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Abstract—In this paper, we recognize the relation between the
generalized α − λ − η − µ and η − µ fading distributions.
We present an approximate technique providing the reduction
of the α − λ − η − µ distribution to the generalized gamma
distribution. For integer values of the fading parameter µ, we
prove that the probability density function (PDF) of the α −
λ − η − µ distribution is expressed via a linear combination
of PDFs of the generalized gamma distributions. The presented
results can be used for the evaluation of error rates over α −
λ−η−µ fading and channel capacity. We give a full statistical
characterization of the multivariate α−λ− η−µ distribution
and present a few examples demonstrating the applicability of
the derived results including multi-antenna systems employing
different receiver diversity methods.

I. INTRODUCTION

The generalized α − λ − η − µ distribution was recently
introduced in [1] for modeling multipath (small-scale) fading
in a non-line-of-sight propagation environment. This statistical
model assembles previously presented α − µ [2] and η − µ
[3] general fading distributions and include them as partic-
ular cases. Obviously, the Rayleigh, Nakagami-m, one-sided
Gaussian, generalized gamma, and Weibull distributions are
also special cases of the α− λ− η − µ distribution.

Such widely used small-scale fading models as the Rayleigh
or Nakagami-m fading distributions assume a homogeneous
propagation environment where in-phase (I) and quadrature
(Q) components of the fading signal are independent and
have equal powers. The real fading environment is, however,
non-homogeneous [4]. More advanced fading distibutions (for
example the η−µ [3] and α−λ−η−µ models [1]) take into
account the non-homogeneous structure of the propagation
medium and consider the I and Q components correlated
and (or) having different powers. The α − λ − η − µ fading
model additionally takes into account possible nonlinearities
of the propagation medium via the fading parameter α. A
large number of examples given in [3] and [1], prove that
these fading models show better fits to experimental data than
some widely applied models, for example, the Nakagami-m
distribution.
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The α − λ − η − µ model treats the fading signal as the
composition of the multipath clusters in the nonlinear and
non-homogeneous propagation medium where the Gaussian
I and Q components within each cluster are both correlated
and have different powers. The moments, probability density
and cumulative distribution functions (PDF and CDF) of one-
dimensional distribution were obtained in [1]. In this paper,
we evaluate such performance metrics as the bit-error rate,
channel capacity, and outage probability. We also derive the
multivariate PDF and CDF for arbitrary correlation models and
apply these results for the performance evaluation of multi-
antenna systems employing maximal-ratio combining (MRC)
and selection combining (SC) over α− λ− η − µ branches.

II. THE α− λ− η − µ FADING DISTRIBUTION

A. One-dimensional Model

The fading envelope R is a nonlinear function of the
composition of n multipath clusters with the Gaussain I and
Q component within each cluster [1], that is

Rα =
n∑

i=1

(
X2

i + Y 2
i

)
(1)

where α > 0 is a power parameter capturing nonlinear prop-
agation effects, Xi and Yi are correlated zero-mean Gaussain
variables with the respective powers E{X2

i } = σ2
X and

E{Y 2
i } = σ2

Y . The parameter η = σ2
X/σ2

Y characterizes the
power ratio of the I and Q components, and the correlation
between Xi and Yj is represented by a correlation coefficient

λ = δi,j
E{XiYj}
σXσY

(2)

where δi,j is the Kronecker symbol.
The model (1) is directly extended to real values of n due

to the reasons given in [3], [1], and a fading parameter µ (that
is an real extension of n/2) is introduced. The PDF of the
α − λ − η − µ envelope variable is given in [1, eq. (10)],
and the PDF of the power variable γ can be obtained directly
after a standard transformation [5]. We give below (see eq.



(5)) an alternative PDF expression resulting from the following
Proposition.

Proposition 1: The α−λ−η−µ power variable γ is related
to an η − µ power variable γη−µ via a nonlinear transform

γ = γ
2/α
η−µ. (3)

Moreover, γ can be approximately represented as (is ap-
proximately statistically equivalent to) a generalized gamma
variable ggen with the PDF fggen(x):

fggen(x,m, ϑ) =
αxαm/2−1

2ϑmΓ(m)
exp

(
−xα/2

ϑ

)
(4)

where m = E2{Rα}/var{Rα} ={[
(1 + 1/µ)

(
θ21 + θ22

)
+ 2θ1θ2

]
/ (θ1 + θ2)

2 − 1
}−1

with

θ1(2) = 2

c1+c2−(+)
√

(c2−c1)2+4a2
where a = λ

2σXσY (1−λ2) ,

c1 =
[
2σX

2
(
1− λ2

)]−1
, and c2 =

[
2σY

2
(
1− λ2

)]−1
.

