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Abstract—This paper discusses novel joint (intra-cell and
inter-cell) resource allocation algorithms for self-organized in-
terference coordination in multi-carrier multiple-input multiple-
output (MIMO) small cell networks (SCNs). The proposed
algorithms enable interference coordination autonomously, over
multiple degrees of freedom, such as base station transmit
powers, transmit precoders, and user scheduling weights. A
generic α-fair utility maximization framework is considered
to analyze performance-fairness trade-off, and to quantify the
gains achievable in interference-limited networks. The proposed
scheme involves limited inter-base station signaling in the form
of two step (power and precoder) pricing. Based on this decen-
tralized coordination, autonomous power and precoder update
decision rules are considered, leading to algorithms with different
characteristics in terms of user data rates, signaling load, and
convergence speed. Simulation results in a practical setting show
that the proposed pricing-based self-organization can achieve up
to 100% improvement in cell-edge data rates, when compared to
baseline optimization strategies. Furthermore, the convergence
of the proposed algorithms is also proved theoretically.

Index Terms—Self-organizing networks, autonomous algo-
rithms, interference coordination, resource allocation, multiple-
input multiple-output, co-channel interference, small cell net-
works, network utility maximization.

I. INTRODUCTION

EFFECTIVE interference mitigation in spectrum sharing
wireless networks entails efficient allocation of resources

across the available degrees of freedom (time, frequency, and
space) in a non-interfering way, thereby reducing the co-
channel interference and leading to higher spectral efficiency
and better network level performance [1]. For cellular net-
works, this translates to improved quality of service (QoS)
for all served users, provided that the fairness issues are
considered at network level. The fairness among users is
influenced by a multitude of factors, such as asymmetric chan-
nel conditions, disparity in transmitter powers, and spectrum
allocation. These issues are especially relevant to the currently
emerging small cell paradigm, where a large number of low
power base stations (BSs) are deployed in conjunction with
macro BSs to increase the capacity and improve the coverage
of the network. The small cells are inherently different from
typical macro cells, and lead to new design challenges related
to self-organized interference management [2].
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In particular, the interference management for small cell net-
works (SCNs) and heterogeneous networks is considered as an
important aspect of self-organized networking (SON) concept,
and therefore requires scalable and distributed approaches [3]–
[5]. For a detailed overview on SON in contemporary cel-
lular networks, see e.g. [6] and the references therein. In
particular, distributed approaches for generic self-organized
resource allocation problems in SCNs have been proposed
in [7], [8]. Recent approaches for interference coordination
in SCNs mostly focus on time domain [9], [10], frequency
domain [11]–[13], and power control techniques [14]–[17].
In addition, a number of papers focus on joint allocation of
resources across multiple dimensions [18]–[22].

In this paper, we propose joint optimization of frequency,
power, and spatial resources, for interference coordination
in orthogonal frequency division multiple access (OFDMA)-
based SCNs. This entails both intra-cell and inter-cell resource
allocation, in a self-organized way. In an OFDMA wireless
network, the subcarriers can be partitioned into disjoint carri-
ers or subchannels, thereby reducing the feedback overhead
related to the resource allocation. In this paper, inter-cell
resource allocation refers to the problem of allocating both
BS transmit powers over carriers and BS transmit precoders
to mitigate the inter-cell interference. Our approach is based
on a pricing exchange mechanism, where BSs cooperate to
maximize the performance of the whole network. On the other
hand, intra-cell resource allocation refers to the scheduling
of the served users on the active carriers of a given cell,
where multiple users share the resources of a carrier in an
orthogonal way. Moreover, it is assumed that each carrier is
infinitely divisible and, therefore, can be shared among served
users with very fine granularity. The main objective is to
optimize the network level utility over BS transmit powers,
transmit precoders, and scheduling weights. To this end, a
pricing exchange mechanism is designed, where the prices
reflect the impact that co-channel interference has on the
achieved satisfaction level of users in a given cell. Therefore,
the possibility of cooperation among BSs over the backhaul
links is exploited to optimize both inter-cell and the intra-
cell resource allocation, in a distributed way. The inter-cell
resource allocation mitigates the mutual interference among
cells by adapting transmit powers and precoders over carriers,
enabling both frequency and spatial diversity gains. On the
other hand, intra-cell resource allocation yields a multi-user
diversity gain through channel-aware scheduling. We formu-
late the optimization problem using a network utility maxi-
mization (NUM) framework, where the level of satisfaction of
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each user in the network is captured through a utility function,
which is a function of its achievable data rate.

A. Background and Related work

Self-organized resource allocation constitutes an important
approach for enabling interference coordination in SCNs. Most
of the existing work in this direction focuses on channel selec-
tion [11]–[13] and power control schemes [14], [15]. In [11],
a switched-based scheme for orthogonal channel selection is
proposed for single-antenna overloaded SCNs. Autonomous
mechanisms for component carrier selection problem based on
background interference matrices is considered in [12]. Game-
theoretic approach for fully distributed channel selection are
presented in [13], [23]. Joint allocation of channel and transmit
powers is discussed in [14]. Joint allocation of multiple re-
sources is considered in [18]–[22], [24], [25]. A decentralized
algorithm for user scheduling and power allocation is proposed
in [24]. Joint carrier and transmit power allocation is discussed
in [25]. In [19], joint resource allocation and user association is
addressed, whereas [20] discusses joint resource management
and interference coordination. User scheduling and almost
blank resource block allocation is proposed in [18]. The
authors of [21] focus on a game theoretical approach for joint
spectral and energy efficiency, and in [22] transmit power
allocation and user scheduling is considered.

In this paper, the concept of joint resource optimization in
a multi-carrier multiple-input multiple-output (MIMO) SCN
is extended towards multiple dimensions, which include fre-
quency carriers, user scheduling, and spatial beams. Joint
optimization of these resources is a challenging problem and,
to the best of our knowledge, has not been considered before.

B. Contributions

The current paper generalizes the analysis presented in [26],
where a distributed algorithm is discussed for transmit power
and scheduling weight allocation in a multi-carrier SCN.
The generalization is in two directions. First, we generalize
NUM algorithms so that convergence can be guaranteed for
utility functions that are not Lipschitz continuous. Commonly
used utility functions with quantified fairness, such as the
proportionally fair, harmonic mean, and max-min-rate utility
functions fall into this class. We consider NUM with α-fair
utility, which subsumes all these non-Lipschitz continuous
utility functions. For these, NUM with quantified fairness
cannot be reliably treated by using known iterative algorithms,
from e.g. [27], in a conventional manner. Second, in addition
to power and scheduling weight allocation, we extend the
analysis to the multi-antenna domain, where the multiple
antennas are considered not only to provide multi-user di-
versity gain, but also to provide spatial multiplexing using
the same precoders to serve multiple users per carrier. Thus,
a generic NUM framework with α-fair utility is considered
for joint power, scheduling weight, and precoder allocation
when serving multiple users per carrier. In order to analyze the
performance of proposed algorithms, a realistic Urban Micro-
cell (UMi) scenario [28] is used for simulation purposes.
Furthermore, convergence analysis of the algorithms based on

both theoretical proofs as well as simulation results is also
presented. The main aim is to design distributed and self-
organizing algorithms to find a joint solution of the following
three related subproblems: 1) power allocation, 2) precoder
allocation, and 3) multi-user scheduling. To the best of our
knowledge, the joint optimization over these parameters has
not been addressed in the literature before. In this paper, we
study the allocation of these resources to maximize the net-
work utility. The proposed algorithms are based on finding the
solution of Karush-Kuhn-Tucker (KKT) optimality conditions
of the NUM problem. Two special cases of the α-fair utility
function considered in the simulations are the Maximum-
Rate (Max-Rate) utility function (α = 0) [29], and the Propor-
tionally Fair-Rate (PF-Rate) utility function (α = 1) [30] [31].
The inter-cell resource allocation requires only the exchange
of the power and precoder prices. A schematic illustration of
the proposed pricing concept for MIMO SCNs is given in
Fig. 1, where two BSs are communicating to their respective
mobile stations (MSs), while exchanging interference prices
to mitigate the mutual interference. Furthermore, it is assumed
that channel gains are estimated periodically through common
downlink pilot signals.

