed upon. As an example, consider frequenagives rise to a mapping
synchronization, where each node has an opinion of a real- )
valued clock frequency:;, a parameter relate% to the local MX): GV,&)—~ M (4)
oscillator. The aim is to find a common understanding on thevhere not only the vertices, but also the edges of the com-
carrier frequency used for communication. From the perspeanunication graph are mapped fel. Non-trivial properties of
tive of communication it does not matter, which precise galu this mapping may prevent emergence of global order.

Z is agreed upon. It may be one of the origing|l or some

other value. As an consensus problem [2], one may consider a [1l. ONE-DIMENSIONAL EXAMPLES

protocol where the nodes change their communication patter
based on a perceived average network load. Each node his
an opinionz; of the local network load, and the task of the  We first consider the simplest configuration space topology,
network is to reach consensus regarding the average load. {there the variable at each node V is a real numbez; € R.

this case, it is important that all nodes agree @nbut in  Thus, the cost of non-agreement for nadeith neighborhood

Mutual Synchronization: Real Line Topology

addition, the value of: should represent the averageagf N; is
L . . 1
To address synchronization in a self-organized greedy ¢i (x) = 3 Z (zj — )" . (5)
manner, we define a local cost function for akt V JEN;
1 The aim is to minimize the network cost. As this is a simple
i X é - i [P 1 .. . . . ’ . p
ci(X) 2 2}; [Pei = 511" (1) optimization over the real line, it can be solved optimally b
]e' ‘ employing best-responseipdates. The best response update
and the total network cost is constitutes selfish behavior where each node acts in a non:
1 cooperative way and attempts to minimize its cost function
— . — R P . . . .
C(X) = ZCZ(X) ) Z [li = x5 (@) responding to the strategies of other (neighboring) nofies.
! (i.5)e€ nodei € V, the best response update is given by
Here|| o || is a distance norm o, and the exponent > 0 o = argmin 1 3 (2; — a)?
indicates how large and small disagreements are compared. A i = are 2 £jeN N (6)

x



Algorithm 1 Synchronous best response self-organization
1: Initialize ¢; € [0, 27], Vi €V
2: At ¢[n], all nodesi € V update

w

¢; = argming Y cn, |o; — ¢lG
3: Repeat until convergence ar= Maxlters.

P4
Cycle in a graph Initial phase values Aligned state

Fig. 1. Event synchronization can be mapped to phases onla.circ
C. Greedy Self-organization Algorithms

Proposition 1. For a real line topology, the best response  In greedy self-organization, each node tries to minimize
update converges to an aligned state= z* V i. its cost 9). Assuming thqt the nodes change th.e|r variables
Proof. Consider a fixed poink* of the best response update at discrete times, a straight-forward approach is that each
scheme. As the configuration space is the real line, there is Bodei € V performs the following best-response update
unique order of the variables, and thus there is a largest and .

asr?]allest value. If there is a fixed point such that thegmammu ¢ = argmin Z 165 = #llc (10)

and minimum are not the same, and the network graph is JEN:

connected, at least one of the nodes having a maximum value make the update formulation complete, we note that if the
has a neighbor with a smaller value. The best response of thiminimum is not unique, random selection is used. There are
node is smaller than the maximum value. Thus the maximunmultiple alternatives related to the timing of the update of
and minimum are the same in a fixed point. This proves thahode:. If the variable¢ represents node timing, as in true

any fixed point is aligned: synchronization problems, the time of update may depend on
¢;. If ¢ represents a more general variable, updates may be
v, =x" VieV. @) synchronous or asynchronous.

Proposition 2. With synchronous best response updates, the
Furthermore, a Cauchy sequence argument can be used dgeedy algorithm for mutual event synchronization may not
prove convergence to such a fixed point with probability oneconverge on a circular topology

Proof: At each instant, due to selfish updates the total co%

o ) is not non-increasing. This results in oscillatory behayio

B. Mutual Event Synchronization: Circular Topology as shown in Fig. 2, where all the nodes update their phases
simultaneously by jumping on the mid-point of arc joining
their respective neighbors.
In an asynchronous version, nodes would update their phase

circle S*. It is well-known that consensus and synchronizationat dunit?]ue timeh instantsi[rg ![?] a givenh iterationt.) T(t) this

problems on the circle may not converge to an agreement, s&Y 'the synchronous and € _?hsyn_tli ror&%s fﬁ’ r2espons

