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Abstract—In this letter, we present formulas for the proba-
bility density, cumulative distribution, and moment generating
functions of the multivariate η − µ fading distribution with the
constant correlation model. We give examples of application of
the derived results.

Index Terms—Correlated fading, diversity methods, multivari-
ate distributions.

I. INTRODUCTION

APPLICATION of various diversity reception techniques
aiming at mitigating fading effects is common in mod-

ern communications. If antenna spacing is sufficiently small,
fading over multiple paths is correlated. In this case, various
performance metrics of the communication system can be
obtained on the basis of multivariate fading distributions. Such
distributions with different types of correlation have been
analyzed for Rayleigh [1], Nakagami-m [2]– [5], gamma-
gamma [6], Weibull [7], and α− µ fading models [8].

The generalized η − µ distribution was recently introduced
by M.-D. Yacoub [9]. It fits well to experimental data in non-
line-of-sight scenarios and includes some widely used fading
models, such as Nakagami-m and Nakagami-q distributions,
as particular cases. The η − µ model treats the fading signal
as the composition of independent multipath clusters with
Gaussian fading components within each cluster. The model
involves two groups of scenarios (formats): 1) cases of unequal
powers of in-phase (I) and quadrature (Q) components of the
fading signal, 2) scenarios where the I and Q components are
correlated.

A broad review on the literature on η − µ fading revealed
only three studies, [10]– [12], that consider correlated multiple
branches. In [10], the bivariate η − µ fading distribution is
introduced. In [11], the moment generating function (MGF) of
the distribution is derived for an arbitrary correlation model
but only for the maximal-ratio combining (MRC) diversity
method. In [12], MRC schemes operating over equally corre-
lated η − µ fading channels are analyzed. The results derived
in [12] are also applicable only to the MRC schemes. In
this letter, we obtain formulas for the probability density,
cumulative distribution functions (PDF, CDF), and MGF of
the multivariate distribution for the constant correlation model.
Unlike [10], the results derived in this work are valid for the
arbitrary number of the diversity branches, and in contrast to
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[11]– [12], we present a full statistical characterization of the
multivariate η−µ distribution with the considered correlation
model.

II. MULTIVARIATE η − µ FADING DISTRIBUTION

A. Marginal η − µ Distribution

The PDF fγη−µ(x) of the η − µ power variable γ is [9]:
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(with E{.} and var{.} denoting the ex-

pectation and variance, respectively), Ω = E{γ}, Γ(.) is the
gamma function, and Iα(.) is the modified Bessel function
of the first kind of the order α. In Format 1, 0 < η < ∞
is the power ratio of the in-phase and quadrature scattered
waves in each multipath cluster; H = (η−1 − η)/4 and
h = (2 + η−1 + η)/4. In Format 2, −1 < η < 1 is the
correlation coefficient between the in-phase and quadrature
scattered waves in each multipath cluster; H = η/(1 − η2)
and h = 1/(1− η2).

B. Multivariate Distribution

We consider a vector z = {z1 . . . zn} of correlated and
identically distributed η − µ power variables. It is proven in
[13] that any η − µ power variable can be represented as the
sum of two independent gamma variables with properly chosen
parameters, i.e.

z = x+ y (2)

where x = {x1 . . . xn} and y = {y1 . . . yn} are vec-
tor gamma variables with the components xi and yi sub-
ject to gamma distributions with the same shape param-
eter µ and scale parameters αx = Ω/ [2µ (h+H)] and
αy = Ω/ [2µ (h−H)], respectively [13], [10]. Since x and
y are independent, correlation of the components of z is
due to correlation of the components of x and components
of y. Let ρzizj =

cov{zizj}
var{z} be the correlation coefficient

between zi and zj , where cov{.} denotes covariance, and
ρxixj (ρyiyj ) be that between xi and xj ( yi and yj).
Then ρzizj =

(
ρxixjvar{x}+ ρyiyjvar{y}

)
/var{z}. Thus,

by assigning different values of ρxixj and ρyiyj one can
obtain different values of ρzizj . We see, particularly, that if
ρxixj = ρyiyj = ρij , then ρzizj and ρij obey the same model,
such as the constant or exponential correlation model.

The constant correlation model includes scenarios with
closely spaced antennas, and it may be used as a benchmark
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for the worst case scenario [7]. In this case, the normal-
ized covariance matrix Σ = cov{zT z}/var{z} is such that
Σij = ρzz = ρ if i ̸= j, and Σii = 1.

1) PDF and CDF: Let Z = {Z1 . . . Zn}. We obtain from
(2) that the conditional on x CDF Fz (Z) |x is:

Fz (Z) |x
∆
= Pr (z1 < Z1, . . . , zn < Zn) |x1,...,xn

=

∫ Z−x

0

fy (y) dy (3)

where fy (y) is the joint gamma PDF of y1, . . . , yn, and vector
notations on the right-hand side of (3) are used to simplify the
presentation of the multiple integral. Then the conditional PDF
fz (Z) |x is:

fz (Z) |x
∆
=

dnFz (Z1, . . . , Zn) |x
dZ1 . . . dZn

= fy (Z− x) . (4)

Eq. (4) is obtained from (3) by sequential application of the
Leibniz integral rule. The unconditional PDF fz (z) can be
obtained from (4) by averaging over x varying from 0 to ∞.
But the PDF fy (y) = 0 if any yi < 0. Hence

fz (Z) =

∫ Z

0

fx (x) fy (Z− x) dx (5)

where fx (x) is the joint gamma PDF of x1, . . . , xn.
An expression for the multivariate Nakagami-m PDF fx (x)

with the constant correlation model is given in [5, eq. (21)]:
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where m is the Nakagami-m parameter, Ξ = E{x}/m,
and fl(x, θ) = xl−1