C. Notation

The vectors and matrices are represented using boldface
lowercase and uppercase letters, respectively. The trace op-
eration is represented by Tr(·), the conjugate transpose by
(·)H, and the matrix inverse by (·)−1. The identity matrix is
denoted by I (with dimensions clear from the context), and the
determinant of the matrix by det (·). For any matrices X,Y,
X � Y is an order relation, indicating that the matrix X−Y
is a positive semidefinite matrix. The cardinality of set X
is denoted by |X |, whereas [·]Y represents the projection on
constraints set Y . Moreover, C and R symbolize the sets of
complex and real numbers, respectively.

The rest of the paper is organized as follows: Section II
discusses the system model and formulates the NUM based
resource optimization problem. Section III introduces the
decomposition using distributed pricing concept, and discusses
different algorithmic approaches for resource allocation in a
multi-carrier SCN. Section IV discusses the method based on
Gauss-Seidel gradient projection, whereas Section V focuses
on an approach based on nonlinear Gauss-Seidel method.
In Section VI, comparison of the proposed algorithms is
presented by an analysis of the simulations carried out in
a standard SCN scenario. Finally, conclusions are given in
Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider a downlink multi-cell scenario where a number
of low-power MIMO BSs with indices i ∈ I are deployed
within a certain area to serve a group of MSs (users) denoted
by k ∈ K. A MS is served by the BS with minimum path loss.
The association of MSs to BSs is fixed and known a priori,
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Fig. 1. Pricing based distributed resource allocation can enable interference
mitigation in multi-cell MIMO networks.

where {Ki : i = 1, . . . , |I|} represents a partition of set K so
that each MS is served by a unique BS, i.e.,

K =
⋃
i∈I
Ki, Ki ∩ Kj = ∅ i 6= j. (1)

The total bandwidth B is re-used by all cells, and is divided
into M equal bandwidth (non-)contiguous carriers. Each BS
has NT transmit antennas and each MS has NR receive
antennas. Let x

(m)
i be the transmit signal vector of BS i on

carrier m, and let n
(m)
k be complex Gaussian noise at MS k

with covariance matrix R
(m)
ni,k . Then, the received signal vector

at carrier m of MS k is

y
(m)
k = H

(m)
i,k x

(m)
i +

∑
j 6=i

H
(m)
j,k x

(m)
j +n

(m)
k k ∈ Ki, (2)

where H
(m)
i,k ∈ CNT×NR is the direct channel gain matrix

between BS i and MS k on carrier m, which takes into
account distance dependent path loss and shadow fading
components. We divide the transmit signal covariance ma-
trix into two parts – a normalized covariance matrix and
a scalar average power. Thus, for BS i and carrier m, we
have E{x(m)

i x
(m)H
i } = p

(m)
i Q

(m)
i , where Tr

(
Q

(m)
i

)
= 1

and p
(m)
i is the transmit power of BS i on carrier m. The

normalized covariance matrix Q
(m)
i is positive semidefinite.

The carrier-specific covariance matrices Q
(m)
i of BS i are

stacked to a matrix Qi =
[
Q

(1)
i . . .Q

(m)
i . . .Q

(|M|)
i

]
, and

all covariance matrices in the system are stacked to a large
matrix Q. We choose to separate these variables so that the
multi-channel power allocation problem is governed by the
variables pi, and the per-carrier MIMO precoding and power
allocation is governed by Q. The total power that BS i can
allocate on its carriers is bounded between Pmin and Pmax.
The powers of all BSs I on all carriers M is denoted by
P =

[
p1 . . .pi . . .p|I|

]
, where pi is vector comprising of

transmit powers of BS i on carriers m ∈M.
When optimizing the allocation of resources, there are three

problems to address. The design of elements of P constitutes
the power allocation problem. The design of Q is the network
level precoder allocation problem. It is assumed that BSs
schedule their resources for orthogonal transmission to the
users served by the BS. It should be noted that all the
interference is caused by the neighboring cells, as MSs within

Fig. 2. Multi-cell MIMO networks involve multiple degrees of freedom that
can be exploited via efficient resource allocation for interference mitigation
leading to network utility maximization.

the serving cell are sharing resources orthogonally. The inter-
cell scheduling resources are assumed infinitely divisible, so
that a(m)

i,k is the scheduling weight that BS i allocates to
MS k on carrier m, and a

(m)
i is a vector with scheduling

weights of all MSs on carrier m. The scheduling weights of
BS i over all carriers M are stacked to the matrix Ai =
{a(1)

i . . .a
(m)
i . . .a

(|M|)
i }, and scheduling weights of all BSs

in the network are stacked to matrix A. Thus, design of A is
considered as the multi-user scheduling problem in individual
cells. There is only one precoding matrix per carrier, which is
used irrespectively of the scheduled user. This enables multi-
cell optimization of the resource allocation, and decouples the
power and precoder optimization problems from scheduling
decisions of other cells. With this formulation, it is possible
to allocate resources across multiple degrees of freedom in
the considered multi-carrier multi-cell MIMO SCN. Figure 2
delineates this for a given MIMO BS, which has the flexibility
to allocate its transmit power over carriers, and can also adjust
the direction of its beams to direct power in the spatial domain.

We model the achievable data rate of a user with the well-
known MIMO mutual information formula, assuming that the
interference can be treated as noise. Therefore, the achievable
rate of user k in cell i (in nats/s) is

rk =
∑
m∈M

B

|M|
a
(m)
i,k log

{
det
(
I + Z

(m)
i,k X

−1(m)
i,k

)}
, (3)

where

Z
(m)
i,k = p

(m)
i H

(m)
i,k Q

(m)
i H

(m)H
i,k , (4)

and the noise-plus-interference covariance matrix is

X
(m)
i,k =

(
Rni,k

+
∑
j 6=i p

(m)
j H

(m)
j,k Q

(m)
j H

(m)H
j,k

)
. (5)

B. Problem Formulation

The aim is to maximize the network utility in the SCN
downlink over BS transmit powers P, transmit precoders
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covariances Q, and scheduling weights A. The network utility
is defined as

Usum (P,Q,A) =
∑
i∈I

Ui (P,Q,Ai) , (6)

where Ui (P,Q,Ai) is the utility of BS i. Note that the utility
functions of the BSs are coupled through both P and Q. This
means that the utility of BS i will be affected by any change
either in the power or the precoder allocation of BS j, for
all j 6= i. The sum-utility of cell i, which is the sum of utilities
of the users served by BS i, can be expressed as

Ui (P,Q,Ai)=
∑
k∈Ki

uk, (7)

where uk is the utility function of user k, which is a function
of the aggregate user rate rk. The utility function is chosen
according to the performance metric to be optimized. A trade-
off exists between network level performance and fairness
among users. An α-fair formulation to explore this trade-off
is given by [32], i.e.,

u (r) =

{
1

1−α (r)
1−α

α 6= 1,

log (r) α = 1,
(8)

where r is the rate of the user. Cases of special interest are: (1)
α = 0 or the Max-Rate utility function, (2) α = 1, or the PF-
Rate utility function, which leads to a more balanced approach
in terms of individual user rates, (3) α = 2, or the harmonic
mean utility function, and (4) α→∞, which yields the Max-
Min Rate utility function. Taking α > 0 allows to improve the
QoS of the users that have low signal to interference-plus-noise
ratios (SINRs), due to high co-channel interference emanating
from nearby BSs, at the expense of reducing the data rate
of users with high SINR. This makes the utility function
non-separable [33], which increases the complexity of the
decomposition. Moreover, for a generic α-fair utility function,
the derivative is u′(r) = rα. The rates r are non-negative
real numbers. For α > 0, the derivative is unbounded when
r → 0. This causes problems in convergence of conventional
algorithms, as the gradients of the network utility functions
are not Lipschitz continuous in the optimization variables, and
thus differing from the functions considered in [27], [31]. Note
that for 0 < α < 1, the utility function itself is not singular
when r → 0, whereas the derivative is. Irrespective of this,
we call points in configuration space where one or more users
have r = 0 utility singularities. For α > 0, it is essential
for converging algorithms to avoid neighborhoods of utility
singularities.

