
Joint Cache Placement and Delivery Design using
Reinforcement Learning for Cellular Networks

Mohsen Amidzadeh∗, Hanan Al-Tous∗, Olav Tirkkonen∗ and Junshan Zhang†
∗Department of Communications and Networking, Aalto University, Espoo, Finland

†Arizona State University, Tempe Arizona
{mohsen.amidzade, hanan.al-tous, olav.tirkkonen}@aalto.fi, Junshan.Zhang@asu.edu

Abstract—We consider a reinforcement learning (RL) based
joint cache placement and delivery (CPD) policy for cellular net-
works with limited caching capacity at both Base Stations (BSs)
and User Equipments (UEs). The dynamics of file preferences of
users is modeled by a Markov process. User requests are based
on current preferences, and on the content of the user’s cache.
We assume probabilistic models for the cache placement at both
the UEs and the BSs. When the network receives a request for
an un-cached file, it fetches the file from the core network via a
backhaul link. File delivery is based on network-level orthogonal
multipoint multicasting transmissions. For this, all BSs caching
a specific file transmit collaboratively in a dedicated resource.
File reception depends on the state of the wireless channels. We
design the CPD policy while taking into account the user Quality
of Service and the backhaul load, and using an Actor-Critic RL
framework with two neural networks. Simulation results are used
to show the merits of the devised CPD policy.

Index Terms—Wireless caching, cache placement and delivery
policy, multipoint multicast transmission, reinforcement learning,
Actor-Critic, neural network.

I. INTRODUCTION

The unprecedented traffic growth in cellular networks has led
to network congestion problems. Caching at the network edge is
a promising method to alleviate traffic congestion problems [1].
In the literature, several models have been studied for cache
deployment, placement, and delivery. In [2], [3], the authors
exploit stochastic geometry and Poisson Point Process (PPP)
for the deployment of caches across the network. In [3], [4], a
probabilistic caching model is considered to store the files at
Base-stations (BS). In [5], the authors consider an orthogonal
transmission where bandwidth is allocated to requesting User
Equipments (UE) that are served by their nearest BS. To
avoid inter-cell interference, multipoint multicasting for cache
delivery is considered in [6].

In recent years, reinforcement learning (RL) has been
considered for cache policy design [7]–[10]. In [7], a RL
framework is used for cache placement in a network with
dynamically changing file preferences. Q-learning agents
located at individual BSs are used to find the optimum cache
policy. In [8], coded caching at fog access points is considered,
and a deep RL (DRL) approach is developed to optimize cache
placement for static file preferences. In [9], an Actor-Critic DRL
algorithm is exploited to jointly find an optimum policy for user
scheduling and cache placement in a heterogeneous network
with static file preferences. In [10], a DRL-based method is
leveraged to achieve optimum caching in term of average
transmission delay for a cellular network with cooperative BSs.
All of these works consider a deterministic caching model,

where the individual cache contents of nodes are acted on.
To model the dynamics of user preferences, [11] assumes

that popular files change according to a Markov model. In [7],
[12], [13], a Markov process with an unknown transition matrix
is used to model popularity dynamics.

In this paper, we apply caching both in the network and
at UEs, assuming probabilistic models for cache placement.
We model UE and BS deployment as two independent
homogeneous PPP. A finite state Markov process is used to
model the dynamics of user preferences. Each UE requests files
based on its current preference and the status of files stored
in its cache. Requested files are delivered by network-level
orthogonal multipoint multicasting (OMPMC) transmissions.
In this scheme, the network transmits a file towards requesting
UEs in the same frequency resources. To transmit different
files, network-wide disjoint resources are reserved. The cache
placement and delivery (CPD) policy for the whole network
is learned based on a RL framework, aiming to maximize
Quality of Service (QoS) experienced by UEs, and minimize
backhaul load. Neural Networks (NNs) are used to represent
the agent, which observes the system state and interacts with
the environment through following the NN-provided policy.

