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Abstract—In this letter, we prove that link performance bounds
of multiple-input multiple-output transmit beamforming systems
employing maximal ratio combining at the receiver and operating
over arbitrary ergodic fading channels can be obtained by
analyzing receiver diversity systems operating over specially
constructed virtual radio channels.

Index Terms—Generalized fading distributions, maximal ratio
combining, MIMO systems, transmit beamforming.

I. INTRODUCTION

MULTIPLE-input multiple-output (MIMO) transmission
systems employing multiple antennas at both sides of

the transceiver are able to provide both significant diversity and
multiplexing gains under proper signal-processing strategies.
If channel state information (in the form of a MIMO channel
matrix H) is known at the transmitter, the available power
can be split among the transmitting antennas appropriately
in order to maximize the signal-to-noise ratio (SNR) at the
receiver. This method is known as transmit beamforming (TB).
If maximal ratio combining (MRC) is applied at the receiver
then the effective SNR in the TB MIMO system is proportional
to the maximal eigenvalue of the Gramian matrix W = HHH

[1], which reduces to the Wichart matrix [2] if the elements
of H are proper Gaussian. The exact eigenvalue distribution
of HHH has been reported only for the Rayleigh and Rician
fading models (see, for example, [1], [3]- [4]), and techniques
for link performance evaluation have been presented just for
these fading scenarios, for example, [3]- [4]. In practice, fading
models different from Rayleigh and Rice distributions show
often better fits to experimental data [5]- [6].

In this letter, we overcome the uncertainty caused by the
unknown eigenvalue distribution of HHH and show that
bounds on the statistical distribution of the maximal eigenvalue
can be obtained by utilizing only the multivariate fading
distributions of the diagonal elements of W. Based on this fact
we derive bounds on the outage probability, ergodic capacity,
and average error rates for the TB MIMO MRC systems
operating over arbitrary ergodic radio channels.
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II. BOUNDS ON THE OUTAGE PROBABILITY, AVERAGE
ERROR RATE, AND ERGODIC CAPACITY

A. Preliminaries

We consider the TB MIMO MRC system with NT transmit-
ting and NR receiving antennas operating over the arbitrary
ergodic radio channel characterized by the NR × NT matrix
H. It was proven in [1] that the maximal SNR γeff achievable
in the system, is proportional to the maximal eigenvalue λ1

of the matrix W = HHH, that is

γeff = γ̄λ1 (1)

where γ̄ is the transmitted SNR. The transmit precoding vector
providing γeff is the unit eigenvector associated with λ1 [1].

The m th diagonal element of W, wm, is expressed as

wm =

NT∑
i=1

|Hm,i|2, m = 1, · · · , NR (2)

where Hm,i denotes an element of the matrix H.

B. Link Performance Bounds

Let λ1 ≥ λ2 ≥ . . . ≥ λK and w1 ≥ w2 ≥ . . . ≥ wK
(K = NR) be the respective ordered eigenvalues and diagonal
elements of W, and Fγeff (x) = Pout(x) = Pr{γeff ≤
x}, Paver = limT→∞

1
T

∫ T
0
Perr (γeff(t)) dt, and Cerg =

limT→∞
B
T

∫ T
0

log2 (1 + γeff(t)) dt be the respective cumula-
tive distribution function (CDF) of the effective SNR, outage
probability (OP), average error rate, and ergodic capacity of
the analyzed MIMO channel with the bandwidth B. Then the
following proposition is valid.