The network level optimization is constrained by cell-
specific constraints in the set

Ci =
{ ∑
m∈M

p
(m)
i ≤ Pmax ,

∑
m∈M

p
(m)
i ≥ Pmin ,

p
(m)
i ≥ 0 ,Tr

(
Q

(m)
i

)
= 1 , Q

(m)
i � 0 ,

a
(m)
i,k ≥ 0 ,

∑
k∈Ki

a
(m)
i,k = 1

}
, (9)

where all free indexes m ∈ M and k ∈ Ki. The Power-
Precoder-Scheduling (P−Q−A) NUM problem that we aim
to solve is

maximize
∑
i∈I Ui (P,Q,Ai)

P,Q,A
subject to constraints Ci , i ∈ I.

(P1)

The objective function is the network-wide utility, which is
the sum of utility of all users served by the BSs, and the opti-
mization is carried out over powers, precoders and scheduling
weights. The sum of scheduling weights on each carrier equals
1, and the BS power over carriers is constrained by a maximum
and minimum transmit power limit, given by Pmax and Pmin,
respectively. Also, there are non-negativity constraints on
powers and scheduling weights. This is generically a non-
convex problem in both transmit powers and transmit precoder
covariances, and therefore, it is difficult to solve, even in a
centralized setting [34] [35]. The non-convexity arises because
of the mutual interference that couples SINRs of MSs served
by different BSs. We aim to find a (local) optimum of (P1) in
a distributed way by decomposing (P1) into |I| subproblems,
one per BS. This set of |I| subproblems can be considered as a
distributed version of the network level optimization problem,
which can then be solved with the help of pricing information
that is exchanged between BSs.

C. Computational Complexity

For some optimization problems, changes of variables exist,
which reveal a convex formulation of a seemingly non-convex
problem. To understand the nature of a problem, it is important
to understand its underlying computational complexity. When
|M| > 2, it is possible to show that (P1) is NP-hard, by using
reduction. In order to give a sketch of the proof, let us simplify
the problem by considering a SCN comprising of multiple cells
with single antenna BSs. Moreover, each BS has only one
user in its cell. The user is scheduled on full resources of the
cell, i.e. on all carriers. This reduces the problem to transmit
power allocation problem over multiple channels for multiple
interfering links, where a link represents a BS-MS pair in a
given cell. This problem can be shown to be NP-hard [36], by
reducing it to a maximum independent set problem for α = 0,
and to a graph coloring problem for other values of α. Thus,
the NP-hardness of (P1) with generic parameters follows for
the generic α-fair utility.

III. POWER-PRECODER-SCHEDULING NUM

We first derive the KKT optimality conditions of prob-
lem (P1), followed by a pricing-based algorithm to compute
the solution in a distributed way.

A. KKT Optimality Conditions

Let Ψ
(m)
i ∈ R and Θ

(m)
i ∈ RNT×NR be the Lagrange

multipliers associated with the constraints on precoder co-
variance matrices, and Φ

(m)
i ∈ R the Lagrange multipliers

defined for the constraint on sum of BS scheduling weights
on carrier m of BS i. For notational ease, we define stacked
matrices Ψ , {{Ψ(m)

i }m∈M}i∈I , Θ , {{Θ(m)
i }m∈M}i∈I ,

and Φ , {{Φ(m)
i }m∈M}i∈I , respectively. Likewise, we in-

troduce Lagrange multipliers Λi ∈ R and Υi ∈ R for the
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L =
∑
i∈I

(
Ui −

∑
m∈M

[
Ψ

(m)
i

(
TrQ

(m)
i − 1

)
− Tr

(
Θ

(m)
i Q

(m)
i

)
+ Φ

(m)
i

(∑
k∈Ki

a
(m)
i,k − 1

)

− λ(m)
i p

(m)
i −

∑
k∈Ki

φ
(m)
i,k a

(m)
i,k

]
− Λi

( ∑
m∈M

p
(m)
i − Pmax

)
−Υi

(
Pmin −

∑
m∈M

p
(m)
i

))
(10)

minimum and maximum constraints on sum power, whereas
we define the Lagrange multipliers λ(m)

i ∈ R and φ
(m)
i ∈ R

to handle the non-negativity constraints related to BS power
and scheduling weights, respectively. Again, these multipli-
ers can be stacked as matrices Λ , {Λi}i∈I ,Υ , {Υi}i∈I ,
λ , {{λ(m)

i }m∈M}i∈I , and φ , {{φ(m)
i }m∈M}i∈I , respec-

tively. Then, the Lagrangian of problem (P1) is given by
L = L(P,Q,A,Ψ,Θ,Φ,Λ,Υ,λ, φ), as expanded in (10).
For any local maximum of problem (P1), there exists a set
of unique Lagrange multipliers such that the following KKT
necessary conditions hold for all i ∈ I and m ∈M:

Stationarity:
∂Ui(P,Q,Ai)

∂p
(m)
i

+
∑
j 6=i

∂Uj(P,Q,Aj)

∂p
(m)
i

− Λi + Υi + λ
(m)
i = 0,

∂Ui(P,Q,Ai)

∂Q
(m)
i

+
∑
j 6=i

∂Uj(P,Q,Aj)

∂Q
(m)
i

−Ψ
(m)
i I + Θ

(m)
i = 0,

∂Ui(P,Q,Ai)

∂a
(m)
i,k

− Φ
(m)
i,k + φ

(m)
i,k = 0,

(11)

Primal Feasibility:∑
m∈M p

(m)
i ≤ Pmax,

∑
m∈M p

(m)
i ≥ Pmin,

p
(m)
i ≥ 0, Tr

(
Q

(m)
i

)
= 1, Q

(m)
i � 0,∑

k∈Ki
a
(m)
i,k = 1, a

(m)
i,k ≥ 0.

(12)

For the sake of brevity, we omit the conditions pertaining to
dual feasibility and complementary slackness. Let us define
the following term given in KKT conditions as power price:

π
(m)
j,i = −∂Uj(P,Q,Aj)

∂p
(m)
i

=
∑
k∈Kj

rk
−αa

(m)
j,k Tr

((
M

(m)
j,k

)−1
Z

(m)
j,k V

(m)
j,k

)
, j 6= i,

(13)

where V
(m)
j,k =

(
X

(m)
j,k

)−1
H

(m)
i,k Q

(m)
i H

(m)H
i,k

(
X

(m)
j,k

)−1
and

M
(m)
i,k = I + Z

(m)
i,k X

−1(m)
i,k . Similarly, one can define a

precoder price as follows:

Π
(m)
j,i = −∂Uj(P,Q,Aj)

∂Q
(m)
i

=
∑
k∈Kj

(rk)−αa
(m)
j,k Ṽ

(m)
j,k , j 6= i,

(14)

whereṼ(m)
j,k = H

(m)H
i,k

(
X

(m)
j,k + Z

(m)
j,k

)−1
Z

(m)
j,k

(
X

(m)
j,k

)−1
H

(m)
i,k .

