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Abstract—We consider Combinatorial Code Designs
(CCD) for ensuring ultra-reliability in the random access
channel. By constructing user-specific repetition patterns
to be utilised over a synchronised uplink frame consisting
of a number of access slots, we guarantee successive
reception up to a given number of simultaneously
active users. Employing advanced receivers capable
of Successive Interference Cancellation (SIC) further
improves reliability. As an example, we consider a system
with access frames of 24 bundled slots, repetition factor
3, and reliability target 99.999%. When compared to
slotted repetition ALOHA, SIC provides a 30% gain in
the tolerated user activity; CCD a 30% gain; whereas
CCD combined with SIC provides a gain of more than
700%. These gains come at the cost of a strict limit on
the supported user population. In the given example, the
system can support a total of 2024 users.

I. INTRODUCTION

Massive Machine-Type Communication (mMTC) and
Ultra-reliable Machine-Type Communication (uMTC)
are two of the major application domains forecast
for the fifth generation (5G) of mobile networks [1].
These are among the key facilitators of the Internet
of Things (IoT). Emerging and future IoT applications
in automotive, power distribution and industrial
automation, as well as the tactile internet, will place
ever stricter demands on the wireless networks that
enable them [2]. Contemporary wireless systems are
unable to accommodate the many billions of low-power,
sporadically transmitting devices that will characterise
the IoT, nor are they optimised for the stringent
Quality of Service (QoS) requirement that constitutes
ultra-reliability [3]. In order to support such a diverse set
of use cases and offer sub-ms end-to-end latencies, and
”five nines” of reliability, an entirely new and highly
versatile radio access technology (RAT) is required.
Central to this is the challenge of providing reliable
multiple-access to large numbers of uncoordinated and
infrequently active devices.

In this paper, we explore two approaches for achieving
ultra-reliability on the random access channel (RACH):
Combinatorial Code Designs (CCD) amounting to
repetition patterns of access attempts, and Successive
Interference Cancellation (SIC) at the receiving base
station (BS). In the case where the receiver cannot

perform SIC, typical random approaches amount to
different versions of ALOHA [4], [5]. The code design
problem assuming that patterns can be preallocated
to users has been discussed in [6], where the
authors employed combinatorial designs. The zero error
approach has been considered in classical coding theory
and combinatorics literature [7] under the name of
superimposed codes. The closest works that consider
IC include [8], [9] and [10], wherein slotted ALOHA
transmissions are considered at the MAC layer with SIC.
During a frame, a random subset of users tries to send
one packet each by transmitting a random number of
copies inside of the frame. The authors in [9], [10]
achieve very high throughput with limited packet loss.
However, this approach seem to be most effective in the
case when the number of slots is in the hundreds or
thousands, instead of tens.

Here we consider a deterministic version of [9], [10],
where instead of random patterns we use relatively
short patterns that are designed to avoid or recover
from collisions. To the best of our knowledge the
question of almost zero error probability under the
assumption of interference cancellation has not been
considered before. In a combinatorial language, the
required codes have appeared as building blocks for
collision resolution protocols with feedback, and are
called (≤M, 1, n)-locally thin codes [11].

The unavoidable cost of ultra-reliability is that the
number of supported and active users will not be very
large when compared to random methods. A further
downside is the necessity that the predetermined patterns
need to be distributed to every possible user. The upside
is that our approach ultra-reliable random access works
already for very small frame sizes, and we can guarantee
100% certainty when the number of active users stays
below the predetermined threshold.

