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Abstract—Multipoint channel charting is a machine learning
framework in which multiple massive MIMO (mMIMO) base-
stations (BSs) collaboratively learn a multi-cell radio map that
characterizes the network environment and the users’ spatial
locations. The method utilizes large amounts of high-dimensional
channel state information (CSI) that is passively collected from
spatiotemporal samples by multiple distributed BSs. At each
BS, a high-resolution multi-path channel parameter estimation
algorithm extracts features hidden in the acquired CSI. Each
BS then constructs a local dissimilarity matrix based on the
extracted features for its collected samples and feeds it to a
centralized entity which performs feature fusion and manifold
learning to construct a multi-cell channel chart. The objective is
to chart the radio geometry of a cellular system in such a way that
the spatial distance between two users closely approximates their
CSI feature distance. We demonstrate that (i) multipoint channel
charting is capable of unravelling the topology of a Manhattan-
grid system and (ii) the neighbor relations between CSI features
from different spatial locations are captured almost perfectly.

I. INTRODUCTION

Massive multiple-input multiple-output (mMIMO) provides
cellular systems with high spectral efficiency [1]. The idea of
mMIMO is to equip the infrastructure base-stations (BSs) with
hundreds of antennas, which simultaneously serve tens of user
equipments (UEs) in the same frequency band. In addition
to increasing spectral efficiency, the high spatial resolution
provided by the large-scale antenna array used at the mMIMO
BSs can be exploited for a range of sensing applications,
such as UE positioning and tracking [2]–[4], UE orientation
estimation [5], and environment mapping [6], [7].

A. Channel Charting

Channel state information (CSI) acquired at the mMIMO
BSs, especially the slowly changing channel mean and co-
variance matrices, depend continuously on the spatiotemporal
locations of UEs, as well as the effective radio reflectors and
scatters in the physical channel. As a result, the aggregate
spatiotemporal CSI contains useful information about the
network states including the spatial distribution and trajectories
of the UEs, neighborhood relationships among the UEs, and
handover relationships among neighboring cells. The massive
amount of mMIMO CSI, if collected and stored at the BSs, can
potentially be leveraged to learn such network state information,
which in turn can be exploited to automate cellular radio
resource management (RRM) functions.
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To leverage mMIMO CSI for RRM functions, reference [2]
proposed the concept of channel charting, which analyzes
CSI acquired at a single BS with tools from dimensionality
reduction and manifold learning in order to construct a channel
chart of the wireless channel that relates physical UE location
to CSI. The core idea behind channel charting is that UEs
which are close in geographic space would experience similar
CSI (e.g., channel mean and covariance) at a BS.

B. Contributions

Channel charting could be performed by each BS indepen-
dently with the original method discussed in [2]. Different
BSs would produce differing channel charts for the same UE
samples due to different channel realizations and signal-to-noise
ratios (SNRs). However, to support advanced multi-cell RRM
functions, such as handover and multi-connectivity, a single-
point chart is insufficient. Furthermore, single-point channel
charting may be inaccurate for CSI from cell-edge UEs as
their low SNRs may distort the charting results. As a remedy
to these limitations, we propose multipoint channel charting in
which multiple mMIMO BSs collaboratively learn a channel
chart for UEs in the multi-cell network. Based on CSI acquired
at multiple BSs, multipoint channel charting builds a common
multi-cell channel chart which merges the views of all BSs by
applying the concepts of multi-view ML and data fusion. As
we will show, multipoint channel charting is able to produce
trustworthy channel charts by combining all CSI available at
multiple BSs and by exploiting redundancy in multipoint CSI
in order to combat the distortion which occurs in single-point
channel charting results.