The prices are calculated in a way that all MSs in a given
cell calculate their prices towards interfering BSs, and then
they report this pricing to the serving BS. The serving BS
then computes the aggregate price for all interfering BSs
and communicates it to them. However, this requires the
knowledge of cross channel gains from interfering BSs. These
channel gains are estimated through periodic transmission of

pilot signals, where all BSs transmit a pilot signal so that the
MSs can measure the channel gains. However, the exchange
of prices can take place over low-rate links that connect the
BSs. With the channel gains and prices available, each BS
can allocate its resources to maximize the network utility
in a distributed way. This distributed problem is formalized
by decomposition of the NUM problem, as discussed in the
following section.

B. Distributed Formulation
Following the decomposition procedure [26], [34], we for-

malize a distributed problem that has same KKT conditions
as the network level optimization problem (P1), for all i ∈ I,
provided that optimization variables at cell j 6= i remain fixed,
during the resource allocation update at cell i. Let us define
the surplus function as

si = Ui −
∑
m∈M

∑
j 6=i

(
p
(m)
i π

(m)
j,i + Tr

(
Q

(m)
i Π

(m)
j,i

))
. (15)

Then, the distributed problem becomes

maximize si
pi,Qi,Ai

subject to constraints Ci .
(16)

Accordingly, each BS i ∈ I solves its individual subproblem,
which involves joint optimization over pi, Qi, and Ai. Follow-
ing the approach presented in [37], it is possible to separate
the joint optimization for each BS i ∈ I, so that the opti-
mizations over pi, Qi, and Ai are carried out separately. The
power allocation and precoder allocation problems couple the
decisions between cells i, whereas the multi-user scheduling
problem does not directly affect the interference experienced
in neighboring cells, but it does affect the interference prices
reported to the neighbors.

C. Algorithms: Background and New Perspectives
In the following sections, we design distributed network

optimization algorithms based on Gauss-Seidel gradient pro-
jection (GSGP) and non-linear Gauss-Seidel (NLGS) ap-
proaches [27]. However, our approach differs in a number
of important ways. In particular, the treatment in [27] is
focused on a simplistic scenario with Lipschitz continuous
utility functions, whereas we consider generic non-Lipschitz
continuous utility functions in a distributed NUM setting,
which poses significant challenges for distributed optimization.
To this end, we devise a method that is based on the direct
solution of KKT equations, with guaranteed convergence even
in the case where the utility functions may have infinite
gradients.
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IV. GSGP FOR P−Q−A NUM

The gradient of network utility can be calculated using
the power and precoder prices that each BS receives from
the neighboring BSs. Therefore, it is possible to formulate a
gradient projection algorithm based on Gauss-Seidel updates
for both power and precoder covariance matrices. In a given
iteration round, each BS updates its powers, precoders, and
scheduling weights, while taking into account the prices from
the other BSs. The updated values are calculated by taking a
fixed step towards the gradient direction.

A. Gradients

To derive the update rule, we first calculate the gradient
of the network utility function with respect to optimization
variables (i.e. transmit powers, covariance matrices of transmit
precoders, and scheduling weights). To this end, the gradients
of the network utility with respect to power p(m)

i and co-
variance matrix Q

(m)
i can be calculated in terms of pricing

expressions π
(m)
j,i and Π

(m)
j,i , respectively. For the transmit

power case, gradient results

∇
p
(m)
i
Usum = π

(m)
i,i −

∑
j 6=i π

(m)
j,i , (17)

where π
(m)
i,i = ∂Ui

∂p
(m)
i

=
∑
k∈Ki

a
(m)
i,k rk

−αTr
(
Z

(m)
i,k

)
and

Z
(m)
i,k =

(
M

(m)
i,k

)−1
H

(m)
i,k Q

(m)
i H

(m)H
i,k

(
X

(m)
i,k

)−1
. Similarly,

for the precoding covariance matrix case, the gradient attains
the form

∇
Q

(m)
i
Usum = Π

(m)
i,i −

∑
j 6=i Π

(m)
j,i , (18)

where Π
(m)
i,i = ∂Ui

∂Q
(m)
i

=
∑
k∈Ki

a
(m)
i,k rk

−αY
(m)
i,k p

(m)
i H

(m)
i,k

and Y
(m)
i,k = H

(m)H
i,k

(
M

(m)
i,k

)−1 (
X

(m)
i,k

)−1
. Moreover, for

scheduling weights, the gradient is given by

∇
a
(m)
i
Usum= ∂Ui

∂a
(m)
i

=
{
rk
−α
[
loge det

(
M

(m)
i,k

)]}
k∈Ki

.

(19)
With the gradients available as pricing terms, it is straightfor-
ward to devise a distributed GSGP iterative algorithm, for the
maximization of the network utility. The precoder optimization
part in GSGP is discussed in [35], for a simplistic single user
case.

B. GSGP Update Rule

When the pricing information is available at a given BS, the
updates can be carried out in a simple way using the GSGP
principle. The gradient-based update involves a small step in
the direction of gradient, followed by the projection on the
given constraint set. To formulate the GSGP rule, we consider
the constraint sets for BS i for powers, covariance matrices
of precoders, and scheduling weights allocation subproblems.
The feasible set of power vectors for a BS is

P ,

{
p ∈ R|M| :

Pmin ≤
∑
m∈M p(m) ≤ Pmax

p(m) ≥ 0, m ∈ M

}
, (20)

where p is the power vector, and a feasible set of precoder
covariance matrices on a carrier is

Q ,
{
Q ∈ CNT×NR : Tr(Q) = 1, Q � 0

}
. (21)

Similarly, for BS i, the set of feasible scheduling weights on
a carrier is

Ai ,

{
a ∈ R|Ki| :

∑
k∈Ki

ak = 1, ak ≥ 0

}
. (22)

The set of multi-carrier scheduling weights in cell i is the
M -fold direct product Atot

i = Ai × . . . × Ai, and the set of
multi-carrier precoders the direct product Qtot = Q × . . . ×
Q. For α > 0, we restrict the feasible sets, by carving out
open neighborhoods of the utility singularities, leading to the
sets P̃ , Ãi, Q̃, Ãtot

i and Q̃tot
i , see the appendix for details.

The stepsizes for GSGP updates of transmit power, precoder
covariance matrices and scheduling weights are denoted by
δP , δQ and δA, respectively.

1) Power Allocation: The GSGP based power update for
all carriers m ∈M is given by:

p
∗(m)
i =

[
p
(m)
i + δP∇

p
(m)
i
Usum

]
P̃
. (23)

2) Precoder Allocation: The next step is the precoder
update for all carriers m ∈M:

Q
∗(m)
i =

[
Q

(m)
i + δQ∇

Q
(m)
i
Usum

]
Q̃
. (24)

3) Scheduling Allocation: Similarly, for the scheduling
weight update on all carriers m ∈M:

a
∗(m)
i =

[
a
(m)
i + δA∇

a
(m)
i
Usum

]
Ãi

. (25)

To solve the distributed subproblems at each BS, an asyn-
chronous and periodic update procedure is considered, where
in a given iteration n, each BS i performs its updates only
once at a unique time instant ti[n], and at this instant no other
BS changes its resource allocation. The GSGP algorithm is
summarized in the flowchart given in Fig. 3, along with the
NLGS algorithm which is discussed next.