The main contribution of this paper is as follows. In contrast
to prior works [7], [9], [12], we utilize a probabilistic approach
to store the files in limited caches of BSs and UEs that
merely includes overall probability vectors and no parameters
corresponding to individual users. An NN-based RL framework
is exploited to jointly optimize the cache placement and delivery.
For this, the CPD problem is modeled as a Markov decision
process (MDP). We concentrate on A2C [14] to find the optimal
CPD policy. The optimum policy is obtained in term of file
delivery and backhaul loads. To enforce the constraints related
to the caching policy and trade off between exploitation and
exploration, we modify the actor network of A2C algorithms
by applying Dirichlet distributions.

The remainder of this paper is organized as follows. In
Section II, the system model and in Section III, the problem
formulation are introduced. The RL-based CPD method is
presented in Section IV. Simulations are shown and discussed
in Section V. Section VI concludes the paper.

II. SYSTEM MODEL

We consider a cellular access network with an associated
core network. BSs fetch files from the core network via error-
free backhaul links. Both UEs and BSs are equipped with
independent storage-limited caches that store files according

to probabilistic models. In the delivery phase, users choose
files based on file preferences. If a user chooses a file that is
stored in its cache, it can directly obtain it, if it is not locally
cached, the user requests the file from the network. Based on
the aggregate requests from the users, the network updates
BS caches, and transmit the files over the air interface. We
model UE and BS locations as two independent homogeneous
PPPs, which leads to a statistical description of file delivery
success. Time slotted operation is assumed; changes in file
preferences, file requests by users, file fetching by BSs from
the core network, and file delivery towards UEs are modeled
on a per-slot basis, with slots indexed by t.

A. File Popularity and User Requests
In each time-slot, users choose files from a library F

containing N files. Without loss of generality, files are assumed
to have the same size normalized to 1. The popularity of file n at
time-slot t is pn(t) ∈ [0, 1]. This distribution is not assumed to
be a priori known, it emerges from the aggregate user behavior
at time-slot t. For simulations, a Zipf distribution [15] is used
to model file popularity, pn(t) = n−τ(t)/

∑N
j=1 j

−τ(t) for
j = 1, . . . , N , where τ(t) stands for the skewness of the Zipf
distribution at time-slot t. Moreover, file popularity evolution
is modeled as a finite state Markov chain [11] with M states
and state set Q := {Q1, . . . QM}. The unknown transition
probability matrix is denoted by Q.

Note that we use a Markov process and Zipf distribution
merely for simulating the popularity profile, following [11]–
[13]. The network does not know the popularity distribution;
network optimization is based on the realized requests of users
in different time slots. The considered caching policy is thus
agnostic to the file popularity model.

Caching of files at UEs is based on a probabilistic method.
The UE caching probabilities sn(t) determine the probability
that file n is stored at a UE cache in time-slot t. For instance,
if sn = 1/3, approximately one third of UEs store file n
while others do not store it. We assume that the cache of each
UE has maximum capacity Lu, i.e,

∑N
n=1 sn(t) ≤ Lu. A UE

preferring a file only requests it from the network if the file
has not been stored at its cache. Accordingly, the probability
that a given UE requests a file at time-slot t becomes

rnet(t) = p(t)� (1− s(t)), (1)

this is a vector with one entry per file, rnet(t) =
[rnet

1 (t), . . . , rnet
N (t)]>, and s(t) = [s1(t), . . . , sN (t)]> is a vec-

tor of the UE caching probabilities, p(t) = [p1(t), . . . , pN (t)]>

a vector of file popularities, and 1 is an N × 1 vector
with all elements equal to one. The element-wise vector
multiplication of two vectors is denoted as �, and > denotes
transposition. File request probability decreases with increasing
caching probability, and increases with increasing preference
probability.