e.g. the recent paper [8]. Here we shall enumerate all ﬁxege%ggctir\r/];;ri Z?Qpr;;?rgzlgorﬁﬁgn?rflorrgreezg sel?—(())rrlga;lnizn’

points of greedy self-organization algorithms on a circle. would be the local gradient descent. The gradient desceetba
The variables on the circle can for example be representedpdate rule for node is given by

by phasesg; € [0,2x]. The vector of phases for the whole g

graph is denoted byp. In Fig. 1, a cycle graph, and its ¢i =101+ BV.C(P)ls (11)

mapping to a circle is represented. Many distances can bghere [o] is the projection on the feasible s&t2 [0, 27,

defined on the circle, and as observed in [13], details obnd Vv, C (¢) is the gradient with respect io; given by
convergence performance may depend on the norm chosen, '

but the main principles are essentially the same. For sityli V. C(6) = dci (¢) Py 9c; (9) (12)

we here consider thgeodesic distangewhich is intrinsic to ! 0¢; ~ 0p;

the manifold. The distance between two poigisand ¢, on

the circle can be calculated along two paths, and the geodesin the problem at hand, the cost of a node is perfectly aligned

distance is the smaller. Thus we define with the network cost, so no signaling is needed to devise
gradient descent updates. The nodes simply take a small ste|

l|p1 — ¢2||c = min (|1 — ¢2|, |27 — @1 + ¢o|)  (8)  to a direction where the cost is reduced. The updates in this

case can also be synchronous or asynchronous. As oppose

which can be regarded as timing difference or a measure of

asynchrony between two nodes. The local cost due to non-

Event-synchronization is a widely studied self-organarat
problem. The configuration space is one-dimensional, attd wi
a non-trivial topology—the node configuration spacgis the

alignment at a node is thus Algorithm 2 Asynchronous best-response self-organization
) 1: Initialize ¢; € [0, 27], Vi e V
ci () = - Z i — ;1% - (9) 2: At t;[n], nodei € V updates
JEN;

¢i = argming 37, v (165 — ¢lIG

However, in an aligned state, all phases are the same as,. Repeat until convergence ar— Maxters

illustrated in Fig.1.
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to the best response algorithm, synchronous gradient diesce 03r
will not be dramatically different from a asynchronous gead 0.2f
descent, if the step size is small. The step-size governs how 01l
close to the minimum cost a fixed point could possibly be. A mﬂl ‘ |
gradient descent with infinitesimal step size would gives ris 0 1 2 3 4
to a particle swarm dynamical system, of the type considered Wrapping number

in [2].

Fig. 3. Probability of convergence to fixed points with diffat wrapping

D. Fixed Points of Cycle Graphs 3;31632; for different number of node& Asynchronous gradient descent
The circular topology differs from the real line in that

no unique order exists between phases. Accordingly, the bes ) i ) ] ]
response and gradient descent have non-aligned fixed poingf the possible fixed points characterizedrbiias an attraction
when the grapl(V, £) has cycles. For simplicity we consider Pool of initial points with non-zero probability. This careb
a graph consisting of one cycle only, as depicted in Fig. 1. Irfeen as follows. For the best response update, consideghn an
this graph, each node has exactly two neighbors. a = min (%F, 7 — 2F). Now any configuration with 25 —
a < ¢; < z’"?” + « will converge to (13). This follows from
the fact that with these initial conditions, the best resgon

g g ; ec\'lgori'[hm will not change the order of the, nor change any
To see this, it is sufficient to observe that for a node with oy the 4, to the opposite side of the circle. For the gradient
neighbors, ang > 1, the functionc(¢) = > 7_, [|¢ — ¢;l[¢

g ST descent, a similar argument can be given.
has two local minima, the two midpoints on the two segments

of the circle connecting the phases and ¢, of the two Accordingly, any greedy self-organizing synchroniza-
neighbors. One of these is the global minimum, found by thaion/consensus algorithm of a graph with cycles and circula
best response algorithm. This is at a distasice /2 from the  configuration variables will face problems with converging
two neighbors. The other is at a distane® < d < w from  to an aligned state. To proceed with synchronization, the
the neighbors. The sequence of points generated by gradiesymmetry between neighbors has to be broken. This is done
descent may be attracted to any of these two local miniman phase-locking algorithms [14], such as the classicaflyire
As a consequence of this, at a fixed point of the best responsgnchronization algorithm [11] by deliberately consideri
update, allp; are at the closest midpoint of its two neighbors, neighbors with slightly more advanced phase values more tha
whereas for a gradient descent fixed point, it is sufficient fo neighbors with less advanced phase values.