V. NLGS FOR P−Q−A NUM

Like GSGP, NLGS is a generic approach for solving the
non-linear optimization problems in an iterative manner based
on Gauss-Seidel updates. In [27], non-linear algorithms were
considered, where the full non-linear dependence of the ob-
jective function is known to the agent controlling a variable.
When using NLGS methodology for a distributed solution
of P − Q − A NUM, the objective function is partially
linearized though exchange of prices to enable distributed
operation. In [33], distributed multi-carrier power control was
addressed, where the effect that increasing power in one
cell has on the utility of a neighboring cell was linearized
through power prices. Bounded Lipschitz-continuous non-
separable utility functions were considered. Here, we have
generic utility functions with unbounded gradients, and in
addition to multi-carrier power allocation, we consider both
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Preprocessing step to
select an appropriate

starting point (optional).

BS i updates its power
profile according to

(23) for GSGP or (26)
in the case of NLGS.

BS i updates its
precoder covariance

matrices according to
(24) for GSGP or (29)
in the case of NLGS.

BS i updates its
scheduling weights
according to (25)

or (32) in the
case of NLGS.
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convergence

criteria
satisfied?

Stop

No

Yes

Fig. 3. Flow chart summarizing the GSGP and NLGS algorithms that run in
a distributed manner over each BS i of the SCN.

multi-user scheduling and MIMO precoder allocation. In a
given iteration, each BS solves a set of optimization problems
while taking into account the power and precoder prices. The
order in which these problems are solved is the same as GSGP.
However, the update rules for subproblems are different, as
discussed next.

A. Power Allocation

To optimize the sum data rate over power allocation on
carriers in a distributed way, we consider the following update
rule for BS i ∈ I, at time instant n:

pi (n+ 1) =
(
1− βP

)
pi (n) + βPp∗i , (26)

where
p∗i = arg max sPi (pi; P−i,Q,Ai)

pi
subject to pi ∈ P̃,

(27)

while the power surplus function is given by

sPi (pi; P−i,Q,A) = Ui (pi; P−i,Q,A)

−
∑
m∈M p

(m)
i

(∑
j 6=i π

(m)
j,i

)
. (28)

The power prices π
(m)
j,i are given in (13). Note that sPi is

a concave function in power pi, provided that the rest of
the parameters remain constant. This optimization problem
can be solved using gradient projection method, by using
the gradients calculated in the previous section. Thus, the
BS power is updated using the fixed stepsize βP , with a
convex combination of the current and the new updated power
vectors. The stepsize can be chosen in different ways, like
e.g. constant stepsize considered here, or Armijo rule [35].
Performance and convergence rate may differ from case to
case. Next, we discuss the precoder allocation followed by
multi-user scheduling.

B. Precoder Allocation

For optimization of precoder allocation, we have the fol-
lowing update for all BSs i ∈ I:

Qi (n+ 1) =
(
1− βQ

)
Qi (n) + βQQ∗i . (29)

Here, the update is done with stepsize βQ over all the carriers
simultaneously, where

Q∗i = arg max sQi (Qi; P−i,Q−i,A−i)
Qi

subject to Qi ∈ Q̃,
(30)

and the surplus function is given by

sQi (Qi; P−i,Q−i,A−i) = Ui (Qi; P,Q−i,Ai)

−
∑
m∈M Tr

(
Q

(m)
i

∑
j 6=i Π

(m)
j,i

)
.

(31)

The precoder prices Π
(m)
j,i are given in (14). With prices and

precoders of all BSs j 6= i fixed, the surplus maximization
problem in (30) is convex and can be solved by the gradient
projection method with fixed stepsize. This requires gradient
of function sQi with respect to Q

(m)
i for all m ∈M, and the
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projection on the set of positive semidefinite matrices. The
projection is carried out following the approach given in [35],
which involves adjusting the eigenvalues of the matrix, while
keeping the same eigenvectors.

C. Multi-user Scheduling
Following the same procedure for optimizing the surplus

function over scheduling weight allocation, we have the fol-
lowing scheduling weights update with stepsize βA for all
BSs i ∈ I:

Ai (n+ 1) =
(
1− βA

)
Ai (n) + βAA∗i . (32)

The surplus maximization problem for calculating A∗i is

Ai
∗ = arg max Ui (Ai; P,Q)

Ai

subject to Ai ∈ Ãi.
(33)

The scheduling decisions do not affect the interference seen
by neighbors, and thus prices have no role in (33). Scheduling
weight optimization is a cell-internal operation, and the surplus
function is just the own-cell utility. The algorithm is summa-
rized by the flowchart in Fig. 3. Note that both GSGP and
NLGS approaches are based on the Gauss-Seidel update pro-
cedure. Alternatively, one may also consider synchronous or
Jacobi update procedure, which would be a special case where
all updates are carried out simultaneously. It is also pertinent
to mention that both algorithms are distributed and scalable,
and therefore well-suited for dense SCNs scenarios. The only
information exchange required for their implementation is the
pricing terms. This is substantially much less feedback than the
one required for power (and/or precoder) allocation algorithms
that rely on complete information regarding the whole net-
work; see e.g. [38]. The information exchange required here is
clearly dependent upon the iterations that it takes to converge.
The iterations required are significantly lesser in NLGS when
compared to GSGP, especially with an appropriately chosen
stepsize. The stepsize required for convergence in GSGP are
usually very small compared to the NLGS stepsizes. Apart
from that, the direction taken for the update is quite different in
both algorithms, leading to different (local) optimum solutions.

D. Convergence Analysis
The convergence of GSGP and NLGS discussed below

applies for any utility function that is concave in rate, and
which has utility singularities, i.e. unbounded utility gradients,
at most when r → 0. When α > 0, convergence can be
proven if the feasible sets of optimization are restricted so that
open neighborhoods of utility singularities are removed. Utility
singularities are at the boundary of the original feasible sets,
which makes it possible to prove convergence in the redefined
feasible sets.

Proposition 1: There exists feasible sets Ãtot
i , P̃ , and Q̃tot,

and stepsizes δA > 0, δP > 0 and δQ > 0, so that GSGP
applied in the feasible sets always converges to a fixed point.

Proposition 2: There exists feasible sets Ãtot
i , P̃ , and Q̃tot,

and stepsizes βP > 0, βQ > 0 so that NLGS with βA = 1,
applied in the feasible sets always converges to a fixed point.
The proofs can be found in the Appendix.

Small cell cluster 

Base 

station

Mobile 

station

R

C Cell 3

Cell 4

Fig. 4. SCN scenario used for simulations, where |I| = 4 small cells, |K| =
12 MSs, |M| = 2 carriers, NT = NR = 2 antennas at both BSs and MSs.

VI. PERFORMANCE ANALYSIS

We study the performance of discussed resource allocation
schemes by providing a comparison of different algorithms
across various parameters in a practical SCN. The simulation
scenario is explained first, followed by the discussion on nu-
merical results obtained through simulations. We concentrate
on Max-Rate (α = 0) and PF-Rate (α = 1) utilities.

