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Abstract—We study medium access control layer random
access under the assumption that the receiver can perform
successive interference cancellation, without feedback. During
recent years, a number of protocols with impressive error
performance have been suggested for this channel model.
However, the random nature of these protocols causes an error
floor which limits their usability when targeting ultra-reliable
communications. In very recent works by Paolini et al. and Boyd
et. al., it was shown that if each user employs predetermined
combinatorial access patterns, this error floor disappears. In this
paper, we develop code design criteria for deterministic random
access protocols in the ultra-reliability region, and build codes
based on these principles. The suggested design methods are
supported by simulations.

I. INTRODUCTION

We consider contention-based multiple access in a situation
where ultra-reliable low latency communication (URLLC) is
required. Contention between accessing users makes achieving
ultra-reliability particularly challenging. Guaranteeing
grant-free access for uncoordinated machine-type users with
near certainty necessitates the reconsideration of classical
methods from the position of optimising for errors rather than
throughput. This entails the design of new coding schemes,
exploration of the trade-offs involved, and the acceptance of
strict limitations.

Modern variations on classical random access protocols
have been recently introduced, including contention resolution
diversity slotted ALOHA (CRDSA) [1] and irregular repetition
slotted ALOHA (IRSA) [2]. As in classical diversity slotted
ALOHA (DSA) [3], [4], these medium access control (MAC)
layer techniques consider synchronous communication on the
random access channel (RACH) organised into frames of
sequential time slots, with users transmitting their access
packets along with a number of repetitions inside a frame. The
protocols exploit successive interference cancellation (SIC)
with repetition coding diversity to improve RACH throughput.

In these protocols, the positions and/or the number of access
packet replicas in a frame are selected at random, effectively
allowing them to support an infinitely large user population
N . However, this randomness guarantees an irreducible error
floor caused by a non-zero probability of collisions, which
jeopardises ultra-reliability. In [5], [6] it was shown that a
deterministic, fixed-weight code can yield repetition patterns
that reduce this error floor significantly, while maintaining

a reasonably large population. It was suggested that these
codes be designed such that, as long as the number of
simultaneously active users is below a given threshold M <<
N , decoding will always succeed. We denote this property as
M -interference cancelling or M -IC. In [5], this criterion was
found through a link between LDPC parity-check matrices and
random access code design, originally presented in [2], while
in [6] it was discovered through combinatorial reasoning.

In this paper, we design deterministic random access codes
for the ultra-reliability region, targeting a packet loss rate
less than 10−5. We begin by considering simple deterministic
variations on CRDSA (D-CRDSA), where the number of
repetitions is fixed, and compare them to their original random
versions. Such deterministic codes are always 2-IC, and were
considered in [6] with repetition factor 3. Here, we show that
larger code weights might maximise the user population N
and minimise the packet loss rate.

More complex coding strategies are then considered, that
can guarantee M -IC for M > 2. We first show how the
classical LDPC design principles used in [5], avoiding small
loops in the graph corresponding to the parity check matrix,
leads to RACH codes that can only support small user
populations. This result underlines that, while LDPC and
RACH code design problems are to some extent equivalent [2],
the rate, block length and error probability regions of interest
make some of the classical LDPC criteria less effective, or
even counter-productive.

We then study how the limitations of LDPC based code
design for URLLC can be overcome by using a combinatorial
approach. In [6], we suggested the use of superimposed
codes [7] as RACH codes that guarantee M -IC for M > 2. A
large class of such codes can be build from Steiner systems.
Here, we study Steiner systems as URLLC RACH codes and
discuss how their usage differs from how they are classically
used in LDPC code design. We also point out the limitations
of any approach that is based on superimposed codes.

Finally, we study the trade-off between M and N in the
most simple case where M = 3.

II. SYSTEM MODEL

Consider a population of N machine-type users, who
randomly access the channel resources and transmit an
information packet to a central receiver in an uncoordinated



and grant-free manner. This occurs during synchronized MAC
frames of n << N time slots, each accommodating a
single access packet. Users sporadically generate a packet and
become active, attempting to transmit it during the next frame
interval, along with k < n repetitions arranged according
to a codeword or pattern. It is assumed that these patterns
may be preallocated to the users, and that each access packet
contains pointers to the locations of its replicas. The collection
of access patterns can thus be understood as a code consisting
of N binary vectors of length n, where 1’s correspond to slots
containing a copy of the transmitted packet.