all ¢; to be at one of the two midpoints of its two neighbors. ) )

As the neighborhood relation on a cycle graph is cyclic, this Monte Carlo studies were performed studying the prob-
leads to the following characterizations of fixed points. ability of the converged state to be a fixed point (13) that
Proposition 3. Consider a cycle graph witd = [V| nodes, Wraps around the configuration spagetimes. Results for
and a network configuration characterized by phase varigble @synchronous gradient descent are reported in Fig. 3, anc
{¢:}]_,. The best response update algorithm Haé;] 1 results for asynchronous best response in Fig. 4. The linitia

families of fixed points, with configurations states consist of random phases, and the algorithms are ru
nor for k = 200 iterations. Convergence to fixed points with the
O =i—+ o, (13) largest wrapping numbers is very improbable. However,
I convergence to fixed points with moderate wrapping numbers

wheren is an integer witin| < £, andy is a common phase. is rather probable, and as predicted more probable for the
Proof. The difference between two consecutive phases is fixedgradient descent than for best response updates.

and < 7/2. If the difference is exactlyr/2, random breaking

of evens in the best response algorithm will change the syste o

configuration. E. Homotopy Classes in Circular Topology

Proposition 4. Consider the same cycle graph. The gradient
descent algorithm has$Z| — 1 families of fixed points, with
config?rations of the form (13) where is an integer with
Proof. Straight forward verification.

The integem in (13) characterizes the mappidd (®) of
(4), i.e. how the graph maps to the node configuration space.
When both the graph and the configuration space are topo-
logically non-trivial, as in this case, this mapping may &éav
different homotopy classes. Two mappings are homotopic, if
Note that in both cases, only the fixed point with=0is  one can be continuously deformed into the other. A collectio
an aligned state. If the initial points are selected rangpedch  of homotopic mappings is called a homotopic class.



this mapping of the graph to the circle, by smoothly mov-

= IFE ing the vertices of the graph, and accordingly stretching or
0.9f E:fizi shrinking the edges. Thus, according to elementary horgotop
0.8 I = 24]] theory [12], the wrapping number is not changed by gradient
07k -4 descent. A topological interpretation of the best response

algorithm is more delicate. In addition to changes where the
updated point lies on the same circular segment between the
two neighbors as the previous point, there is the possibilit
that the updated point jumps to the opposite line segment as
shown in Fig. 6. The former can be interpreted as continuous
deformations of the mapping from the graph to the circle. The
HI ] latter, however, are discontinuous deformations, thanhgba

= |

> 06

0.5r

Probabilit

0.4r
0.3F
0.2r

0.1p the homotopy class. However, once the best response algorit

has converged to a configuration where no jumps to the other
Wrapping number side happen anymore, the best response updates preserve tl

wrapping number. Such configurations exist, and have a non-
Fig. 4. Probability of convergence to fixed points with diéiat wrapping ~ Vanishing probability, as discussed in the context of Propo
number, for different number of nodés Asynchronous best response updates. Sition 3. Note that in the gradient descent, no discontisuou
changes of the homotopy class happen after initializatéon,
point moves always towards the midpoint of its two neighbors
on the circle segment that it is situated on.

P3

IV. HIGHER DIMENSIONAL CONFIGURATIONS

For one-dimensional configuration spaces, we observed
that if the graphG(V, £) describing the communication topol-
ogy has cycles, problems with aligning nodes may arise
when the configuration space was circular, and thus had a
non-trivial topology. It is an interesting problem to adese
Fig. 5. Two mappings from a cycle graph to a circle, with wragphumber  what happens in higher-dimensional configuration spaces. W
0and 1. consider smooth and homogeneous manifgldsin particular
spheres and hyperspheres.