B. Cache Placement
Files are cached at BSs based on a probabilistic model.

There is an overall caching probability vector ρ(t) =
[ρ1(t), . . . , ρN (t)]>, where ρn(t) indicates the probability that
file n is cached at a BS. We assume that the BS caches have
a maximum capacity Lc, such that

∑N
n=1 ρn(t) ≤ Lc.

C. Cache Delivery

After updating the caches of BSs, files are transmitted
towards the UEs in dedicated resources with bandwidth wn(t),
using network orthogonal multipoint multicast transmission.
Each BS caching the file participates in the multipoint trans-
mission. Note that in this cache delivery principle, the network
responds to the aggregate requests of the whole user population
by an aggregate transmission of all files, where a Single-
Frequency Network [16] is formed by the BSs caching the
file. If the signal-to-noise ratio (SNR) associated to a file at
a requesting UE is less than a threshold, the request will be
in outage. The outage probability depends on the parameters
of CPD policy (i.e. the caching probability ρ(t) and allocated
bandwidths w(t)).

The outage probability for a network model described by
a PPP can be derived by following the analysis of [2]. For
a network-level orthogonal multipoint multicast transmission
scheme in an environment with path-loss exponent β = 4, with
BSs distributed according to a PPP with intensity λ, with file
n from the library F being cached with probability ρn(t) and
having allocated bandwidth wn(t), the probability that file n
is in outage at a user is [6]

On(t) = erfc

(
π2λρn(t)

4
√

2ηn(t)

)
. (2)

Here erfc(·) is the complementary error function, and channel
gain threshold ηn(t) =

σ2
0

p̄ (2α/wn(t)−1) are expressed in terms
of a target spectral efficiency α, the average BS transmit power
density p̄, and the UE noise power spectral density σ2

0 .

D. UE Caching Policy

The caching probability of the UEs for the next time-slot
depends on the current caching probability and the outage
probability. The files already cached, and the files that the
UE can decode, are candidates for caching. If the number of
candidate files exceeds the UE caching capacity Lu, the UE
chooses Lu files among the candidates uniformly at random.
On the population level, this leads to the caching probability
update equation

s̃(t+ 1) = s(t) + (1− s(t))� (1− O(t)),

s(t+ 1) = min

{
1,

Lu∑N
n=1 s̃n(t+ 1)

}
s̃(t+ 1),

(3)

where O(t) = [O1(t), . . . ,ON (t)]>.

E. Network Operation Timing Model

In equations (1)-(3), the problem has been formulated based
on probabilistic vectors rnet(t), s(t) and ρ(t) instead of vectors
related to individual users and BSs. The joint CPD policy
update during time-slot t consists of three consecutive phases:
the request announcement, cache update and placement and
the cache delivery. The interactions between UEs, BSs and the
core network during time-slot t are illustrated in Figure 1.

Fig. 1. The interactions between UEs, BSs and core network for CPD policy.
Phase (a): UEs requests. Phase (b): BSs fetch files from the core network and
update their caches. Phase (c): OMPMC cache delivery and update of UEs
caches.

III. CACHE PLACEMENT AND DELIVERY OPTIMIZATION
PROBLEM

Users request files based on their preference and cache status.
Therefore, the file request probability (1) and the UE caching
probability (3) constitute the system state vector.

x(t) = [rnet(t)>, s(t)>]>. (4)

The feasible set for the state vector is

X = R× S, (5)

where S = {s | s ≥ 0, 1>s ≤ Lu}, and R = {r | r ≥
0, 1>r ≤ 1}. Requesting UEs are responded by the whole
network according to the CPD policy. The network action
vector is constituted by the caching probability of BSs and the
allocated bandwidths:

u(t) = [ρ(t)>, w(t)>]>. (6)

The feasible set of actions is constrained by the capacity of
BS caches and the total available bandwidth;

U = {(ρ,w)|ρ ≥ 0, 1>ρ ≤ Lc, w ∈ [0, 1]N , 1>w = 1}. (7)

We are interested in high QoS achieved with small backhaul
load. Instead of minimizing the backhaul load with a QoS
constraint, or vice versa, we formulate a joint optimization
problem.