Proposition: If the TB MIMO MRC system operates over
the arbitrary ergodic radio channel represented by the matrix
H, the effective SNR, outage probability, average error rate,
and ergodic capacity are always bounded by the corresponding
metrics of receiver diversity systems employing the selection
combining (SC) and MRC methods, and operating over a
virtual radio channel with the power gains wm, m =
1, · · · , NR, defined by (2), that is

γSC ≤ γeff ≤ γMRC;

FMRC(x) ≤ Pout(x) = Fγeff (x) ≤ FSC(x);

PaverMRC
≤ Paver ≤ PaverSC ;

CSC ≤ Cerg ≤ CMRC. (3)

where γSC(MRC), FSC(MRC)(x) = PoutSC(MRC)
(x),

PaverSC(MRC)
, and CSC(MRC) are the respective effective
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SNRs, CDFs of the effective SNRs, OPs, average error rates,
and capacities of the above virtual radio channel under SC
and MRC at the receiver.

Proof : The Horn theorem [7] states that the vec-
tor λ = [λ1, λ2, . . . , λK ]T majorizes the vector w =
[w1, w2, . . . , wK ]T, λ � w, that is

k∑
m=1

λm ≥
k∑

m=1

wm, 1 ≤ k ≤ K − 1,

K∑
m=1

λm =

K∑
m=1

wm. (4)

All eigenvalues of W are positive since W is Hermitian and
positive definite [8]. Thus we obtain from (4) upper and lower
bounds on λ1:

w1 ≤ λ1 ≤
K∑
m=1

wm. (5)

On the left-hand and right-hand sides of (5) we observe
the respective effective SNRs of the SC and MRC receiver
diversity systems operating over the virtual radio channel with
the channel power gains wm. Then, due to the monotonicity
of the functions involved into the evaluation of the error rates
and channel capacity, (3) immediately follows from (5).

III. EVALUATION OF BOUNDS (3)

The evaluation of (3) requires only a knowledge about
the statistical distribution of diagonal elements of the matrix
W, and a concrete way of the evaluation depends on the
concrete fading scenario. In Table I, a few examples of gener-
alized fading distributions of random variables (RVs) |Hm,i|2
are given. Scenarios with independent identically distributed
(i.i.d.), independent non-identically distributed (i.n.d.), and
correlated channel power gains are presented. For each case,
we display statistical distributions of wm and

∑NR

m=1 wm, as
well as we give references analyzing MRC and SC techniques
over the corresponding virtual radio channels. E[.] in Table I
denotes the expectation.

We give below two examples of evaluation of (3).

A. Independent and Identically Distributed Generalized
Gamma Branches

Let |Hm,i|2 follow the generalized gamma (GG) distribu-
tion, that is for each m = 1, . . . , NR and i = 1, · · · , NT, the
probability density function (PDF) f|Hm,i|2(x) is expressed as

f|Hm,i|2(x) =
αxαµ/2−1

2θµΓ(µ)
exp

(
−x

α/2

θ

)
(6)

where α, µ, and θ are the distribution parameters [6], [19]–
[22], and Γ(.) is the gamma function. This case is given in
Table I. By approximating the sum of GG RVs by a single GG
RV [19], we find from [19, eq. (22)–(25) ] the parameters αlow,
µlow, and θlow of the GG distribution representing approxi-
mately wm, m = 1, . . . ,K, as well as the parameters αup,
µup, and θup of the GG distribution modeling approximately

∑NR

m=1 wm. Then we immediately obtain from (3), (6), and
[11] bounds on the OP:

PoutSC(γ0) ≈

[
γ
(
µlow, (γ0/γ̄)αlow/2/θlow

)
Γ(µlow)

]K
,

PoutMRC
(γ0) ≈

γ
(
µup, (γ0/γ̄)αup/2/θup

)
Γ(µup)

(7)

where γ(a, t) =
∫ t

0
xa−1exp(−x)dx is an incomplete gamma

function.
PaverMRC and CMRC can be evaluated via [20] and [22]

respectively. Analytical results on the ergodic GG channel ca-
pacity and error rates under SC available nowadays (e.g. [20]–
[22]), are valid only for integer values of µlow, and it is rather
unlikely that the approximation method [19] generally results
in integer values of this fading parameter. Thus CSC and
PaverSC can be evaluated numerically, and special techniques
allowing to avoid evaluations of infinite-range integrals can
be applied. For example, in many practical scenarios, the bit–
error probability (BER) conditioned to the SNR γ is expressed
in terms of the Gaussian Q-function, Pb(γ) = aMQ