Γ(l)·θl exp
(
−x

θ

)
is the marginal gamma

PDF. It is seen that (6) can be expressed in terms of
the multivariate hypergeometric series Ψ
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Pochhammer index [14, vol. 3, Section 6.6]. The function
Ψ

(n)
2 (a;b;x) is absolutely convergent [15]. This fact justifies

the change of integration and summation in (5). Evaluating
the integral in (5) via an integration formula [14, vol. 1, eq.
(2.3.6.1)] we obtain that
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where cx =
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[
αy

(
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)]−1, and

1F1(·) is a hypergeometric function [14, vol. 3, Section 6.6].
The multiple series (7) is a result of evaluation of the multiple
convolution integral (5). Each factor in the integrand is the
joint gamma PDF fx (x) that is bounded for 0 ≤ xi < ∞,
and fx (x) → 0 as any xi → ∞ (see (6)). Thus fz (Z) is
bounded for 0 ≤ Zi < ∞, and this fact proves convergence
of (7) that is a representation of fz (Z) defined by (5).

Using a series representation of 1F1(a; b; t) =
∑∞

i=0
(a)i
(b)ii!

ti,

we obtain that the CDF Fz (Z1, . . . , Zn)
∆
=

∫ Z

0
fz (z) dz can

be expressed as
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where γ (a, t) =
∫ t

0
ta−1exp (−t) dt is an incomplete gamma

function.
2) MGF: Due to independence of x and y in (2), the MGF

of the multivariate distribution can be expressed as
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where Mx (s) and My (s) are the MGFs of the multivariate
gamma distributions with the PDF (6), and s = {s1 . . . sn}.
From [5, eq. (21)], we have that
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Eq. (10) represents also the MCF My (s) after changing αx

to αy . Thus (9)-(10) define the MGF of the multivariate η−µ
distribution with the constant correlation model.

Remark: The approach used in this paper can be applied
to any correlation model. In this case, the multivariate PDF
fx (x) in (5) must correspond to the given correlation model.

III. NUMERICAL RESULTS

We apply the obtained theoretical results to the evaluation
of the outage probability Pout (q) of a communication system
employing the selection combining (SC) method and operating
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over the correlated η − µ branches. Estimates for Format 1
are shown in Fig. 1, and those for Format 2 are presented
in Fig. 2. In both figures, Pout (q) is plotted as a function of
the received signal-to-noise ratio (SNR) that is involved in the
evaluations via αx and αy (more precisely, Ω ∝ SNR). The
outage probability under SC is expressed as

Pout (q) = Pr

(
max
1≤i≤n

SNRri ≤ q

)
= Fz (q) (11)

where SNRri is the received SNR over the i th branch (i.e.
the product of the transmitted SNR and channel power gain),
and q = {q, . . . , q︸ ︷︷ ︸

n

}.

In our numerical evaluations, we use two values of η: η1 =
0.1 and η2 = 0.9. In each case, µ = 1.2 and q = 1. We
evaluate Pout (q) by truncating the infinite sums in (8) and
use N1 terms in each sum over indices ki and N2 terms in
each sum over indices li. We observe that the number of terms
providing a fixed accuracy depends strongly on the values of
ρzz . The more ρzz is, the more the terms must be included
into the truncated series for providing the fixed accuracy. This
is a fact to be expected since the arguments of the functions
1F1(·) in (7) and γ(·) in (8) increase as ρzz increases. For
example, in the case of Format 2 with η = 0.9, a three-branch
diversity receiver, SNR=10 dB, and ρzz = 0.05, we observe
that the numbers of terms in (8) providing 10−6 accuracy are
N1 = 3 and N2 = 8. If ρzz = 0.8, the same accuracy is
provided by N1 = 23 and N2 = 42. Alternatively, we obtain
estimates of Pout (q) through computer simulations where the
correlated η−µ variables are generated via correlated gamma
variables and the decomposition formula (2) (see also [10]).
Two types of estimates agree well, and they are practically not
distinguished in Fig. 1–2.

If the diversity branches are independent then Pout (q) =[
Fγη−µ

(q)
]n, where Fγη−µ

(q) is the CDF of the η−µ power
variable γ. In this case our numerical estimates are consistent
with estimates obtained on the basis of [16].

In the case of Format 1, our numerical evaluations show that
the outage probability gets smaller as the fading environment
becomes more homogenous (η → 1). In the case of Format 2,
the outage probability increases as the correlation coefficient
between the I and Q components of the fading signal increases
(η → 1).

IV. CONCLUSION

In this paper, we derive expressions for the PDF, CDF, and
MGF of the multivariate η − µ distribution with the constant
correlation model. As it is common for multivariate statistical
distributions (see, for example, [2]– [6]), the formulas are
obtained in the forms of infinite series. In numerical evalu-
ations, the series must be truncated. The number of the terms
in the truncated series depends strongly on the value of the
correlation coefficient. The larger the value of the correlation
coefficient, the larger the number of the terms that must be
included into the truncated series to provide a given accuracy.

For the particular case of n = 2, the formulas obtained in
this paper give the same results as the corresponding formulas
in [10], but the forms of the representation differ. As it was
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Fig. 1. Outage probability under selection combining - Format 1. Dotted
lines represent correlated branches with ρ = 0.4, and dashed-dotted lines
represent independent branches. Black points report simulation results.
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Fig. 2. Outage probability under selection combining - Format 2. Dotted
lines represent correlated branches with ρ = 0.4, and dashed-dotted lines
represent independent branches. Black points report simulation results.

pointed out in [5], the different forms of representation of the
same result stem from different series expansions of the MGF
of the bivariate distribution.
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