We take the availability probability of preferred files at UEs
as a measure of QoS. For this, the probability that a requesting
user gets the file from the network is considered. Considering
all files, the reward should be averaged over the file popularity.
This QoS reward function is expressed in terms of the request
probability (1) and the outage probability (2) as

rQoS(t) = 1−
N∑
n=1

pn(t)
[
sn(t) + (1− sn(t))(1− On(t))

]
= 1−

N∑
n=1

rnet
n (t)On(t) . (8)

For example, if file n is already cached at all users, based on
(8) the reward from this file is pn, and the outage probability
of this file is irrelevant. Conversely, if a file is not cached at

any user, and UEs request the file, outage directly reduces the
QoS reward from this file.

The backhaul load is related to the number of files fetched
from the core network. If ρn(t) − ρn(t − 1) ≤ 0, no BS
needs to fetch file n in time-slot t, and only some BSs may
have to delete the file from their cache. If ρn(t) − ρn(t −
1) > 0, a corresponding fraction of BS have to fetch the file,
using the backhaul network. The probability that a BS has
to fetch file n is thus given by [ρn(t)− ρn(t− 1)]+, where
[x]+ = 1

2 (x+ abs(x)). Hence, the aggregate backhaul reward
is shaped as

rbh(t) = Lc −
N∑
n=1

[ρn(t)− ρn(t− 1)]+ . (9)

A joint optimization problem can be formulated using
a Lagrange multiplier, which indicates the relative cost of
backhaul and QoS as:

r(t) = rQoS(t) + λbhrbh(t), (10)

where λbh is a Lagrange multiplier that regulates between user
satisfaction and backhaul load. A discounted average reward
starting from time-slot t into the future can then be defined as:

R(t) =

T∑
k=t

γk−tE[r(k)], (11)

where T is number of time-slots in the caching process and
γ ∈ [0, 1] is the discount factor.

Considering the dynamics caused by the dependencies of
actions and states in different time-slots, we are interested in
maximizing R(t) starting from any time-slot t. The CPD policy
design is formulated as a constrained optimization problem:

P1 : max
{w(k),ρ(k)}k≥t

R(t), 0 ≤ t ≤ T

s.t.

{
{w(k),ρ(k)}k≥t ∈ U ,
(1)− (3), (8)− (11).

(12)

Let π(·|x(t)) denote the policy distribution by which the
action u(t) are generated given state x(t). By following this
policy and observing the resulting state at different time-slots,
a trajectory is produced with the transition probability function
p
(
x(t + 1)|x(t), (u(t)

)
that describes the dynamics of the

environment. The goal is to learn a policy π
(
· |x(t)

)
which

maximizes R(t) starting from any time-slot t.

IV. A REINFORCEMENT LEARNING FRAMEWORK

We create a RL agent for finding actions according to
dynamically changing network state. The objective of the agent
is to find an optimal policy π

(
u(t)|x(t)

)
, such that P1 is solved.

Although there are many function approximation techniques
to represent the policy, we use neural network approach that
can circumvent the ”curse of dimensionality” [17]. Among
RL algorithms such as Policy-Gradient (PG), Advantageous
Actor-Critic (A2C), and Proximal Policy Optimization (PPO),
we concentrate on A2C [14] to find the optimal CPD policy.
The reason is that for our problem, PG fails to correctly learn
parameters related to policy representation and PPO often gets

stuck in a local optimum. Here, the actor and critic of A2C
algorithm are represented by two neural networks. The actor
network stands for a RL agent producing policies by which
it can interact with the environment. The policy generated
by this network is represented by πθ(·), where θ stands for
the parameters of the actor network. On the other side, the
critic network gives a representation of the value-function
or discounted average reward conditioned on starting from a
specific state x(t). The value-function starting from state x(t)
provides an estimate of

Vφ(x(t)) = E
[T∑
k=t

γk−tr(k) | x(t)

]
, (13)

where φ stands for the parameters of the critic network.