P2 Q. 0

s

For the cycle graph and circular variables, the homotopy If the communication graph is literally interpreted as a
classn is characterizing how many times the graph wrapstopological collection of glued circles, the answer is tlea
around the circle. Generically a circle may wrap aroundA mapping of a circle to a sphere or hypersphere can be
another circle infinitely many time, i.e. may take any integer continuously deformed to a point. The same holds for a
values. In the problems addressed here, the edges betweenllection of glued spheres. Pictorially speaking, eacklei
the links are logical, however, and indicate a communicatio slips over the sphere, and can be contracted to a point.
relationship. Thus an edge is always assumed to go betweétowever, as we saw above, when discussing mappings of
two neighbors along the shortest route. As a consequence obmmunication graphs to circles, the topological inteigdren
this, a cycle graph cannot wrap around a circle an infiniteof the edges in communication graphs is not straight forward
number of times. The problem thus merits a deeper study. Some graphs, allow

for another topological interpretation. If in addition thet
Once the edges are drawn along the shortest path, we have

a mapping of a circle to a circle. The wrapping number of this
mapping can be easily calculated by calculating itigex of A
a point in the configuration space [12]. With the configunatio
{#:}, and the angles taking values betw@®smd2r, it is most
straight forward to calculate the index of the point This
is a signed sum of the number of edges that goes through
the pointzw. If ¢; < ™ < 11, and ;11 — ¢; < 7 this
interval contributes+1 to the index, if¢;11 < ™ < ¢;, and
¢i — ¢ir1 < m, it contributes—1 to the index. It is easy to
convince oneself that the wrapping number equals the index
of any point. In Fig. 5, two configurations of a cycle graph
are depicted, with the same five valuesgofout in a different
order. The connections between neighbors in the graph swe al
depicted. One order gives rise to a mapping from the cycle to
the circle with wrapping number O, the other has wrappingrig. 6. Some best response updates may be seen as disconttrarmsts
number 1. formations of the mapping of the cycle to the circle—the onesliing a
jump to the opposite side. Gradient descent always givegaisecontinuous
Gradient descent induces a continuous transformation dfansformation of this mapping.

Gradient descent

Best response



Planar graph
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Fig. 7. Random planar Graph with= 500 nodes.

vertices and edges, a natural geometrical definition of aa fa
of a graph can be given, an Euler characterigtic V — E+ F
can be calculated for a graph, wheve is the number of
vertices,E' the number of edges, and the number of faces.

Initial state Iter=1200

1 1
0 . 0 .
) K K
0 0 0 0
171 41

Iter=6000 Converged state

1 1
0 0
1 1
A A
1 1
0 0 0 0
179 171

LN
LN

Fig. 8. Sphere Packing: Convergence to a fully aligned statk asyn-
chronous gradient descent self-organization

To study configuration of self-organization on a random
planar graph, we considerett £ S?, i.e. the variablese;

at the nodes can be represented by e.g. real 3D unit norm

In particular, any planar graph has = 2, indicating that a vectors. This gives rise to a mapping of the planar graph

planar graph can be understood as a discretizatior? pfh®

to the 2D sphere. The resulting mapping or initial from a

two dimensional sphere in three Euclidean dimensions [h2]. random selection of points; is shown in Fig. 8 forl = 500

this interpretation, the part of the 2D plane that is “ous8idf

nodes. Note that the edges in the communication graph are

the planar graph, is interpreted as a face, which is suredind not drawn in the figure, and nodes that are close to each othe
by the vertices on the perimeter of the graph, i.e. the arean the sphere are not necessarily neighbors in the graph. The

outside the graph itself is one face of the discretizatiothef

sphere.

Figure. 7 shows a random planar graph, which can b
understood as a discretization of a 2D sphere. It is create

network is in complete disorder initially due to the random
position of nodes on the sphere. The asynchronous gradien
descent algorithm is run with step-size = 0.05 and total
erationsk = 15000. The snapshots at different iterations are
ptured as the network evolves to a completely ordered. stat

by dropping I = 500 nodes uniformly and at random in a |, kg "9 we depict the convergence towards an ordered state

rectangular area, performing a Voronoi tesselation of tea,a
and connecting nodes that share a boundary. If a planar graph
interpreted as a discretization of a sphere, and the coatigar
spaceM is a sphere as well, mappings from the graph to
M may have a non-trivial homotopy class, characterized by
a wrapping number.. It is not clear whether such wrapping

in a random planar graph with random initial points on the

sphere, with different numbeisof nodes in the network. The

power in the cost function is = 2. A best response dynamic
is used, and convergence is universal, and smooth.

As the random planar graph in this example has a very

numbers would have an effect on fixed points of greedy selflong perimeter, it is a bit dubious, how good a discretizatio

organization algorithms.