II. SYSTEM MODEL

A. Random Access Framework

This paper takes the following perspective on the
of question ultra-reliable random access. We consider
a multi-user communication system accommodating N
users, where each randomly accessing user wishes to
transmit one packet of information to a central receiver.978-1-5386-3531-5/17/$31.00 c© 2017 IEEE



No feedback is allowed. We assume that the users
are synchronised with the BS, so that a rough timing
advance is known, making it possible to have slot and
frame synchrony between the users. Communication
happens during frames consisting of some n time slots,
and transmitting one access packet takes exactly one
of the time slots. Upon generating a packet, a user
attempts to transmit it during the next synchronised
frame interval, along with k < n repetitions. The user
will independently, i.e. without knowledge of the other
users, decide on how many repetitions and onto which
time slots the replicas will be placed. During the duration
of a single frame we assume that a random subset of N
users is transmitting, and that the size of this subset is
upper bounded by M .

We consider two different scenarios. In the first,
the receiver simply reads each time slot in the frame.
If two packets collide in a slot, then all the data is
considered lost. If there is no collision, we consider
the transmission successful. Ideally, we would like
to guarantee that the transmissions of at most M
active users are successful. This condition immediately
prohibits us from considering typical random access
approaches, where the user chooses the positions (inside
the frame) of the packet replicas in a random manner.
Instead, each of the system’s N users will require a
unique, predetermined ”pattern”, according to which the
k replicas will be distributed on the n time slots.

The main question of this paper can be summarised
as follows. Given the number of slots in a frame n, and
an upper bound on the number of active users M , what
is the maximum number of possible users N we can
support such that we guarantee reception with 100%
certainty? The obvious lower bound is given by time
division. However, we will show that when M << n,
we can have considerably more possible users than n
and have inference free reception.

The second scenario considers this same question as
the first, but under the assumption that the receiver
can perform perfect interference cancellation. Given that
each transmitted packet contains pointers to the time
slots occupied by its copies, and given M and n, how
many patterns exist (how many users can be supported)
such that a 100% success rate is maintained? Successive
IC algorithms allow us to expand the set of patterns
obtainable in the interference-free case.

Our take on the topic of ultra-reliable random access
assumes a hard limit on the number of active users.
However, as seen in Section V, using hard limits for
small numbers of active users can lead to effective codes
even in the scenario when the number of active users is
random, as long as the user activity is sufficiently low.

B. Basic Notation

Throughout this paper we consider three different
perspectives on code design for the RACH. Let us now

explain this trichotomy. If we have n available slots for
communication, we may number these slots by index
forming a set of elements S = {1, 2, 3, . . . , n}. When
a single user is sending a packet x, they place replicas
of this packet on some k slots. This is equivalent to
selecting a subset of S. For example, when k = 2 and
the user is sending replicas on the first and seventh
slot, we would have the subset {1, 7}. We represent
the pattern by which a user spreads the packets replicas
over a frame as a binary vector, where zeroes represent
slots that do not have replica. For example, the subset
{1, 7} corresponds to the vector (10000010 . . . 0). We
will freely move between these different representations
when presenting activity patterns for different users.

Let us now consider the trivial example where we have
a frame of n = 7 slots and N potential users (ordered).
The second user is allocated pattern (1110000), the
third user pattern (1000011), and the seventh user
pattern (0010110). When the second, third and seventh
users transmit simultaneously, the receiver sees (x2 +
x3, x2, x2 + x7, 0, x7, x3 + x7, x3), where xi refers to
packets from the ith user. In binary, we have a packet
collision when the involved vectors have one or more 1’s
in the same slot, while in set theoretic language there is
a collision in the kth slot if at least two of the involved
sets include k.

III. INTERFERENCE-FREE RECEPTION

We begin with the scenario where the receiver cannot
perform interference cancellation and thus the system
cannot recover from packet collisions. This means that,
given M active users, the receiver must obtain at least
one copy of each packet from each of the users free of
interference from other users. We will see that this leads
us to consider classical concepts in superimposed codes
[7]. In this section we will shortly present some known
results from this theory, and discuss the limitations. For
further results we refer the reader to [7] and all papers
referring to it.

The condition for interference free reception
immediately suggests to us the following code design
criterion. Let us suppose that we have N users, each in
possession of a unique pattern of length n, and let us
denote by W the n × N matrix consisting of all the
patterns of the N users.