A. Learning via A2C

An episodic trajectory is produced by the actor network
as follows. For the current state, the actor network produces
an action based on the parameters θ. By interacting with the
environment using this action, an immediate reward and the
next state are generated. The critic network then gives an
estimate of the value-function using the current state, and
based on the parameters φ. Afterwards, the produced action,
the immediate reward and the value-function are stacked in
a buffer to be used in the future to update the parameters of
actor and critic networks. By repeating this procedure, we can
buffer information until time-slot T .

After initialization, the parameters (θ,φ) of the actor and
critic networks are updated via A2C algorithm [14] as follows

φ← φ+ δ

[
T∑
t

Aφ(u(t), x(t)) ∇φVφ(x(t))

]
,

θ ← θ + ψ

[
T∑
t

Aφ(u(t), x(t)) ∇θ log
(
πθ(u(t)|x(t))

)
+ βent

T∑
t

∇θH
(
πθ(u(t)|x(t))

)
︸ ︷︷ ︸

Entropy term

]
,

(14)

where the advantage value is given by Aφ(u(t), x(t)) =
r(t+ 1) +Vφ(x(t+ 1))−Vφ(x(t)). The term with the entropy
function H(·) is added in order to trade off exploration
against exploitation by discouraging premature convergence to
suboptimal deterministic policies [18]. The parameters ψ and δ
are the learning rates corresponding to update of actor and critic
networks, respectively, and βent is the entropy regularization
term. The Figure 2 illustrates the A2C algorithm. As Figure 2
and (14) imply, the parameters of both actor and critic network
are updated using the advantage value generated by the critic
network.

Assuming that cache placement and cache delivery policies
can be independently updated, we have

log
(
πθ(u(t)|x(t))

)
= log

(
πθ(ρ(t)|x(t))

)
+ log

(
πθ(w(t)|x(t))

)
.

(15)

Environment

πθ(t)
Actor

Network

Critic
Network

Vϕ(x(t))

ac
ti

on
:
u

(t
)

st
at

e:
 x

(t
)

re
w

ar
d

 r
(t

)

A
ϕ
(u

(t
),
x
(t

))

Fig. 2. The diagram of A2C algorithm. The red arrows shows the update
process.

B. Structure of Actor and Critic Networks
The actor and critic are designed using two separate neural

networks. One hidden layer is used for the critic network and
the rectified linear unit (ReLU) activation function is used
for each neuron. Figure 3 depicts the structure of the neural
network representing the actor agent. It has one hidden layer
with hyperbolic tangent activation functions. The output layer
is acted on by a softplus function. The standard actor network
of the A2C considers a Gaussian distribution to generate the
action vector. However, to enforce the constraints in (7) over
the action vector, we modify the actor network and consider
Dirichlet distributions to generate the action vector as:

u(t) ∼
[
Lc ·Dirichlet

(
ρ′(t,θ)

)
Dirichlet

(
w′(t,θ)

)] ,
where ρ′(t,θ) and w′(t,θ) are the outputs of the actor network
parametrized by θ, and Dirichlet(·) stands for the multivariate
Dirichlet distribution. The reason behind selecting this structure
is that the elements of any random vector generated from a
Dirichlet distribution lie between zero and one, and the sum of
its elements equals to one. By this modification, the constraints
in (7) over the action vector at each time-slot are enforced
and the entropy term in (14) is computed without additional
computational complexity.

Algorithm 1 shows the pseudo code for the proposed RL-
based CPD policy based on modified A2C. In the pseudo-
code, Emax is the maximum number of episodes for which
the training process is performed and Nu is the number of
time-slots after which the actor and critic networks are updated.