A. Planar Graph & Spherical Configurations

of the sphere the graph is. There is one face, the face with the
infinity point, which is surrounded by a very long cycle. To

consider a more homogeneous discretization of a sphere, we
consider a sphere packing. We take the best known packing

To get an understanding on the self-organization charactelVith 32 points, from [15]. Thus each vertexs characterized
istics, we perform simulations on random planar graph, wherby @ pointv; on the circle. The communication topology

the configuration space variables € R™ are constrained to

is given by a nearest neighbor rule in the packing. As the

have unit norm. The planar graph is mapped on the Spherrgx_bjective is to understand whether the to.po_logy of thg nagppi
and nodes interact according to the neighborhood relation§om the graph to the sphere has a similar meaning as for

N — i determined by the graph. Thus when a node chang

gbe circle, we start with hand-crafted initial states whtre

its variablex;, the node moves on the surface on sphere. WitiPlanar graph wraps around the sphere. For this, we consider ¢

p =2 in (1), a best response update is given by

xi = %/l ) %l

JEN; JEN;

configuration where each vertékas exactly the configuration
space variable corresponding to the vertex. The handedraft
fixed point is unstable against any infinitesimal pertudrati
of the initial conditionsx; = v; + ¢;. In this case, the intial
condition, some intermediate states, and the convergesiné p

Here, the new value is the linear combination of the neighboof the best response dynamic (14) are depicted in Fig. 10.

vectors, normalized to have unit norm.

From this figure we see how all the points are gradually



Order

——&—1=100 Fig. 11. A spherical cap.
0.3 —o— =200
0.2 =300 || . .
) A |= 400 sphere, move continuously, and the arcs representing thesed
01 ‘ ‘ ‘ ‘ ‘ of the graph, span along great circles. To get from a diserter
50 100 150 200 250 300 state to an ordered one, the configuration sphere has to pusl

Iterations through one of the faces of the planar graph. The gradient

descent guarantees that all nodes move towards a lowest cos
Fig. 9. Order parameter vs iteration point, with respective to the positions of the neighborsaAy
. stage of the gradient descent, consitlerh to be the fraction

of the surface area of the configuration space covered by the

collected to one hemisphere, so that the sphere repregenti%:aph’ andh fraction of the area of the largest face, ie. the

' : t of the configuration space without any nodes. Assunte tha
the configuration space squeezes through one of the faces B+ O ; : i
the plana?r graph. VI\D/ith th(g best responsg dynamic the densi ere is a cycle of. nodes surrounding this largest face. With

of the points on one hemisphere decreases, until suddenly o?jxeesdfgyrr;hz rlgaifa%?sgﬁogzgl{[Laé[logr![so??ﬁevggﬁ;? ut?ft?oen
points jump to one hemisphere, and the convergence is rapi 9 gon, P 9

Space not having nodes is an approximative spherical cajs Th
an infinitesimal gradient descent would have developedito th
B. Approximative analysis spherical cap configuration, once it reached the point where

. the fraction covered by nodes in
To understand the convergence of mappings of planar

communication graphs to a 2D spherical configuration space, Consider a spherical cap as depicted in Fig. 11. Without
we focus on an approximative formulation of the underlyingloss of generality, we assume that the radius of the configura
system dynamics, and concentrate on infinitesimal gradiertion space is 1. The height of the caphisand the radius of the
descent withp > 1. boundary circle of the cap i8 = 2+/(h — h2). The surface

As discussed above for the circular case, a gradient desceft- 2 of the cap igrh, and the area of the complement cap is

is a continuous deformation of the mapping of the graph to A=4n(1—-h), (15)

the configuration space. In the situation of interest hdre, t

points corresponding to the mapping of the vertices to theand i is indeed the fraction of the surface area occupied by
the cap.

Initial state lter=162 Assume thatl is the length of the cycle surrounding the
largest face, i.e. the cycle that the configuration sphere is
squeezed through. The minimum cost regulagon has angle

a = 7 — 2w /L between the vertices, and the length of a side
is

s = 2asin {%} = 44/(h — h?)sin [%} . (16)

This gives us directly the cost of thie-gon.