In this paper, we consider a collision channel model, along
with a receiver capable of performing perfect successive
interference cancellation. This involves the receiver observing
an entire frame; decoding any available interference-free
packet; obtaining the location of its replicas; removing that
users contribution to the frame; and iterating this process
as many times as possible. We are interested in M -IC
access codes, which means that any set of at most M
distinct codewords can be successfully recovered by the
interference cancelling receiver. Ideally, these codes would be
designed such that a large population of users may operate
in an uncoordinated fashion with some certainty of limited
interference. As such, we concentrate on the low activity
scenario, where it is probable that the number of active users
during a frame is ≤M . We analyse the decoding performance
of the SIC receiver under Poisson arrivals, where the expected
number of users active in a slot is given by the access intensity
λ. The codes are compared with respect to the packet error
rate, i.e. the fraction of the total number of transmitted packets
that could not be decoded.

III. CRDSA VS D-CRDSA: THE IMPACT OF PATTERN
WEIGHTS

CRDSA is a RACH scheme wherein each active user
randomly places some fixed number of repetitions of their
access packet into the frame. A surprising result, observed for
example in [8], is that such a simple strategy can sometimes
outperform more complicated irregular coding schemes in
the ultra-reliability region. However, such schemes still suffer
from an error floor. The limiting factor in the performance
of such codes in the ultra-reliability region is a result of
the birthday paradox, i.e. a higher than intuitively expected
probability that at least two active users simultaneously
generate the same pattern [6].

In [6], we suggested a simple way of avoiding this error
floor by using deterministic codes (D-CRDSA), where each
user is uniquely allocated a weight k access pattern. Such
codes always satisfies the 2-IC condition and can support at
maximum of

(
n
k

)
users. From this perspective, CRDSA can

be viewed as a method where the active users are randomly
choosing their access patterns from the selection of n choose k
patterns, with the possibility that two or more users choose the
same pattern. In the paper, the error performance of D-CRDSA
and CRDSA with repetition factor k = 3 was compared, and
the superior performance of the deterministic approach was
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Fig. 1. Simulated performance of D-CRDSA (solid) and CRDSA (dashed) in
frames of 24 timeslots, under Poisson arrivals, for various uniform weights.

confirmed. However, there is no reason why k = 3 should
be the optimal number of repetitions. Additionally, it is not
obvious if the gains observed in [6] would remain considerable
when the number of repetitions in D-CRDSA and CRDSA
is optimised. Intuitively, if the weight of the patterns k is
increased, then

(
n
k

)
will also increase, and the effects of the

birthday paradox can be expected to diminish along with the
gains for D-CRDSA.

Figure 1 compares the packet decoding failure probabilities
of deterministic and random codes of different weights,
in access frame of 24 timeslots. It can be observed that
D-CRDSA outperforms the corresponding random codes
in the ultra-reliability region, as expected. Also of note
is that increasing the number of repetitions in D-CRDSA
to 5 improves the packet error rate, but beyond that the
performance deteriorates. On the other hand, the error
performance of CRDSA continues to improve with increasing
repetition factor. This can be contributed to the fact that,
when k = 6 and

(
24
6

)
= 134596, the effect of birthday

paradox begins to fade. However, as the error performance
of D-CRDSA is always better or equivalent to that of the
corresponding CRDSA [6], we can not improve beyond
the performance of D-CRDSA with 7 repetitions in the
ultra-reliability region.

Both the error probability region and the frame size affect
the optimal number of repetitions for D-CRDSA. As far as we
know, there does not yet exist a proper theory for predicting
this number. Finally, we note that when using D-CRDSA,
in selecting the optimal number of repetitions from an error
probability point of view, we also implicitly decide the number
of supportable users. In the above example, the optimal 5
repetitions can support

(
24
5

)
= 42504 users.