V. SIMULATION AND DISCUSSION

To investigate RL-based CPD, extensive simulations have
been conducted. For this, we consider a cellular network, with

Fig. 3. The structure of the actor neural network πθ(.).

the intensity of BSs λ = 50 and average BS transmission
power density p̄ = 1. The UE noise power is σ2

0 = 1 and the
target spectral efficiency α = 1/5 as in [6]. Like [7], [19],
we consider a Markov process to model the preference profile.
The popularity profile is modeled by a four-state Markov chain
with transition matrix

Q =

 0.9 0.033 0.033 0.033
0.2 0.7 0.05 0.05
0.05 0.05 0.85 0.05
0.1 0.1 0.1 0.7

 , (16)

and the corresponding state set contains Zipf distributions with
skewness values τ = {2, 2.5, 3, 3.5}. We apply four different
popularity ranks of the N files, one for each state of the Markov
process. Hence, file popularity and rank change during time-
slots. Note that the RL-based approach for the cache policy is
not restricted by the model of popularity we considered here,
and we use a Markov process and Zipf distribution as a typical
model. We have N = 40 files in the library, the capacity of
BSs caches are Lc = 6, and the capacity of UEs caches are
Lu = 3. The total number of time-slots is T = 256.

Several RL algorithms are tested and the best results are
obtained by the modified A2C algorithm. For this algorithm,
the hyperparameters are tuned as follows. For the actor and
critic networks, the number of neurons in the hidden layer
is 64. Increasing the number of neurons does not give better
performance in terms of accumulative reward, while it needs
more data for tuning the parameters of the networks. We set
Emax = 2.5 × 104 and Nu = 128. We use λbh = 0.05 to
regulate the cost of backhaul, γ = 0.98 for the discount factor
and βent = 10−2 for regularization of the entropy term. The
learning rates of the actor and critic networks are ψ = 7×10−3

and δ = 7× 10−3.
Figure 4 shows the training performance of the RL agent

in terms of the accumulative reward RAc(t) =
∑t
k=1 r(k),

and QoS and backhaul terms of accumulative reward, i.e.
RAc,QoS(t) =

∑t
k=1 rQoS(k) and RAc,bh(t) =

∑t
k=1 rbh(k).

As this figure illustrates, the RL agent is trained after approx-
imately 1.5 × 104 episodes for the aforementioned cellular
network parameters.

In order to compare and benchmark our result, we compare
to the so-called ”Least Recently Used” (LRU) and ”Least
Frequently Used” (LFU) caching policies from the literature

Algorithm 1 The Modified A2C for CPD design.
1: for episode = 1 to Emax do
2: Given the initial system state vector x(1), actor and critic

networks parametrized with θ and φ.
3: for t = 1 to T do
4: Select an action u(t) following πθ(x(t)) and interact with

the environment.
5: Critic network provides estimate of value-function Vφ(x(t)).
6: Observe new state x(t+ 1) and immediate reward r(t).
7: Buffer Vφ(x(t)), x(t), r(t), log

(
πθ(u(t)|x(t))

)
, and

H
(
πθ(u(t)|x(t))

)
.

8: Update parameters of actor and critic networks as in (14)
every Nu time-slot.

9: end for
10: end for

0 0.5 1 1.5 2 2.5

Episode 104

1600

1620

1640

1660

1680

1700

1720

1740

1760

1780

A
c
c
u

m
u

la
ti
v
e

 R
e

w
a

rd

Fig. 4. Training performance of the RL agent in term of the accumulative
reward.

[20], as well as to the optimal method. LRU is based by each
BS tracking the most recent request and removing the least
recently used file from the cache when it is full, while LFU
is based on keeping the most frequently requested files in the
cache of BSs. To find the optimal method, we use the interior-
point algorithm to solve the optimization problem. For all of
these methods, the accumulative reward is computed to obtain
the performance benchmark.