(√
bMγ

)
,

where aM and bM are parameters defined by the modulation-
detection combination [23]. Thus the average BER, PbSC , is
expressed as

PbSC =

∫ ∞
0

Pb(x)fSC(x)dx

=
aM

√
bM

2
√

2π

∫ ∞
0

e−bMx/2x−1/2FSC(x)dx (8)

where fSC(x) is the PDF of the effective SNR under SC.
The structure of the second integral in (8) allows to apply the
Gauss-Laguerre quadrature (GLQ) rule [24], that is

PbSC ≈
aM

2
√
π

n∑
i=1

qix
−1/2
i FSC

(
2xi
bM

)
(9)

where xi is the i-th root of the Laguerre polynomial Ln(x),
and weights qi = xi

(n+1)2[Ln+1(xi)]
2 [24].

Analytical results can be also reported for CSC under low
SNR. At low SNR, ln(1 + x) ≈ x, and

CSClowSNR
≈ B · K

ln2(γ̄αlow/2θlow)µlow [Γ(µlow)]
K

×
∫ ∞

0

t
µlow+ 2

αlow
−1

exp

(
− t

γ̄αlow/2θlow

)
×
[
γ

(
µlow,

t

γ̄αlow/2θlow

)]K−1

dt

= B ·
Kγ̄θlow

2/αlowΓ
(
µlowK + 2

αlow

)
ln2 [Γ(µlow + 1)]

K
µlow

×F (K−1)
A

(
µlowK +

2

αlow
, µlow, · · · , µlow;

µlow + 1, · · · , µlow + 1; −1, · · · ,−1) (10)

where F (K−1)
A (.) is a Lauricella hypergeometric function [25,

vol. 3, eq. 7.2.4.54], and the representation of CSClowSNR
in

terms of F (K−1)
A (.) is obtained on the basis of [25, vol. 4, eq.

3.35.7.4]. The structure of the integrand in (10) also allows
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TABLE I
STATISTICS OF wm AND

∑NR

m=1
wm FOR SOME GENERALIZED FADING SCENARIOS.

|Hm,i|2; wm, m = 1, . . . , NR;
∑NR

m=1
wm; Analysis of MRC, Analysis of SC,

parameters parameters parameters references references
of distribution of distribution of distribution

i.i.d. η − µ RVs [5]; i.i.d. η − µ RVs [5]; η − µ RV [5]; [9]; [11]
{η;µ;E[|Hm,i|2]} {η;NT · µ;NT · E[|Hm,i|2]} {η;NT ·NR · µ;NT ·NR · E[|Hm,i|2]} for integer µ [10]

i.n.d. η − µ RVs [5]; Sum of i.n.d. gamma RVs; Sum of i.n.d. gamma RVs; [12], [13] [11]
{η;µ;E[|Hm,i|2]} distribution is given in [12]. distribution is given in [12].

Each wm can be approximated Can be approximated
by a single gamma RV [14] by a single gamma RV [14] [15] [15]

correlated η − µ RVs [5]; Statistically equivalent to Statistically equivalent to [16] [17]– [18]
{η;µ;E[|Hm,i|2]} with sum of i.n.d. gamma RVs with sum of i.n.d. gamma RVs with
integer or half–integer µ distribution given in [16] distribution given in [16]

i.i.d. κ− µ RVs [5]; i.i.d. κ− µ RVs [5]; κ− µ RV [5]; [9] [11]
{κ;µ;E[|Hm,i|2]} {κ;NT · µ;NT · E[|Hm,i|2]} {κ;NT ·NR · µ;NT ·NR · E[|Hm,i|2]}

i.i.d. generalized Can be approximated by i.i.d. Can be approximated by [20], [22] [11];
gamma RVs [6], [19]– [22]; generalized gamma RVs [19] a generalized gamma RV [19] for integer µ