IV. CODE DESIGN FOR URLLC RACH

In [6], the most simple deterministic and uniform weight
codes were discussed. Here, we consider more developed



code designs and compare LDPC based and combinatorial
approaches to the problem. Earlier, we saw how the weight
of the patterns impacted the performance of RACH codes.
However, the crucial difference between D-CRDSA and
CRDSA is not related to the weight, but the fact that
D-CRDSA codes always satisfy the 2-IC condition. As
suggested in [5], [6], an obvious next step is to find codes
that guarantee M -IC for M > 2.

In [6], we provided the following sufficient and necessary
condition for a RACH code to be M -IC.

Definition 1 ([6]). Let us suppose we have a random access
code C with N length n binary patterns (vectors), and let us
denote by A the n×N -binary matrix formed by these vectors.
Then, if each sub matrix Y formed of M or less columns of
A has the property that at least one of its rows has weight
one, then C guarantees correct decoding as long as there is
at most M active users.

Remark 1. This type of combinatorial structure has appeared
in the literature elsewhere. In [9], these codes are called (≤
M, 1, n)-locally thin codes. As we will see, this definition can
also be used to describe the stopping sets of a LDPC code. We
note also related research concerning non-adaptive collision
resolution algorithms [10].

A. RACH codes from classical uniform weight LDPC designs

It is known that the design of good random access codes
and parity-check matrices for LDPC codes are equivalent
problems [5]. Matrix A in Lemma 1 can be viewed as a
parity-check matrix of a LDPC code in a binary erasure
channel, and the performance of the LDPC code under iterative
decoding is equivalent to that of the corresponding RACH
code with a SIC receiver [2]. In LDPC literature it is typical
to present matrix A as a bi-partiate graph. Using this language,
classical LDPC code design suggests that a good code should
not have small stopping sets. This condition was also used for
RACH code design in [5]. In the language of Definition 1,
if a set of columns of matrix A does not satisfy the condition
given, these vectors form a stopping set. The M -IC condition
is met when the smallest stopping set is of size M + 1.

A universal design criterion used to build LDPC codes
that limit small stopping sets is to construct parity-check
matrices that avoid small loops in the corresponding bi-partiate
graph [11]. This criterion is based on a result in [12] where it
was proven that if the graph does not have small loops, then
neither can it have small stopping sets. It was shown that if the
parity-check matrix of an LDPC code has weight k columns,
and the corresponding graph is 4-loop free, then the smallest
stopping set has at least k + 1 elements. For our purposes,
this translates to the corresponding RACH code being at least
k-IC. However, as the following result shows, the approach of
eliminating small loops places strict limitations on the number
of possible users for small frames.

Consider access frames of size n and a constant weight
(k > 1) random access code supporting N users, whose
corresponding graph does not contain 4-loops. From [12, Prop.

2.1] we have that N <
(
n
2

)
, which implies that eliminating all

loops of size 4 or smaller significantly reduces the number
of possible users. For example, when n = 24 the maximum
supportable user population is only 276. In order to support
large numbers of users, a different method of guaranteeing the
M -IC condition for M > 2 is required.

The reason for this partial failure of classical LDPC code
design methods in small frames is related to the unusual
rate region. Consider the matrix A in Definition 1. The
corresponding LDPC code would have rate at least N−n

N . For
example, if the frame size is n = 24 and weight k = 5
D-CRDSA is used, the corresponding LDPC code would have
rate at least 0.99943... This rate region is atypical for error
correcting codes. For comparison, in [5] the case of n = 200
and N = 2000 was considered, leading to a rate region which
is still reasonable for classical LDPC methods.

B. RACH codes from superimposed codes

Consider the n × N matrix whose columns are weight k
binary codewords of length n. The no 4-loops condition can be
seen to be equivalent to the condition that any pair of columns
(or rows) of the matrix share a 1 on at most one position. This
last condition is called the row-column (RC) condition [13]
and, as mentioned previously, it guarantees that the code is
k-IC.

In [6], it was suggested that more general superimposed
codes that guarantee M -IC could be employed as RACH
codes. Using the notation of Definition 1, we have

Definition 2 ([7]). The set of patterns A is a M -superimposed
code if any n ×M matrix formed from columns of A has a
submatrix consisting of an M ×M permutation matrix.