Figure 5 shows the comparison of test performance between
RL-based proposed CPD policy method, LRU, LFU and
”Optimum” for 128 Episodes in term of the accumulative reward.
As this figure shows, the performance of the RL-based CPD
policy method outperforms other cache policy approaches. The
”Optimum” policy slightly outperforms RL-based policy, at a
considerable complexity cost. The RL-based method can be
immediately leveraged whenever the actor and critic networks
are fully trained. For this, it suffices for the agent to feed
the measured system state into the actor network and read its
output as the optimum cache policy.

The experimental cumulative distribution function (CDF) of
the instantaneous QoS reward (8) across time-slots is plotted
in Figure 6. This shows the statistics of QoS experienced by
users during the network dynamics after the agent is fully
trained. Note that the instantaneous QoS reward indicates the
probability that a user gets the needed file. The closer it is
to one, the more probable it is that users have either cached,

0 20 40 60 80 100 120

Episode

1620

1640

1660

1680

1700

1720

1740

1760

1780

1800

RL-based policy

LFU

LRU

Optimum

Fig. 5. Performance comparison between the RL-based CPD, LFU, LRU and
”Optimum” cache policies in term of the accumulative reward.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
x
p

e
ri
m

a
n

ta
l
C

D
F

Optimum

RL-based policy

LRU

LFU

Fig. 6. Experimental CDF of the QoS reward during network dynamics.

or have successfully received their files of interest in a given
slot. For the RL-based and ”Optimum” policies, the CDF is
aggregated on values greater than 0.9, meaning that users are
satisfied with high probability. However, for the LRU and LFU
policies the CDF is distributed over a greater range meaning
that in some slots the network fails to fulfil user requests.

The experimental CDF corresponding to the other variable
of the trade-off, instantaneous backhaul reward (9), is sketched
in Figure 7. The smaller it is, the more costly it is to fetch the
files from the core network. For the RL-based and “Optimum”
policies, the CDF is concentrated near the maximum reward
Lc = 6, implying that in each time-slot these policies have
proactively cached at BSs most files that will be requested
by users in the next time-slot, and the network will not need
to fetch many files. However, for the LRU and LFU policies,
the files fail to be cached at BSs proportional to user requests
which causes backhaul load for the network.

VI. CONCLUSION

In this paper, we formulated the cache placement and cache
delivery policy design problem based on a reinforcement
learning framework. We shaped a reward function aiming to
optimize the user QoS and backhaul load. We utilized an
Actor-Critic algorithm and neural networks to learn optimal
cache placement and delivery policy. Simulation results showed
that the proposed RL-based method outperforms other caching
approaches and at the same time its difference with the optimum

2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
x
p

e
ri
m

a
n

ta
l
C

D
F

Optimum

RL-based policy

LRU

LFU

Fig. 7. Experimental CDF of the backhaul reward during network dynamics.

method is negligible. In future work, we shall consider more
involved UE caching strategies and a more realistic model for
popularity profile simulation.

ACKNOWLEDGEMENT

This work was funded in part by the Academy of Finland
(grant 319058). We thank Prof. Ville Kyrki and his team for
giving advises for the simulation matters.

REFERENCES

[1] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role
of proactive caching in 5G wireless networks,” IEEE Commun. Mag.,
vol. 52, no. 8, pp. 82–89, Aug 2014.

[2] J. G. Andrews, A. K. Gupta, and H. S. Dhillon, “A primer on cellular
network analysis using stochastic geometry,” eprint arXiv 1604.03183,
2016.

[3] B. Serbetci and J. Goseling, “On optimal geographical caching in
heterogeneous cellular networks,” in IEEE Wireless Commun. and
Networking Conf. (WCNC), March 2017, pp. 1–6.

[4] B. Blaszczyszyn and A. Giovanidis, “Optimal geographic caching in
cellular networks,” in IEEE Internat. Conf. on Commun. (ICC), June
2015, pp. 3358–3363.