A. Simulation Scenario

The considered high interference scenario comprises of a
cluster of |I| = 4 small cell BSs and |K| = 12 MSs
uniformly distributed on the surface of circular region with
radius R = 15 m, as shown in Fig. 4. There is a minimum
inter-BS separation of dmin (bs−bs) = 5 m. Similarly, the MSs
are also deployed randomly with a minimum distance to the
closest BS dmin (ms−bs) = 5 m. The cell association of each
MS is based on the mean received signal power from BS in
the downlink. Under the assumption that all BSs have the
same transmit power, each MS is served by the BS from
which it sees the minimum path loss (PL) attenuation. The
total bandwidth of the system is B = 10 MHz, and it is
divided equally into |M| = 2 contiguous carriers with center
frequency fc = 3.5 GHz. The antenna heights at BSs and
MSs are hbs = 10 m and hms = 1.5 m, respectively. The
distance dependent path loss and shadow fading parameters
are detailed in Table I. These are modeled according to the
UMi scenario specified in [28]. The channel gains between
antennas of each BS-MS pair are modeled as independent and
identically distributed (i.i.d) zero-mean circularly symmetric
complex Gaussian variables with standard deviation depen-
dent on path loss. The frequency response of each carrier
is considered to be flat. The total transmit power of a BS
is Pmax =

∑
m∈M p

(m)
i = 26 dBm, and is fixed for all BSs.

The equal distribution of powers over the carriers is the starting
point for all the algorithms in the simulations, where pricing is
exchanged on all carriers to maximize the total network utility.
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TABLE I
URBAN MICRO (UMI) PATH LOSS MODEL

Path loss models [dB]
(fc given in GHz, d in meters)

Shadow
fading

Applicability
range values

LOS
PL=22 log10(d)+28.0+20 log10(fc) σ=3 dB 10m≤d≤dbp

PL=40 log10(d)+7.8−18 log10(hbs−1)
−18 log10(hms−1)+2 log10(fc)

σ=3 dB dbp≤d≤5000m

NLOS
PL=36.7 log10(d)+22.7+26 log10(fc) σ=4 dB 10m≤d≤2000m

Break point distance: dbp = 4 (hbs − 1) (hms − 1)/λc
Carrier wavelength (λc) and antenna heights (hbs, hms) are given in meters

LOS probability: PLOS=min(18/d, 1)
(
1−exp(−d/36)

)
+exp(−d/36)

As such, to quantify the gain by pricing exchange, we compare
the following four inter-cell resource allocation strategies for
the proposed algorithms:
• Non-cooperative power allocation and Non-cooperative

precoder covariance matrix allocation (GSGP/NLGS with
power prices set to zero and precoder prices set to the null
matrix).

• Cooperative power allocation and Non-cooperative pre-
coder covariance matrix allocation (GSGP/NLGS with
precoder prices set to the null matrix).

• Non-cooperative power allocation and Cooperative pre-
coder allocation (GSGP/NLGS with power prices set to
zero).

• Cooperative power allocation and Cooperative precoder
allocation (GSGP/NLGS).

Similarly, to evaluate the performance enhancement by
intra-cell resource allocation, different strategies for schedul-
ing weight optimization are considered. Recall that intra-cell
resource allocation is orthogonal, and hence, there is no intra-
cell interference between MSs. To this end, we consider Max-
Rate and PF-Rate scheduling as intra-cell resource allocation
strategies. To analyze the performance, we compare different
combinations of inter-cell and intra-cell resource allocation
strategies. The statistics are gathered over 100 network in-
stances, generated according to the parameters specified in
Table I. For a given network instance, each algorithm is run
until convergence is achieved or the maximum number of
iterations is reached. The condition of convergence is that the
change in total network utility is less than 0.1% in successive
iterations. The stepsizes guaranteeing convergence for NLGS
according to Proposition 2 would be rather small, and for
GSGP according to Proposition 1 very small. In practice, larger
stepsizes can be used. Here, stepsizes δP = δQ = δA = 0.005
are used for all simulations of GSGP, and βP = βQ = 0.7
and βA = 1 for NLGS. These stepsizes are chosen to obtain a
balance between the convergence probability and the required
iterations for convergence. The maximum number of iterations
for GSGP is set to 2500, whereas for NLGS it is 250.

Furthermore, we are interested in comparing the quality
of solutions found by these distributed algorithms against
a global optimum. This is accomplished by employing a
multi-start framework for global optimization [39]. It consists

of an algorithm that attempts to find a global optimum by
starting a local solver from many different initial points in the
feasible region, while keeping track of the best solution found.
Theoretically, this method converges to a global optimum with
probability one, when the number of initial points approaches
infinity. In addition to the high computational effort, this
method is difficult to implement in a distributed manner. The
generation of new initial points and the tracking of the best
solution would require a centralized controller and a high
signaling load. Due to these drawbacks, it is not suitable for
resource allocation problems in self-organizing SCNs. In our
simulations for finding a global optimum, we use NLGS as
a local solver and set the number of random initial points to
ten, for each network instance.

B. Performance of GSGP and NLGS approaches

To compare the performance of different algorithms in
terms of total network data rate, the cumulative distribu-
tion function (CDF) of normalized data rate of the network
summed over all users is considered. A comparison of GSGP
with NLGS reveals that NLGS performs better and achieves
a higher network utility than GSGP. This can be seen in
Fig. 5, in which network data rate CDFs of NLGS and GSGP
are illustrated for both utility functions. Moreover, global
optimization performs the best, as expected.

Significantly less iterations are required for convergence
in NLGS, with higher convergence probability. The achieved
network utility, as expected, does not vary significantly with
the change in stepsize. The difference in performance is due to
the very small stepsize of GSGP, which leads to slow growth
in utility towards convergence. NLGS uses full knowledge of
the consequences of decisions on own-cell utility, and thus
performs much better. The number of iterations required for
convergence is given in Table II for all variants of GSGP
and NLGS for both utility functions. These are averaged
over instances that converged within the maximum number
of iterations. The GSGP algorithm requires a much higher
number of iterations to converge due to the gradient projection
update rule that consists of a very small stepsize. For the MR
utility, the number of iterations required for convergence for
GSGP is approximately 10 times larger than that of NLGS.
The number of iterations for NLGS may be reduced further
by increasing the stepsize. However, it could jeopardize the
convergence, as big changes in the values that optimization
variables take may result in the inaccuracy of their respective
interference prices.

The convergence probabilities are reported in Table III. The
non-convergence of GSGP in some instances is the result
of an oscillation around the solution, caused by too long
stepsizes. These may be controlled by reducing the stepsize
even further, which leads to an increase in required iterations
for convergence. Note that the number of iterations directly
translates to the amount of signaling between BSs. NLGS
performs significantly better than GSGP both in terms of the
required information exchange, and convergence probability.
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TABLE II
AVERAGE NUMBER OF ITERATIONS FOR CONVERGENCE

Algorithms Self P Q Joint
GSGP (MR) 244.14 364.22 516.60 529.53
GSGP (PF) 201.30 463.97 406.04 633.24
NLGS (MR) 59.07 36.82 47.23 44.54
NLGS (PF) 81.32 81.56 91.74 114.38

TABLE III
CONVERGENCE PROBABILITIES

Algorithms Self P Q Joint
GSGP (MR) 1 1 1 0.94
GSGP (PF) 1 0.92 1 0.74
NLGS (MR) 1 1 1 1
NLGS (PF) 1 1 1 1

C. Comparison of Max Rate and PF Rate Utilities

A comparison of network data rate for Max-Rate and PF-
Rate utilities is given in Fig. 6. The baseline case (Self) is
the fully non-cooperative or selfish scheme in which no prices
are exchanged, where Self-MR and Self-PF are the variants
for Max-Rate (MR) and PF-Rate (PF) utilities respectively. It
can be seen that Self-MR significantly outperforms Self-PF
in terms of network data rate. This is due to the fact that
the MR utility function aims at maximizing the network data
rate directly over all resources. On the other hand, PF-Rate
maximizes the logarithmic function of rate to ensure fairness
among the users at a network level, taking into account all
allocations across all resources. Note that in these two cases,
Self-MR and Self-PF no pricing is being exchanged; therefore,
surplus maximization steps in NLGS algorithms are done with
power prices set to zero and precoder prices set to null matrix.
This enables us to quantify the gain achievable by the use
of pricing for powers (P) and precoders (Q). First partially
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Fig. 5. Comparison of GSGP with NLGS for Max-Rate (solid lines) and
PF-Rate (dashed lines) utility functions. Result for global optimum based on
multi-start method is also shown. The stepsizes are δP = δQ = δA = 0.005
for GSGP algorithm, and βP = βQ = 0.7 and βA = 1 for NLGS algorithm.
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Fig. 6. Comparison of NLGS variants for Max-Rate (solid lines) and PF-
Rate (dashed lines) utility functions. CDFs of network data rates normalized
over number of users are shown for different cooperative/non-cooperative
strategies.