{α;µ; θ} [20]– [22]

using the GLQ rule [24] for the approximate evaluation of the
integral. For a particular case of two received antennas, (10)
reduces to

CSClowSNR
≈

2Bγ̄θlow
2/αlowΓ

(
2µlow + 2

αlow

)
ln2 [Γ(µlow + 1)]

2
µlow

×2F1

(
2µlow +

2

αlow
, µlow;µlow + 1;−1

)
(11)

where 2F1(.) is the Gauss hypergeometric function [25, vol.
3].

B. Correlated Improper Normally Distributed Branches

Let Hm,i be identically distributed zero-mean Gaussian
RVs with independent real and imaginary components having
different respective variances σ2

X and σ2
Y . We consider the

case of constant correlation between the received antennas
represented by a correlation coefficient ρ [17]. Then it is seen
from (2) that wm are correlated η − µ–distributed RVs with
µ = NT/2 and η = σ2

X/σ
2
Y [5]. This is a scenario presented

in Table I. Since µ is either a half-integer or integer, the
decomposition [16, eq. (8)–(12)] is valid, and PaverMRC

is
evaluated on the basis of the method given in [16]. The PDF
fMRC(x) and CDF FMRC(x) are given in [13].

The analysis of SC is done on the basis of the multivariate
distribution of wm [17, eq. (8)]. The CDF of w1 is

FSC(x) = Pr{w1 ≤ x} = Fw(x) (12)

where Fw(x) is the joint CDF of the diagonal elements of
W, and x = {x, . . . , x︸ ︷︷ ︸

NR

}. Consequently, the PDF fSC(x) =

dFSC(x)/dx. We evaluate PaverSC
by applying the GLQ

method (9). CSC and CMRC are evaluated via a numerical
integration on the basis of known fSC(x) and fMRC(x).

C. Numerical Results

In Figs. 1–3, we present link performance metrics (obtained
via Monte Carlo simulations) and bounds for TB MIMO
MRC systems evaluated by using (3) (as it is described in

sub-Sections III. A-B), and on the basis of Monte Carlo
simulations. The numerical results are given for radio channels
with i.i.d. GG branches (GG channels) and for radio channels
with correlated improper normally distributed branches (CIN
channels) described in sub-Section III. B. In Fig. 1, the OP is
shown versus the normalized threshold γ/γ̄ for a few antenna
configurations. In Fig. 2, estimates of GG and CIN channel
capacities are shown for NT = 2 and NR = 2. The estimates
of CSC have been obtained via Monte Carlo simulations and
via numerical evaluations of the corresponding equations for
the ergodic capacity. A few estimates evaluated analytically
for low SNR (11) are also reported. Finally, in Fig. 3, BER
estimates are shown for the coherent detection of binary phase
shift keying (BPSK) with NT = 2 and NR = 2.

Although bounds shown in Figs. 1–3 for GG channels are
approximate (since they were obtained via the approximation
[19]), they agree well with our simulation results in all tested
cases. Our numerical results also show that the tightness of
bounds (3) depends on all factors involved into the evaluation.
The type and parameters of fading distribution as well as
antenna configurations affect the tightness.

IV. CONCLUSION

The statistical distribution of the maximal eigenvalue λ1 of
the Gramian matrix is of interest in various MIMO applica-
tions. The exact distributions of λ1 are, however, known only
for the Rayleigh and Rice models. In this letter, we overcome
this uncertainty and present link performance bounds for
TB MIMO MRC systems based solely on the multivariate
distribution of diagonal elements of the Gramian matrix.
Depending on the concrete fading scenario, the presented
technique provides either closed-form expressions or those
given in the single-integral form. But in any case, the method
allows avoiding time-consuming computer simulations.
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