II. MULTIPOINT CHANNEL CHARTING FRAMEWORK

UEs move in two related geometries: (i) the conventional
spatial geometry, i.e., the spatial position in the real world,
and (ii) the radio geometry is related to the radio environment
between the transmitter and receiver, i.e., represented by CSI
of the radio link between the UE and BS. Changes of CSI
reflects the location of the UE, and its temporal change in the
spatial geometry. Consider a single-antenna UE k, transmitting
a specific pilot signal sk,t with time stamp t. A mMIMO BS
equipped with M antenna elements receives the pilot the signal
for channel estimation. For simplicity, we consider a uniform
linear array (ULA) at the BS. Then, for a single coherence
bandwidth, the channel vector can be modeled [8] as

h =
∑L
l=1 βlaBS(φl), (1)
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Fig. 1. Multi-point channel charting framework. UE transmitters (Tx) at spatial location {pn}Nn=1 send pilot signals to massive MIMO BS receivers (Rx) over
the wireless channels. First, channel state information (CSI) {Yb

n}Nn=1 are estimated by each BS b ∈ {1, . . . , B}, then useful channel features {fbn}Nn=1 are
extracted from {Yb

n}Nn=1 at each BS. Each BS then constructs a local view Db on the dissimilarities for its observed samples. Then, Db and {fbn}Nn=1 are
reported to a logical centralized unit (CU) that performs data fusion and manifold learning in order to learn the global channel chart in an unsupervised manner.

where L is the number of multi-path components (including the
LoS ray if it exists) which are created by the radio scatters, φl is
the impinging direction-of-arrival (DoA) of the lth propagation
path related to the orientation of the BS array, and βl a
random complex gain for the lth path which depends on
the transmit power, path delays, reflection coefficients of the
contributing scatters, and impacts of radio chain components.
In addition, the vector aBS(φ) represents the BS array steering
vector (ASV) which depends on the geometry of the entire
array and the incident angle φ. For a ULA with the plane-wave
approximation, the ASV is given by

aBS(φ)=
[
1, ej

2π
λ s sin(φ), . . . , ej(M−1)

2π
λ s sin(φ)

]T
, (2)

where M is the number of BS antennas, λ is the carrier
wavelength, and s is the antenna spacing.

Noticing that the DoAs {φl}Ll=1 and the powers of {βl}Ll=1

change much more slowly and smoothly with the UE move-
ments as compared to the coefficients of h, it is worth
considering the raw 2nd moment (covariance) of h [2], which
depends on {φl}Ll=1 and {|βl|2}Ll=1 as

Y = E
[
hhH

]
= E

[∑L
l=1 |βl|2aBS(φl)a

H
BS(φl)

]
= ASAH ∈ CM×M ,

(3)

with A = [aBS(φ1) · · · aBS(φL)] a matrix of the array steering
vectors, and S = diag

(
E[|β1|2], . . . ,E[|βL|2]

)
containing

the powers of all multi-path components. The covariance
matrix can be estimated from time/frequency samples as
Ŷ = 1

T

∑T
t=1 ĥtĥ

H
t , where T is the number of time stamps

one averages over. In wideband channels, the covariance can
be calculated across multiple coherence bandwidths.

The spatiotemporal samples {Yb
n}
N

n=1 are the CSI collected
at the bth BS (b = 1, . . . , B) from N UE locations {pn}Nn=1.
In a static radio environment with omnidirectional antennas
and fixed transmit power, the covariance depends solely on
the UE spatial location. As detailed in [2], a key assumption

enabling channel charting is that there is a (statistical) mapping
from spatial location pn to covariance CSI Yb

n measured at
the bth mMIMO BS:

Hb : Rd → CD; Hb (pn) = Yb
n , (4)

where D =M×M is the dimensionality of the radio geometry
over C. Thus, the CSI Yb

n depends on the specific spatial
location pn. In addition, we assume that this mapping is
continuous, i.e., the CSI related to two nearby spatial locations
is similar. This mapping depends on the distributions and
dielectric properties of the static reflectors, scatterers, and
blockages in the radio network environment. Given the CSI
samples

{
{Yb

n}Nn=1

}B
b=1

collected at B mMIMO BSs from N

unknown random spatial locations {pn}Nn=1, we are interested
in finding a low-dimensional channel chart {zn}Nn=1 with
zn ∈ Rd , such that