Let us now present some known constructions of
superimposed codes and assess their performance as RACH
codes. In order to do this, we first move to set theoretical
notation. Consider a random access code C of frame-size n.
By forming an index set S = {1, . . . , n} the code C can be
seen as a collection of (different) subsets Aj of S, where a
subset corresponding a binary vector consist of all the elements
of S, where the vector has 1. We will denote the corresponding
collection of such subsets by A. In this notation, superimposed
codes can be defined in a set theoretic language.

Definition 3 ([14]). A collection of sets A is M -covering free
if it satisfies the following condition. Given any subset X ∈ A,
there does not exist sets Y1, .., YM−1 ∈ A/X such that

X ⊆ Y1 ∪ Y2 ∪ .... ∪ YM−1,

Where Yi ∈ A.

We now provide a few examples of known superimposed
code constructions and contrast them to codes satisfying the
RC-condition.

Proposition 1 ([14]). Let us suppose we have a collection A
of subsets Ai, each having at least k elements and satisfying

|Ai ∩Aj | ≤ v,



when i 6= j. Then we have that the RACH code corresponding
to A is dkv e-superimposed.

When translated into the language of binary vectors, for
v = 1 we recover the RC-condition. For larger v, this condition
guarantees that given two codewords, they can have 1’s on
at most v common positions. When the weight k of the
codewords is large enough, this condition is sufficient for
guaranteeing the dkv e-IC property. However, we note that while
this condition does guarantee that the corresponding graph
does not have small stopping sets, it will typically have 4-loops
when v > 1. This simple result enables the use of known
combinatorial constructions in code design for the RACH.

Definition 4. A Steiner system with parameters t, k, n, written
S(t, k, n), is an n-element set S together with a set of
k-element subsets of S (called blocks) with the property that
each t-element subset of S is contained in exactly one block.

Consider a Steiner system S(t, k, n) with blocks Ai and Aj .
We have that |Ai∩Aj | ≤ t−1, as otherwise Ai and Aj would
have at least t elements in common. Together with Proposition
1, this suggests the following.

Corollary 1 ([14]). Steiner system S(t, k, n) is
d k
t−1e-superimposed.

Note that 2-designs (with t = 2) have been used in
LDPC code design, as they guarantee avoiding 4-loops in
the corresponding graph. Designs with t > 3 have also been
used, but they have been modified to also meet the no 4-loops
condition.

The user population N supported by 2-designs is rather
limited. For example, Steiner systems S(2, 3, 27) and
S(2, 3, 67) produces 3-IC codes that support only N = 117
and N = 737 users, respectively [15]. However, the more
flexible code design principles we have presented here allow
for the consideration of other systems of significantly larger
size. For example, there exists a Steiner system S(3, 5, 26)
with 260 elements and Steiner system S(3, 5, 65) with 4368
elements. According to Corollary 1, these code are still 3-IC,
despite the fact that the corresponding graphs have very large
number of 4-loops. Figure 2 illustrates how a 3-IC random
access code based on Steiner system S(3, 5, 26) significantly
outperforms D-CRDSA code of all weight 5 codewords and
the corresponding CRDSA code in terms of the error rate in
the ultra-reliability region. While N is limited to only 260
users, it remains a reasonable user population for such small
frames (26 timeslots).

However, already for M = 3 it becomes difficult to find
large superimposed codes. For example, for frames of size
n = 26, the Steiner system with 260 codewords is the largest
we are aware of. A general asymptotic result [16] is that in
order to always correctly decode M out of N possible users,
the frames must be of size

n = Ω

(
M2 log(N)

log(M)

)
. (1)
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Fig. 2. Simulated performance of the Steiner (3,5,26) system as a 3-IC random
access code (solid) compared with the equivalent length 2-IC (dashed) and
random (dot dashed) codes in frames of 26 timeslots, under Poisson arrivals.

This shows that at most
√
n of N users may be active when

the frame size is n. While the cost of additional active users is
only in a logarithmic class, having even a modest number of
active users forces the use of very large frames. This obviously
restricts the usability of superimposed codes in the case of
small frames.