Definition 1 [7]. The set of patterns W is a
M -superimposed code if any n×M matrix formed from
columns of W has a submatrix consisting of a M ×M
permutation matrix.

In some cases this definition is suitable for our
needs. However, in others it is more beneficial to see
the problem from a set theoretical point of view. For
example, when there are 3 active users, the set theoretic
condition for interference free communication is that



each of the sets include an element that is not included
in the other sets.

Let us now suppose we have a set S = {1, 2 . . . , n}.
We are interested in collections of B distinct subsets of
S with the following property.

Definition 2 [12]. A collection of sets B is M -covering
free if it satisfies the following condition. Given any
subset X ∈ B, there does not exist sets Y1, .., YM−1 ∈
B/X such that X ⊆ Y1 ∪ Y2 ∪ .... ∪ YM−1.

When M = 2, this definition is the classical
definition of the Sperner-system. We have thus translated
the interference free random access problem onto the
language of combinatorics. Given now a target activity,
we would like to find the largest possible collection of
sets B such that they are M covering free. While there
exists a rich literature on superimposed codes, explicit
constructions are lacking. In the following we describe
some of the known results.

1) Two Simultaneously Active Users: In this case, the
problem of optimal code design for interference free
random access can be solved completely. This is based
on a simple observation that if B is a collection of k
element subsets of an n element set S, then B is already
2-covering free. The surprising results by Sperner is that
simply taking all the subsets of size bn/2c gives us the
optimal solution

(
n
bn/2c

)
of subsets. This result proves

that if we are satisfied with the condition that a maximum
of two users may be active at the same time, the number
of supported users grows dramatically as n increases.
For example, for n = 8 we may have 70 potential users
and with n = 20 we can have as many as 184756.

2) Examples for M = 3: We provide a short overview
of the properties of some of the best known codes. In
the case where M = 3, with frame size n = 13, we
may obtain a code supporting a total of 26 users. With
framesize n = 21, 70 users. For n = 26, we can obtain
260 patterns.

IV. CODES FOR INTERFERENCE CANCELLATION

A major drawback of superimposed codes is that
if we want to have guaranteed reception for more
than two simultaneous users, the set of supported users
starts to become severely limited. However, as we will
see, the situation is much less dire if we assume
that the receiver can perform successive interference
cancellation. Previously, the receiver attempted to decode
all slots in a frame, and could correctly receive an access
packet if and only if the slot was occupied by a single
user. However, given that a decodable packet includes
pointers to all of its replica in a frame, the receiver
can freely erase these copies and nullify their impact
on any remaining users. The decoding process continues
recursively until there are no users left, or there are no
interference free packets in frame. This latter case would

constitute a unrecoverable collision and a failure on the
RACH.

Let us now assume that we have n available access
slots inside a frame, some activity factor M , and wish
to guarantee SIC reception of all active users. In set
theoretic language, we have the set S = {1, . . . , n}.
The recursive nature of the interference cancellation
algorithm suggest the following definition.

Definition 3. We say that a collection B of subsets of
S are interference cancelling with activity factor M if
they satisfy the following. Given any collection of subsets
A1, . . . , As, s ≤M from B then at least one Ai contains
at least one element that is not contained in any other
Ak.

In the binary vector language, we have the following.

Lemma 1. Let us suppose we have a random access
code C with N length n binary patterns (vectors) and
let us denote with A the n × N -binary matrix formed
of these vectors. If then each sub matrix Y formed of
M or less columns has the property that at least one
of the rows have weight one then C guarantees correct
decoding as long as there is at most M active users.

This binary vector presentation now reveals that this
set of vectors form a (≤M, 1, n)-locally thin code [11].
Compared to Definition 1, we see that the assumption
of IC-decoding does significantly relax the code design.
Instead of having M rows with 1 (and on different
columns), it is enough to have one on at least one row.