cooperative pricing alternatives such as P(MR) and Q(MR)
are considered, in which the pricing is exchanged over one
degree of freedom only. Thus, P(MR) means pricing is used for
surplus maximization in the power allocation step of NLGS,
while the surplus maximization for precoder allocation step is
done without prices. Similarly, the converse case is Q(MR), in
which cooperation or pricing exchange only over the precoder,
where the power allocation step is carried out without pricing.
The fully cooperative case is when the resources are optimized
jointly (Joint), with prices exchanged over both power and
precoders. This variant is the exact NLGS algorithm. All four
variants are considered for both utility functions. Note that, in
all above cases the scheduling allocation is always carried out,
as it is an intra-cell resource allocation and does not requires
any pricing exchange.

As shown in the Fig. 6, MR variants achieve (as expected)
higher data rates than their PF counterparts. The net gain in
terms of network data rate of the pricing (Joint) over the selfish
case (Self) is around 40% for both utility functions. In Fig. 7,
the complementary CDFs of the user data rates for all the
variants are illustrated. The expected advantage of PF-Rate
is the increased fairness in terms of data rates of individual
users. The difference is more profound in the lower end of
the CDF (shown in the inset), where it can be seen that MR
leads to a large outage of comprising of more than 50% of
the users. For the PF case, the gain that fully cooperative case
yields is approximately 100% for the 10-th percentile users.

D. Statistical Analysis of the Gap Between Local and Global
Optimum

Due to the non-convex nature of the problem, the initial
point of the algorithm has an impact on the solution obtained
by the algorithms. A compelling way to improve the perfor-
mance in such cases consists in adding a preprocessing step
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Fig. 7. Comparison of NLGS variants for Max-Rate (solid lines) and PF-
Rate (dashed lines) utility functions. CDFs of user data rates are shown for
different cooperative/non-cooperative strategies.

that finds a better starting point for the algorithm. In our
approach, this is enabled by applying as initialization selfish
variants of the GSGP and NLGS algorithms, as illustrated in
Fig. 3. These variants do not involve an exchange of pricing
and are able to provide an improved starting point without
incurring any signaling overhead. In principle, the initialization
with a suitable starting point helps to reduce the gap that is
observed between obtained solution and the global optimum,
as illustrated in Fig. 8. The estimation of the global optimum
presented here is obtained using the scatter-search method
discussed in Section VI A with all starting points, whereas
the local optima are obtained taking into account a subset of
these starting points. The results shown in Fig. 8 are obtained
after averaging out 50 randomly generated network instances
when using the NLGS algorithm with Max Rate. It can be seen
that the obtained local optima are very close to the estimated
global optimum, and that the difference vanishes rapidly as
the number of starting points increase. This increase leads to
a higher probability of having a good initial point, thereby
improving the odds of getting closer to the global optimum.

VII. CONCLUSION

This paper has discussed autonomous algorithms for joint
resource allocation enabled by an exchange of pricing signals
for inter-cell interference mitigation in MIMO SCN scenarios.
Optimization parameters include transmit power on carriers,
MIMO precoders, and scheduling weights. Distributed pricing
algorithms based on solving the multi-dimensional network
level optimization problem for MIMO SCN scenarios were
derived, and their performance has been analyzed. The algo-
rithms work by iteratively increasing the total network utility
by optimizing the resource allocation, thereby improving the
data rates of users served by the SCN, subject to an underlying
α-fairness criterion. A nonlinear algorithm (based on NLGS),
where the effects of resource reallocation in the own cell is
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Fig. 8. Comparison of local (multi-start) optima to an estimated global
optimum for different number of starting points with NLGS (Max-Rate)
algorithm.

fully taken into account, is observed to significantly outper-
form its gradient projection counterpart (based on GSGP) in
terms of both total utility and convergence probability. Both
algorithms are distributed, and involve simple updates and
pricing exchange. In simulations it is seen that the overall
gain from adding message passing to a fully self-organized
method, where all cells act selfishly, is dramatic. Furthermore,
the combined use of power and precoder prices results in
significant gains compared to the case where only power or
only precoder prices are exchanged, the joint gain being larger
than the sum of the two separate gains. Fairness among users
can be ensured by selecting an appropriate utility function
that enables network level fairness, in the overall allocation
of both inter- and intra-cell resources. Rapid convergence to a
(local) optimum along with the scalability features underscore
the potential of NLGS for practical systems such as dense
self-organizing SCNs.

APPENDIX: CONVERGENCE PROOFS

Preliminaries: First, we observe that step 4 in both
resource allocation algorithms (i.e. GSGP and NLGS), where
BS i updates its internal scheduling weights, is a convex
optimization step. The prices of other cells do not affect
the dependency of the sum utility or the surplus function
on Ai. Utility singularities are at the boundaries of the
scheduling weight configuration space, in configurations where
at least one of the users is not scheduled at all. To guarantee
convergence, we redefine the set of scheduling weights Ai
of (22) so that open neighborhoods of the singular points are
removed.

On the other hand, the power and precoder variables of BS i
affect the rates of users in i, and the rates experienced at its
neighbors j 6= i. When users in neighboring cells j have a
finite received own-cell power, the rates at the neighbors are
finite for all power and precoder allocations in cell i, as a
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consequence of the power and the precoder trace constraints.
Thus changing power and/or precoder variables of cell i does
not cause singularities in other cells. Singularities in own
cell utilities may occur when some of the power variables
pi vanish, or when precoding happens towards a null-space
of a user, which is possible if rank

(
H

(m)
i,k

)
< NT. These

singularities can be avoided by redefining P of (20) and
Q of (21). When proving the convergence of NLGS, we
shall need convexity of the feasible sets. To remove utility
singularities due to precoding, keeping convexity, we restrict
certain precoders to have full rank. Feasible domains of the
variables, where utility singularities have been carved out, are
defined as follows.

Lemma 1: In each cell, on at least one carrier, take schedul-
ing weights from Ãtot

i = Ã(1)
i × . . . × Ã(M)

i , where each
user k ∈ Ki is guaranteed a non-zero scheduling weight
a
(m)
i,k ≥ εa > 0 on at least one carrier. The set of carriers

in cell i, where at least one user has a guaranteed non-zero
scheduling weight is Mgnz

i . Take powers from P̃i where a
minimum power p(m)

i ≥ εp > 0 is guaranteed on each carrier
in Mgnz

i . Further, on each carrier in Mgnz
i take covariance

matrices from Q̃ =
{
εqI + Q̃ : TrQ̃ = 1−NTεq, Q̃ � 0

}
with 0 < εq < 1/NT. The defined set of feasible values
in all cells is compact and convex. Then, all users have a
non-vanishing rate in this domain, Usum is twice continuously
differentiable with respect to all variables, and its gradient has
finite norm for all α.