‖zn−zm‖2 ≈ α ‖pn−pm‖2, for n,m ∈ {1, 2, . . . , N}, (5)

where α is a common scaling factor.
Figure 1 depicts the overall framework for multi-point

channel charting. The bth mMIMO BS collects CSI samples
from its coverage area and has its own local view on the
distribution of the samples it observes. A feature extraction
function that distills useful information {f bn}Nn=1 from the raw
UE CSI {Yb

n}Nn=1 is applied. These features {f bn}Nn=1 are
then used to compute a local dissimilarity matrix Db. The
dissimilarity matrix Db represents the local view on the CSI
at BS b, related to radio distances between the sampled points.
Note that different BSs will have different views on the samples.
First, different BSs observe different parts of the entire CSI
sample set in the network due to different cellular coverage
areas. Second, different BSs may have different opinions on the
dissimilarity for the same sample pair due to different channel
conditions, e.g., different SNR conditions. One BS may have
more reliable information on the CSI of a specific UE than
another BSs if the channel conditions between this BS and



the UE are better. To construct a global and reliable multi-cell
channel chart, we have to fuse the data produced by different
BSs. In this regard, a global dissimilarity matrix D is then
constructed based on {Db}Bb=1 from the B BSs by a logical
centralized unit (CU) that takes into account a reliability factor.
Finally, dissimilarity-matrix-based manifold learning is used
to generate the multi-cell channel chart.

III. CSI FEATURES AND DISSIMILARITY

To learn a channel chart that reflects the spatial locations of
the CSI samples, we need a feature that is smoothly changing
with the UE location. The DoAs {φl}Ll=1 and powers {|βl|2}Ll=1

of the multi-path components in (1) are such features.
In channel charting, we are interested in the dissimilarities

among large-scale CSI samples rather than the physical position
of a single UE. Differing from conventional positioning tech-
niques, multi-path effects can be exploited in channel charting
as locations close in spatial geometry would have similar multi-
path components. By using an elaborate dissimilarity metric
for these multi-path features, spatial relationships among the
sample locations can be revealed by channel charting.

A. Feature Extraction via MUSIC

The multiple signal classification (MUSIC) algorithm [9]
is widely used for DoA and frequency spectrum estimation.
Here, we use MUSIC for channel feature extraction. The input
of the algorithm is the covariance matrix of the data and it
can be used for arbitrary antenna array geometries, as long as
the relative antenna positions are known. Assuming that the
number of antennas M is larger than the number of multi-path
components L, the array steering vectors for the L paths are
linearly independent, and that the signal h and noise e are
orthogonal, the estimated covariance matrix is

Ŷ = E
[
(h + e) (h + e)

H
]
= Y + σ2

eIM , (6)

where σ2
e is the power of each entry of e. The signal

covariance matrix Y = ASAH has a rank L; it therefore
has L eigenvectors with nonzero eigenvalues in the signal
subspace, and M − L eigenvectors corresponding to the zero
eigenvalue. Let Y = UΛUH be the eigendecomposition of Y,
it can be proved that the estimated covariance matrix has the
eigendecomposition Ŷ = U(Λ + σ2

eIM )UH [9]. Using this
eigendecomposition, we can partition the eigenvector matrix U
into two parts as U = [Us Un], where Us of size M × L
defines the signal subspace, while Un of size M × (M − L)
defines the noise subspace.

The core idea of MUSIC is to find the signal directions
using the so-called pseudo-spectrum

p(φ) =
1

aH
BS(φ)UnUH

n aBS(φ)
=

1

‖UH
n aBS(φ)‖22

. (7)

If φ equals one of the DoAs of the multi-path components,
then the denominator is small. Therefore, the estimated DoAs
are the L largest peaks in the pseudo-spectrum. In practice, the
number of paths L is unknown, and it is estimated based on the
eigen-decomposition of Ŷ. The path powers are estimated as

the L largest eigenvalues in the eigen-decomposition. To pair
the estimated DoAs and the path powers, one can check the cor-
relations between the eigenvectors for the powers and the array
steering vectors for the DoAs. Finally, we will get a channel
feature vector f = [λ1, λ2, . . . , λL̂, φl1 , φl2 , . . . , φlL̂ ] ∈ R2L̂

for each BS-to-UE pair, where L̂ is the estimated number of
significant channel paths.