A. Examples for Different Activity Factors

While the (≤M, 1, n)-locally thin codes are a known
construction, they have not been under heavy study as
there seems to be no known small (or large) explicit
optimal constructions in the literature.

1) Activity M = 2: When the number of active users
in limited to two, the condition for decodability is simply
that the subsets must satisfy that each pair are different.
We deduce from this that for M = 2, we can support up
to 2n − 1 users.

2) Activity M = 3 and Greater: Again, the problem
becomes increasingly difficult as M grows. Relying on
exhaustive computer search, we have obtained an optimal
code of 11 patterns that guarantee SIC decodability
for M = 3 active users in uplink frames of size
n = 5. A result based on a random proof shows
that, asymptotically, it is enough to use O(M logN/M)
time slots n to guarantee that at most M users are
decodable [13].

V. FAILURE PROBABILITY ANALYSIS FOR
FRAMESIZE 24

In this section we establish approximate expressions
for the failure probability in the RACH by assessing
the more rudimentary contention cases, and evaluate



them by simulation. To obtain a concrete example, we
assume that we have frames of n = 24 access slots. The
motivation for this is that in the narrowest LTE version
there are 6 physical resource blocks in the frequency
domain, and, dividing a LTE sub-frame into 4 parts, one
can convey a small amount of data in a sub-frame. To
make analysis possible, we consider a limited cardinality
code set. Each user possesses a single repetition pattern
of weight k = 3 from a random or deterministic code,
according to which they spread their access packets
over a frame, allowing the system to support a finite
population of N =

(
24
3

)
users with distinct patterns.

For this performance analysis we continue to consider
a synchronous system. Users that have a packet to
transmit in the same frame may have patterns that collide
in some of the slots. We note that with CCD, there
are no collisions between two users that would not
be recoverable. We provide an analytical lower bound
by considering situations where there are up to three
colliding users, and show by simulation that, for very
low activity, this is sufficient to approximate the expected
failure performance and motivate deterministic codes
with SIC decoding for ultra-reliability on the RACH.

A. Three-way User Collisions

We assume three of N users each transmit k times in
a given frame according to their allotted or generated
patterns. To find the failure probability for a given
user, i.e. the probability that none of the user’s k
repeated access packets can be successfully decoded,
it is sufficient to compute the probability that all k
slots in their pattern are occupied by the other two
contesting users. In the case where the receiver is capable
of performing SIC, failures occur when (at any point in
the algorithm) no users have an interference-free slot.

In order to analyse the failure probability, we take
the following approach. We note that, without loss of
generality and for arbitrary n, in order for two users
to collide they must occupy a span S2 of at most five
access slots. In this isolated case, the repetition coding
guarantees decodability of both users. In order for failure
to occur, the third user must then occupy S2 or expand
the span to at most 6 slots. In the latter case, the packet
residing outside of S2 serves to guarantee decodability
of User 3, while the remaining two packets cause failure
with some probability. We have thus divvied up the
probability space into the various collision scenarios that
result in failure.The probability of failure occurring for
S2 = 5 is given by

P3u,5s =
3 ·
(
n−2
2

)(
n
3

)
− λ/2

·
3∑
i=2

(
n−5
3−i
)(

5
i

)
− λδK,3(

n
3

)
− λ

· Pi, (1)

where λ depends on the user codes: λ = 0 for randomly
generated patterns, and λ = 2 for uniquely assigned
patterns, and where P2 = 1/15 and P3 = 1/2 for

λ = 2 and P3 = 8/15 for λ = 0. We continue with
the case that the first two users span only 4 access slots
in a frame with a certain probability. Once again, when
isolated, decodability of these two users is guaranteed.
A third user must then occupy S2, or expand the total
span to 5 or 6 slots for there to be the possibility of
failure occurring. The probability of failure occurring
when S2 = 4 is given by

P3u,4s =

(
3
2

)(
n−3
1

)(
n
3

)
− λ/2

·
3∑
i=1

(
n−4
3−i
)(

4
i

)
− λδK,3(

n
3

)
− λ

· Pi, (2)

where P1 = 1/6, P2 = 1/3, and P3 = 1 for λ = 2 and
P3 = 5/6 for λ = 0.