Converged state To get an approximation of the network cost (2) of dis-
agreement, we need an estimate of the cost of the bulk of
the nodes. To get an estimate of this, we assume that the
communication graph is a perfect uniform sphere packing of
the kind discussed above. The degree of each node is the
same—each nodehas|N;| = d neighbors. We assume that in

a minimum cost configuration it is possible that all neiglsbor
are as far from each other. This distance scales as a squar
root of the area that the nodes are covering. Thus we would
Fig. 10. Sphere Packing: Convergence to a fully alignedestaith have

asynchronous best-response self-organization H:'UZ _ mJH ~ Cm, V(i,j) ee, (17)
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Fig. 12. Estimated minimum cost of graph covering fractionh of sphere. Fig. 13. Estimated minimum cost of graph covering fractionh of sphere.
Cost is powerp = 2 of distance. Cost is powerp = 3 of distance

nodes in the bulk. The total cost of the network configurationyye gentified, where the cyclic network wraps around the
that is uniformly covering the fraction — % of the sphere, configuration space. Both asynchronous best response, an

would thus be estimated as asynchronous gradient descent updates are considered. W
1 P interpreted these fixed points in terms of homotopy classes
C(h) = Ls" + (L (d=2)+5-1L) d) (CV 1- h) ' (“wrapping numbers”) of the mapping of the cyclic graph to

(18)  the circular configuration space. The best response dysamic
The first term is the cost of th&-gon cycle, and the second suffered less from such non-aligned points than the gradien
term is the cost of the node of the bulk. Each node on th&lescent, as the best response strategy has the possibility t
L-gon is connected td— 2 nodes in the bulk, and each of the change the wrapping number. However, best response dynam
I— L nodes in the bulk ta neighbors. To get a feasible lower ics are only of interest for synchronization, not for corsen
bound to the constant we assume the well-known Hamming

bound. We assume that the area (15) covered by the nodes is, |t Should be noted, though, that the presented analysis is
divided intoZ — L/2 circles with the same area, with no space 2N for cyclic graphs. For generic communication topoésgi

in between. The area of one such circldig1—h)/(I—L/2) the graph typically involves multiple cycles. Topologigal
and the radius i2\/(1 — h)/(I — L/2). An estimate of tr;e such a graph can be seen as a collection of cycles that ar glue
distance between nearest neighbors, which would make Sen%oegether. Any of these cycles may prevent synchronizatin d

- ; : : : 0 the non-trivial topological configurations discussedehe
IL:ar;(;(i)nCé t_0_6’ would then be approximately twice this radius, leading to a limit-cycle behavior. In [13], for example, gdy

4 synchronization algorithms were investigated, and linyitle
C= —F—. (19)  behavior was a dominating phenomenon in multi-cycle graphs
VI-L/2 Thus, when considering synchronization of values on aeircl

This gives us an estimate of the cost of the minimum costhe topology of the circle prevents synchronization based o
configuration covering the fractioh— A of the configuration simple greedy algorithms. Symmetry breaking algorithnes ar
space. The estimated minimum cost for= 2 is depicted in needed for event synchronization, as is well known in the
Fig. 12, and the estimated minimum cost foe= 3 in Fig. 13.  literaure [11], [14]. Also, we conclude that finding consess

It is remarkable that witlp = 2 the cost is monotonically of a variable taking values on a ring, following the appraezch
decreasing, when the fraction of the sphere covered by thef [2], [5] may sometimes be impossible due to topological
network decreases. This indicates that a configuration dvoulobstructions.

align to an ordered state. However, with> 2, (in the example

p = 3), it is interesting that if the network is in a state with a
non-trivial wrapping number, it will not be able to escapatth
state. Thus, it can be concluded that for a network having
planar graph topology, the ability to self-organize to atleved
state depends on the powgerof the disagreement in the cos
function (1). If the objective is just to find an aligned state
this power should be chosen to pe< 2.

Next, we investigated whether similar phenomena would
happen in higher dimensional configuration spaces. We iden-
ified the possibility that a planar graph may wrap around an

? configuration space, i.e. when the configuration space is
t the surface of a 3D ball. However, it was found that when
the cost of the distances to different neighbors are added
with a powerp = 2, such configuration rapidly converge
to an aligned state. Based on an analytical approximation
we argued that with largep, this would not be the case.
Again, a generic graph is not planar, but can be seen as &

We analyze the topological aspects of convergence imollection of planar graphs glued together. It is likely ttha
greedy self-organization algorithms for network syncizan in a generic graph, any of the individual planar parts may
tion and consensus problems. First, we thoroughly analyzeprevent synchronization/consensus for- 2, just as any of
the case where the network is a simple cyclic graph, and ththe cycles may prevent synchronization on a circle. When
configuration space is a circle. Different identified faesli the configuration spaces are spheres with higher dimension

V. CONCLUSION



than 2, it is likely that the higher dimensionality enables [8]

greedy algorithms to overcome the topological obstrustion

and converge to an ordered state. The approach of this paper
may be generalized to problems with more generic compact®!
configuration spaces [7]-[9], [16], which merits a separate

study.
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