B. Dissimilarity Metric

Each BS extracts a feature set {f bn}Nn=1 via MUSIC for the
sampled UE locations. In what follows, we define a novel
dissimilarity metric for the pairs of CSI samples based on the
proposed feature. A good dissimilarity metric df (f bn, f

b
m) for

two CSI samples n and m should be proportional to the real
spatial distance ‖pn − pm‖2.

For two CSI features f bn = [λ1, . . . , λL1
, φ1, . . . , φL1

], f bm =
[µ1, . . . , µL2

, θ1, . . . , θL2
], we need to identify the paths for the

sample pair that are similar, being created by, for example, the
same scatters. For this, we transform the path DoA and power
pairs to points in a cartesian coordinate system according to

F(f bn)=[x1,. . . ,xL1
], F(f bm)=[y1,. . . ,yL2

], (8)

with xi = [ cosφi√
λi
, sinφi√

λi
]T, yj = [

cos θj√
µj
,
sin θj√
µj

]T. If the channel
rays were known, one could classify these cartesian points into
LoS, single-bounce and double-bounce points according to the
reflection orders for their corresponding multi-path components.
To produce dissimilarity metrics in an unsupervised setting,
it is worth noting that nearby UE locations would produce
similar cartesian points as they share common scatters and
have similar multi-path components.

Figure 2(a) shows the cartesian points generated by a
mMIMO BS from 1000 UE locations in an urban scenario.
The multi-path components for all sampled UE locations have
clustered structures. If two sampled UE locations are close,
then they have multi-path components in the same clusters.
The clusters of LoS, single-bounce and double-bounce points
have different densities; the cluster of LoS points is the densest,
while a cluster of double-bounce points is sparser than single-
bounce and LoS clusters. To construct a dissimilarity measure,
we transform the features {f bn}Nn=1 into cartesian points to
guarantee that the cartesian points lie in a confined area, as
shown in Figure 2(b). Then, we use density-based spatial
clustering of applications with noise (DBSCAN) [10] to label
these cartesian points. Figure 2(b) shows the clustering result
for the above 1000 sampled UE locations.

Assuming that the multi-path components for all N sampled
UE locations are clustered into C clusters and a component x
has a label l(x) ∈ {1, . . . , C}, the dissimilarity metric for two
samples n and m as in (8) is defined as

df (f
b
n, f

b
m) =

{
‖xi − yj‖2, if n,m share the same clusters,
‖x1 − y1‖2, otherwise,

(9)
where [i, j] = arg maxi,j{min(λi, µj)} satisfying l(xi) =
l(yj). The core idea behind (9) is that if two samples share
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(b) Cartesian points after scaling.

Fig. 2. Cartesian points for multi-path components generated from CSI features
extracted via MUSIC by a mMIMO BS for 1000 sampled UE locations in an
urban scenario; the origin represents the BS position.
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Fig. 3. Simulation scenario in a Manhattan grid with 10 BSs labeled by
numbers and sampled UE locations marked by colors.

paths in a same cluster, one should estimate their distance
based on these similar paths.

C. Global Dissimilarity Matrix via Data Fusion

Finally, to realize multipoint channel charting, we have to
fuse the CSI dissimilarities from the multiple BSs related to the
dissimilarity of sample UE pairs. Based on (9), each mMIMO
BS constructs a dissimilarity matrix Db (b ∈ {1, 2, . . . , B})
with Db

n,m = df (f
b
n, f

b
m). These should be merged into one

global multi-cell dissimilarity matrix D. Note that signals from
a sampled location pn may not be received by a BS b. In this
case, we set f bn = ∅, Db

n,m and Db
m,n for all m 6= n to be a

large value dmax, and let the SNR γbn be zero. We shall use
the following network-level weighted dissimilarity

Dn,m =
(∑B

b=1 wb

)−1∑B
b=1 wbD

b
n,m, (10)

where wb = [min(γbn, γ
b
m)]2 is the weight characterizing the

reliability of the dissimilarity generated by BS b for samples n
and m, and a SNR γbn is estimated using E{‖hbn‖22/σ2} with
σ2 as the noise power, and hbn the channel vector between the
BS b and UE location pn.