Proof : All users are scheduled on a carrier with a full-
rank precoder, and accordingly have a strictly positive rate.
Accordingly, Usum is twice continuously differentiable in the
feasible set, and gradients are finite. The set Q̃ is a translation
and dilatation of the compact convex set Q and thus compact
and convex. P̃i and Ãi are compact by definition. They are
hypercubes sliced by hyperplanes, just as Pi and Ai, and thus
convex.

Note that more than simple εa-neighborhoods of utility
singularities have been removed from Ãi. Removing only
εa-neighborhoods would render Ãi non-convex. The multi-
carrier precoding space in cell i is the direct product of Q for
each carrier not in Mgnz

i and of Q̃ for each carrier in Mgnz
i .

We call this space Q̃tot
i . We call the points in Ãtot

i , P̃i and
Q̃tot
i , where one of the coordinates reach the value εa, εp, εq ,

respectively, interior boundaries. The boundaries shared with
Atot
i ,Pi and Qtot

i , induced by the power, precoding and
scheduling weight constraints, are exterior boundaries. The
next step is to formulate stepsize control mechanisms that
make GSGP and NLGS ascent algorithms. We concentrate
on the update of cell i. The variables controlled by a cell are
the scheduling weights Ai ∈ Ãtot

i , affecting only own cell
utility, and the variables pi ∈ P̃i, and Qi ∈ Q̃tot

i , affecting
both own-cell utility and inter-cell interference. The domains
are as defined in Lemma 1. An arbitrary one of the three sets
of variables controlled by i is denoted by xi, taking values
in Xi. All other variables controlled by cell i and cells j 6= i
are grouped to yi ∈ Yi. We start by considering utility sums
US =

∑
j∈S Uj of arbitrary subsets S of cells. All Uj are

functions of xi and yi, but we leave the latter dependence
implicit in notations. The operator norm induced by the l2
vector norm of a matrix M, i.e. the largest singular value of
M (see e.g. [40, Theorem 5.6.2]), is denoted by ‖M‖op.

Lemma 2: The operator norm
∥∥∇2

xi
US
∥∥
op

of the Hessian of
US is bounded from above by a finite Li, when xi ∈ Xi and
yi ∈ Yi. The gradient is locally Lipschitz continuous with
local Lipschitz constant LS, i; then we have∣∣∣US(x2)−US(x1)−(x2−x1)H∇xi

US(x1)
∣∣∣ ≤ LS, i

2
‖x2−x1‖2

(34)
and

‖∇xi
US(x2)−∇xi

US(x1)‖ ≤ LS, i ‖x2 − x1‖ (35)

for all x1,x2 ∈ Xi and yi ∈ Yi.
Proof : First consider the utility Uj(xi) in cell j ∈ S as

a function of xi. According to Lemma 1, the utility Uj(xi) is
twice continuously differentiable, and elements in the Hessian
∇2

xi
Uj are finite for all xi ∈ Xi and y ∈ Y . The singular val-

ues of a matrix with finite entries is finite. Both Xi and Y are
compact. As a function of xi and yi, the largest singular value
of ∇2

xi
Uj is a scalar function on a compact domain. According

to the extreme value theorem, it has a finite maximum value
Lji on this domain. Then, a bound on the operator norm of
the sum Hessian ∇2

xi
US =

∑
j∈S ∇2

xi
Uj(xi), directly follows

from the triangle inequality:
∥∥∇2

xi
US
∥∥
op
≤
∑
j∈S Lji ≡ LS, i.

The local Lipschitz continuity of the gradient conventionally
follows from Taylor’s theorem.

Proof of Proposition 1: We use Lemma 2 for US = Usum,
and for xi being Ai,pi,Qi, respectively, to get local Lipschitz
constants LAi , L

p
i , L

Q
i . Taking Lx = maxi L

x
i , we get bounds

on stepsizes 0 < δx < 2
Lx for x = A, p,Q. Finite stepsizes

exist as a consequence of finiteness of the Li. Convergence
then follows from a conventional ascent and Cauchy sequence
argument [27, Section 3.3.2]. Compactness guarantees that
limit points are within the feasible domain.

Note that Proposition 1 does not guarantee that upon con-
vergence, the gradient projected to the original feasible sets
Atot
i ,Pi,Qtot

i would vanish. If convergence is to a point on
an interior boundary, some users may have unnecessarily non-
zero weights on some carriers, some carriers may have un-
necessarily non-zero powers, and/or some precoders may have
unnecessarily high rank. Improved algorithms that increase the
feasible sets can be devised, if convergence is to an interior
boundary created according to Lemma 1. The regularization
constants ε and, accordingly, the stepsizes would be changed
online. Such stepsize control would guarantee convergence in
the original feasible sets.

Proof of Proposition 2: We consider a NLGS update,
where a variable xi controlled by cell i is updated. For
simplicity, we suppress the index i from xi. The update is

xu(β) = βx∗ + (1− β)x0 , (36)

where x∗ = arg maxx∈Xi si(x), and x0 ∈ Xi is the value of
the variable before the update. As a consequence of convexity
of the feasible set, proven in Lemma 1, xu ∈ Xi for all
0 ≤ β ≤ 1. The network utility (6) is divided into two parts,
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Usum = Ui(x) + U¬i(x), where U¬i(x) =
∑
j 6=i Uj(x). Cell

i has complete information about Ui(x), but only linearized
information of U¬i(x), except when x is Ai and U¬i does not
depend on x at all. As a sum of concave functions, the own-
cell utility Ui(x) is a concave function in x. We use Lemma 2
to bound the effect the update in x has on U¬i(x). Applying
Taylor’s theorem to U¬i(x), we have

Usum (xu)− Usum (x0) = si (xu)− si (x0) +R¬i, (37)

where si is the surplus function of cell i corresponding to x,
and the remainder is bounded according to (34) as |R¬i| ≤
L¬i

2 ‖xu − x0‖2 = β2L¬i

2 ‖x∗ − x0‖2, where L¬i the local
Lipschitz constant of ∇xU¬i(x). To guarantee that the update
(37) is an ascent, we thus require

si (xu(β))− si (x0) ≥ β2L¬i
2
‖x∗ − x0‖2 . (38)

Fastest convergence is achieved by selecting the largest β
fulfilling this condition. If x0 6= x∗, a strictly positive β exists.
This can be seen by applying Taylor’s theorem to Ui(x) in si:

si(xu)− si(x0) = (xu − x0)
H∇xsi(x0) +Ri ≥ 0. (39)

The inequality follows from the definition of x∗, and concavity
of Ui(x). As Ui(x) is concave, we have Ri ≤ 0, and
(xu − x0)

H∇xsi(x0) ≥ |Ri| ≥ 0. The remainder is bounded
according to (34) as |Ri| ≤ Li

2 ‖xu − x0‖2, where Li is
the local Lipschitz constant of ∇xUi(x). Applying the linear
bound (39) to (38) and recalling that xu − x0 = β(x∗ − x0),
we find that ascent is guaranteed at least for

β ≤ 2

Li + L¬i
· (x∗ − x0)

H∇xsi(x0)

‖x∗ − x0‖2
(40)

which allows for strictly positive β. Convergence then follows
from conventional Cauchy sequence argument. Finding the
largest β that fulfills the inequality (38) or (40) for all initial
points x0 and all feasible interference prices in si, and for all
cells i, yields a global β. For scheduling weight optimization,
βA = 1 can be chosen, as scheduling does not affect other
cells.

Note that as in the above proof of Proposition 1, con-
vergence may be to an interior boundary. In such a case,
the feasible sets Ãtot

i , P̃i, Q̃tot
i can be replaced by some

other neighborhoods of the converged point. Such changes of
feasible sets, similarly to searches for an update-specific β,
are purely cell-internal things, which do not require commu-
nication.
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