It is clear that when S2 = 3, failure may only occur
when the patterns are randomly generated, as all users
must collide on all slots in the span. Outage probability
in this instance is simply

P2u,3s =

(
n

3

)−2
. (3)

Finally, the total probability of failure in the case of
three-way collisions with random patterns is

P3u,rnd = P3u,5s + P3u,4s + P2u,3s, (4)

and for unique patterns P3u,ccd is the sum of only first
two terms in (4).

B. Three-way Failure with Interference Cancellation

A sufficient condition for the progression of the SIC
algorithm is that at each stage there is a contesting user
who occupies an access slot free of interference. This
user may then be identified, their unmolested packet
decoded, and their entire presence in the frame removed.
As such, in the case of k = 3 and three-way collisions,
the only scenario in which IC fails to recover all user
data is when all users occupy a space of four access slots.
User 3 expanding beyond S2 = 4 guarantees that at least
one packet is free of interference. Therefore, the total
probability of failure with IC in the case of three-way
collisions with random patterns reduces to the sum of
the first term in (2) and (3), while with unique patterns
it is simply the first term in (2).

C. Evaluation With Simulation

To complete our analysis, we further assume that
each user generates access packets according to a
Poisson process with intensity µ. The complete failure
probability under Poisson arrivals with random patterns
may therefore be lower bounded as

Prnd(µ) ≥
e−µµ2

2
·
(
n

3

)−1
+
e−µµ3

6
· P3u,rnd, (5)

for random patterns, and corresponding expressions for
random patterns with IC, CCD and CCD with IC, can
be similarly derived. Figure 1 illustrates the analytically
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Fig. 1. Analytical lower bound (solid) and simulated (dotted)
performance for random and combinatorial codes for random access
in frames of 24 slots.

approximated and simulated failure probabilities for
arrivals following a Poisson process as a function of
the total access intensity of all users, for random and
combinatorial user patterns with and without IC, for
k = 3 repetitions, and frames of size n = 24. The
simulated failure probabilities represent those for up
to 10-way collisions inside a single frame. Evidently,
consideration of only three-way collisions in the analysis
leads to a deviation from the simulation that grows as
the probability of higher order collisions increases. As
expected, we observe that the use of deterministic codes
reduces the failure probability significantly compared to
random selection, with gains diminishing as the load
on the RACH increases. This confirms that two-way
user collisions dominate at lower access intensities,
which cannot result in failures for uniquely allocated
codes. By design, the deterministic codes may never
have two fully overlapping user patterns, which reduces
the probability of the IC algorithm becoming stuck
during an iteration. With increasing access intensity,
the less probable multi-way collisions start to dominate
performance. This can be attributed to the birthday
paradox: when the patterns are random, there is an
quadratically growing number of user pairs that may
happen to have the same pattern, thus preventing SIC
from resolving the collisions.

Given that we pursue ultra-reliability on the RACH,
and can there tolerate a maximum failure probability of
10−5, combining IC with combinatorial codes clearly
allows the system to support substantially higher loads.
When compared to slotted repetition ALOHA, SIC
alone provides a 30% gain in the tolerated user
activity, whereas employing CCD provides a 30% gain
without SIC decoding, and more than 700% gain with
interference cancellation.

VI. CONCLUSION

In this work we suggested that, in order to support
ultra-reliable communication in the random access
channel with synchronised frames of small size, one
should preassign user-specific repetition patterns for the
intended users, such that no two patterns are the same.
This guarantees that users active in a frame can always
be received. The reliability may be further improved
when these patterns are chosen such that decodability
of access packets is guaranteed when a limited number
of users 2 < M < N are active in a frame. We studied
this approach in the case when the frame size is 24 slots,
and found that it is particularly effective when combined
with successive interference cancellation decoding.
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