IV. CHANNEL CHARTING ALGORITHMS AND
PERFORMANCE EVALUATION

Based on the proposed channel features and dissimilarity
measure, we then apply different manifold learning algorithms
to produce a multi-cell channel chart for the CSI samples.
We consider three representative algorithms, i.e., Sammon’s
Mapping (SM) [11], Laplacian eigenmaps (LE) [12] and t-
distributed stochastic neighbor embedding (t-SNE) [13].

TABLE I
SIMULATION PARAMETERS OF THE CONSIDERED SYSTEM SCENARIO.

Parameter Symbol Value

Carrier frequency fc 28 GHz
System bandwidth bw 256 MHz
OFDM subcarrier number Nc 256
UE Tx power Nc×ρUE 23 dBm
BS noise power Nc×σ2 -86 dBm

We consider an urban outdoor multi-cell mmWave network
scenario as depicted in Figure 3. The BSs are below rooftop,
and signals will be reflected or blocked by walls. A ray-tracing
channel model is used to generate the multi-path channels [14].
Table I summarizes the simulation parameters. We generate
N=5000 UE locations on the streets of a Manhattan grid, as
depicted in Figure 3, and gather estimated CSI samples from
them. For SM and t-SNE, gradient descent is used to compute
the channel charts, with initializations Z0 drawn from the
standard normal distribution. The number of nearest neighbors
in LE and the perplexity for t-SNE are chosen to be N/20.

Figure 4 shows the multi-point charting results using SM, LE,
and t-SNE based on the merged dissimilarities from multiple
BSs. Performance of these three algorithms with different sets
of participating BSs are investigated. The first row, Figures 4(a),
4(b), and 4(c) shows the results of SM, LE and t-SNE based on
merged dissimilarities from four BSs {1, 3, 5, 7}. The second
row shows results with six BSs {1, 3, 5, 7, 9, 10}, while the
third row shows results with all 10 BSs. The channel charting
performance improves when increasing the number of BSs, for
all three algorithms, as more useful information is provided in
the merged dissimilarity matrix. All three algorithms provide
well-preserved local embeddings. With t-SNE, the global
structure is well captured even with four BSs, as shown in
Figure 4(c). It is remarkable that multipoint channel charting
is able to perfectly capture the topology of the simulated
Manhattan scenario, with ribbon-like streets and holes.

V. CONCLUSION

We have proposed multipoint channel charting, where CSI
from multiple massive MIMO BSs is fused to provide a chart of
the radio geometry of a multi-cell network. In contrast to single-
point channel charting as proposed in [2], multiple BSs in the
network measure the CSI from individual users, and construct
CSI features from these measurements. The CSI features are
fused in a central unit, and manifold learning techniques are
applied to identify how the 2D (or 3D) spatial geometry of
the user locations is embedded in the high-dimensional CSI
space. We have developed improved CSI features based on
direct estimation of incoming multi-path components, and
created a novel dissimilarity measure based on clustering the
information related to the estimated DoA and power of all
separable multi-path components of set of sample users. We
have demonstrated that multi-point channel charting, acting
only on received CSI from sample users, can recover the
street-topology of the network almost perfectly, significantly
outperforming single-point channel charting.
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Fig. 4. Multipoint charting results via SM, LE and t-SNE based on channel features from (a) BSs 1, 3, 5, 7; (b) BSs 1, 3, 5, 7, 9, 10; and (c) all 10 BSs. The
multipoint charting performance improves with more participating BSs.
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