In (4), ϑ = µ(θ1 + θ2)γ̄
α/2/m where γ̄ = Eb/N0 is the

transmitted signal-to-noise ratio (SNR) per bit.
Proof : It is seen from (1) that the α/2th power of the power

variable, γα/2, is the sum of two correlated gamma variables
with the same shape parameter µ (the real extension of n/2)
and respective scale parameters 2σ2

X and 2σ2
Y . But it is proven

in [6] that the sum of two correlated gamma variables with
the given scale parameters is statistically equivalent to the sum
of two independent gamma variables with the defined above
scale parameters θ1 and θ2. By the definition, this sum can
be viewed as an η − µ power variable of format 1 [3]. This
fact proves the validity of (3). Using (3) and the standard
PDF transformation procedure [5], we obtain an alternative
expression for the PDF of the α− λ− η − µ power variable:

fγ(x) =

α
√
π · exp

[
−
(

x
γ̄

)α/2
(1/θ1+1/θ2)

2

]
2γ̄α/2(µ+1/2)Γ(µ)

×
xα/2(µ+1/2)−1Iµ−1/2

[(
x
γ̄

)α/2
(1/θ2−1/θ1)

2

]
(θ1θ2)

µ
(1/θ2 − 1/θ1)

µ−1/2
(5)

where Γ(a) =
∫∞
0

tα−1e−tdt is the gamma function.
It is proven in [7] that the sum G of two independent gamma

variables (that is the η−µ power variable [3]) can be approx-
imated by a single gamma variable with the shape parameter
p = E2{G}

E{G2}−E2{G} and scale parameter ϑ = E{G}/p. The
values of m and ϑ in (4) are defined on the basis of this rule.

Obviously, the CDF Fγ(z) of the distribution (3) is approx-
imately that of the generalized gamma distribution (4):

Fγ(z) ≈
γ(m, zα/2/ϑ)

Γ(m)
(6)

where γ(a, t) =
∫ t

0
xa−1exp(−x)dx is an incomplete gamma

function.

Corollary 1: The moment generating function of the α−λ−
η − µ distribution Mγ(s) = E{exp(−sγ)} is approximately

Mγ(s) ≈
1

Γ(m)

×H11
22

[
sϑ2/α (1−m, 2/α), (1, 0)

(0, 1) (0, 0)

]
(7)

where H [.] is the Fox H-function [8] that can be expressed in
terms of the Meijer G-function if α is a rational number (i.e.
α = 2k/l) [8]:

H11
22

[
sϑ2/α (1−m, 2/α), (1, 0)

(0, 1) (0, 0)

]
=

√
k

l
(2π)1−(k+l)/2lm

×Gkl
lk

[(
sϑ2/α

)k
ll

kk
∆(l, 1−m)
∆(k, 0)

]
(8)

where ∆(k, a) = a
k ,

a+1
k , . . . , a+k−1

k .
Proof : The expressions (7)-(8) are derived on the basis of

the technique presented in [9], and they are equivalent to the
MGF expression given in this work although the form of the
representation is another because we use the other form of
representation of the Meijer G-function given in [8].

Proposition 2: For integer values of µ, the PDF of the α−
λ− η−µ distribution (5) is expressed in terms of elementary
functions as a finite sum of the scaled generalized gamma
PDFs:

fγ(x) =
(−1)µα

2γ̄α/2Γ(µ) (θ1θ2)
µ
θ2µ−1
d

{
µ−1∑
i=0

(µ− i)µ−1

×fggen(x,mi, ϑ1)θ
i
d −

µ−1∑
i=0

(µ− i)µ−1(−1)i

×fggen(x,mi, ϑ2)θ
i
d

}
(9)

where (a)k i the Pochhammer symbol [8], θd = 1/θ2 − 1/θ1,
mi = i + 1, ϑ1 = γ̄α/2θ2, ϑ2 = γ̄α/2θ1, and fggen(.) is the
generalized gamma PDF (4).

Proof : Eq. (9) is obtained on the basis of the finite series
expansion of Iµ−1/2 in (5) with integer values of µ [12, eq.
(8.467)].