[5] D. Cao, S. Zhou, and Z. Niu, “Optimal base station density for energy-
efficient heterogeneous cellular networks,” in IEEE Internat. Conf. on
Commun. (ICC), June 2012, pp. 4379–4383.

[6] M. Amidzade, H. Al-Tous, O. Tirkkonen, and G. Caire, “Cellular network
caching based on multipoint multicast transmissions,” in IEEE Globecom,
Nov. 2020, pp. 1–6.

[7] A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis, “Optimal and
scalable caching for 5G using reinforcement learning of space-time
popularities,” IEEE J. Selected Topics in Sign. Proc., vol. 12, no. 1, pp.
180–190, Feb 2018.

[8] Y. Zhou, M. Peng, S. Yan, and Y. Sun, “Deep reinforcement learning
based coded caching scheme in fog radio access networks,” in IEEE/CIC
Internat. Conf. on Commun. in China (Workshops), Aug 2018, pp. 309–
313.

[9] Y. Wei, Z. Zhang, F. R. Yu, and Z. Han, “Joint user scheduling
and content caching strategy for mobile edge networks using deep
reinforcement learning,” in IEEE Internat. Conf. on Commun. Workshops
(ICC Workshops), May 2018, pp. 1–6.

[10] D. Li, Y. Han, C. Wang, G. Shi, X. Wang, X. Li, and V. C. M. Leung,
“Deep reinforcement learning for cooperative edge caching in future
mobile networks,” in IEEE Wireless Commun. and Networking Conf.
(WCNC), 2019, pp. 1–6.

[11] R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, “Online coded caching,”
IEEE/ACM Trans. Networking, vol. 24, no. 2, pp. 836–845, April 2016.

[12] A. Sadeghi, G. Wang, and G. B. Giannakis, “Deep reinforcement learning
for adaptive caching in hierarchical content delivery networks,” IEEE
Trans. Cognitive Commun. and Networking, pp. 1–1, 2019.

[13] N. Garg, M. Sellathurai, and T. Ratnarajah, “Content placement learning
for success probability maximization in wireless edge caching networks,”
in IEEE Internat. Conf. on Acoustics, Speech and Sign. Proc. (ICASSP),
May 2019, pp. 3092–3096.

[14] I. Grondman, L. Busoniu, G. A. D. Lopes, and R. Babuska, “A survey of
actor-critic reinforcement learning: Standard and natural policy gradients,”
IEEE Trans. on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 42, no. 6, pp. 1291–1307, 2012.

[15] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and Zipf-like distributions: Evidence and implications,” in IEEE Internat.
Conf. on Computer Commun., INFOCOM, 1999, pp. 126–134.

[16] H. Sari, G. Karam, and I. Jeanclaude, “Transmission techniques for
digital terrestrial TV broadcasting,” IEEE Commun. Mag., vol. 33, no. 2,
pp. 100–109, Feb. 1995.

[17] Y. Bengio, A. C. Courville, and P. Vincent, “Unsupervised feature
learning and deep learning: A review and new perspectives,” eprint
arXiv 1206.5538, 2012.

[18] R. J. Williams and J. Peng, “Function optimization using connectionist
reinforcement learning algorithms,” Connection Science, vol. 3, no. 3,
pp. 241–268, 1991.

[19] L. Lu, Y. Jiang, M. Bennis, Z. Ding, F. Zheng, and X. You, “Distributed
edge caching via reinforcement learning in fog radio access networks,”
in IEEE Vehicular Technology Conf. (VTC-Spring), 2019, pp. 1–6.

[20] M. Ahmed, S. Traverso, P. Giaccone, E. Leonardi, and S. Niccolini,
“Analyzing the performance of LRU caches under non-stationary traffic
patterns,” eprint arXiv 1301.4909, 2013.