We conclude by stating a general code design criterion for
uniform weight RACH codes. While we discussed Steiner
systems and D-CRDSA codes from the M -IC perspective,
they also have other properties that make them beneficial as
random access codes. These properties may be generalised
into the following design principles for URLLC RACH codes.
Consider once more the n×N matrix whose columns are the
codewords of code C. We require that

1. Each column has weight k.
2. Each row has weight γ.
3. Given two columns, they have 1 in at most v common

positions.
This set of conditions is clearly a relaxation of the classical
LDPC code design principle, where v = 1 in the third
condition.

Remark 2. Access patterns based on Steiner system (3, 5, 26)
were already used in [17] by a subset of the authors of this
paper, but without theoretical background. The simulations
there were performed in a factory environment assuming
fading channel conditions and 4 access points.

V. LOWER BOUND ON THE SUPPORTABLE USER
POPULATION FOR 3-IC RACH CODES

The aforementioned RACH codes which satisfied the 3-IC
condition could only support relatively small user populations.
Here, we consider the problem of finding 3-IC RACH codes in
size n frames that support the maximum number of users N .
Let N(n) denote the size of such a code. For example, N(3) =



4, because we can choose the patterns {100, 010, 001, 111}
and it is not possible to construct a code with more patterns.

This can be seen as a combinatorial optimization problem
where the maximum-size set of patterns of length n that does
not contain any forbidden triplet, i.e., a subset of three patterns
where no position has weight one, is sought. For example,
{010, 100, 110} is a forbidden triplet. Since the problem of
finding a maximum-size subset with no forbidden subsets is
equivalent to the NP-hard maximum set cover problem, an
efficient algorithm is unlikely to exist and we restrict ourselves
to 3-IC codes instead of general M -IC codes.

TABLE I
BOUNDS FOR 3-IC RACH CODES.

n 1 2 3 4 5 6 7 8 9 10

N(n) 1 2 4 7 11 18 28 ≥ 44 ≥ 67 ≥ 102

Table I includes bounds for N(n) for n = 1, 2, . . . , 10.
The values for n ≤ 7 are exact, but only lower bounds are
known for larger values of n. While the values for n ≤ 6
can be determined using a simple backtracking algorithm, the
problem becomes much more difficult for larger values of n.
To discover the codes for n = 7 and n = 8, we used a search
algorithm that prunes the search tree by exploiting symmetries
in codes. More precisely, we only considered codes where the
set of patterns with weight one and two is lexicographically
minimal when it is allowed to permute rows and columns.

We noticed that maximum-size codes for n ≤ 7 can also be
generated using the following construction: To create a code
for size n + 3 frame, take a code with n slots and for each
pattern x in that code, add patterns 100x, 010x and 001x
to the new code. In addition, add patterns 100z, 010z and
001z where z is a zero pattern of length n. Finally, add an
additional set of patterns of the form 111a where a is a pattern
of length n. There are many ways to choose the last set of
patterns; we can always at least include the pattern where a
is a zero pattern. This construction is an extended version
of the Busschbach construction [18] (described in [19]) that
only adds patterns 100x, 010x and 001x to the code. Our
construction yields bounds N(8) ≥ 43, N(9) ≥ 67 and
N(10) ≥ 102. However, for n = 8, we found a larger code
with 44 patterns using our search algorithm.

Given a code for size n frame and N users, our construction
creates a code for size n+3 frame and 3(N+1)+t users where
t is the number of patterns in the last set. Since t is always at
least one, the construction shows that N(n+ 3) ≥ 3(N(n) +
1)+1. This is a small improvement over the earlier Busschbach
construction which shows that N(n+3) ≥ 3N(n). In practice,
t can be larger than one. For example, to create the codes with
sizes 67 and 102, we could add 10 and 15 additional patterns,
respectively. However, we do not know how to determine the
maximum value of t.

As far as we know, at least for small frame sizes these codes
are the largest known. However, the suggested codes are not
always good RACH codes as the weight distributions of the
codes are strongly fluctuating. A natural next step would be

to modify (or prune) these codes so that the weights of the
corresponding codewords would be roughly equal.
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