With the help of (9) one can apply many results on gener-
alized gamma distribution (e.g. [9] – [11]) to the performance
evaluation over generalized α−λ− η−µ fading with integer
values of µ.

Corollary 2: For integer values of µ and rational α = 2k/l,
an exact MGF expression in terms of the finite sum of the
Meijer G-function is available:

Mγ(s) = (−1)µ
√

k

l

(2π)1−(k+l)/2αlm

2γ̄α/2Γ(µ) (θ1θ2)
µ
θ2µ−1
d

{
µ−1∑
i=0

(µ− i)µ−1

×θidG
kl
lk


(
sϑ

2/α
1

)k
ll

kk
∆(l, 1−mi)

∆(k, 0)

]



−
µ−1∑
i=0

(−1)i(µ− i)µ−1θ
i
d

×Gkl
lk


(
sϑ

2/α
2

)k
ll

kk
∆(l, 1−mi)

∆(k, 0)

] . (10)

Corollary 3: For integer values of µ, the CDF of the α −
λ − η − µ distribution is expressed in terms of elementary
functions:

Fγ(z) =
(−1)µα

2γ̄α/2Γ(µ) (θ1θ2)
µ
θ2µ−1
d

{
µ−1∑
i=0

(µ− i)µ−1θ
i
d

×

(
1− exp(−zα/2/ϑ1)

i∑
l=0

zαl/2

ϑl
1l!

)

−
µ−1∑
i=0

(−1)i(µ− i)µ−1θ
i
d

×

(
1− exp(−zα/2/ϑ2)

i∑
l=0

zαl/2

ϑl
2l!

)}
. (11)

B. PDF and CDF of the Multivariate Distribution

The PDF of the multivariate α − λ − η − µ distribution
fγ(z1, z2, . . . , zn) can be defined on the basis of (3) and
an PDF expression of the multivariate η − µ distribution
fγη−µ(z1, z2, . . . , zn) [6], [13] by using the standard trans-
formation algorithm [5]:

fγ(z1, z2, . . . , zn) =
(α
2

)n n∏
i=1

z
α/2−1
i

×fγη−µ(z
α/2
1 , z

α/2
2 , . . . , zα/2n ). (12)

Depending on a given correlation model one must insert in
(12) a proper expression for the multivariate η − µ PDF
fγη−µ(z). A most general fγη−µ(z) expression for an arbitrary
correlation model is given in [6, eq. (8)]. Simpler expressions
for special cases have been also reported. Such are particular
cases of the bivariate distribution [15, eq. (13)], constant [13,
eq. (7)], and exponential correlation models [6, eq. (10)].
All these multivariate η − µ distributions are given in terms
of a normalized correlation matrix R with the elements
Ri,j =

E{γα/2
i

γ
α/2
j

}−E{γα/2
i

}E{γα/2
j

}√
var{γα/2

i
}var{γα/2

j
}

. If the correlation prop-

erties of the vector α− λ− η− µ variable are given in terms
of the normalized correlation matrix R̃ with the elements
R̃i,j =

E{γiγj}−E{γi}E{γj}√
var{γi}var{γj}

, a relation between Ri,j and R̃i,j

must be identified. This can be done numerically on the basis
of the previously derived results on the η − µ distribution [3,
eq. (21)] and [15, eq. (13)]. We note that the joint moments
E{γiγj} can be directly obtained from the bivariate η − µ
PDF [15, eq. (13)] for arbitrary values of the correlation
coefficient between two η − µ variables while (17) in [15]
is valid only for restricted values of this parameter. It is also
worth noting that the formulas in [3] and [15] are expressed
via parameters H and h of the η − µ distribution, which for

the case of the format 1 are expressed in terms of the fading
parameter η̃ characterizing the power ratio of the independent
I and Q components of the signal: H = (η̃−1 − η̃)/4 and
h = (2 + η̃−1 + η̃)/4 [3]. It follows from Proposition 1 that
η̃ = θ2/θ1. Generally, η̃ ̸= η since η expresses the power ratio
of the dependent I and Q components.

An example of the dependence Ri,j = f(R̃i,j) is shown in
Fig. 1 for µ = 2 and a few values of the fading parameter α.

The CDF Fγ(z1, . . . , zn) = Pr(γ1 ≤ z1, . . . , γn ≤ zn) =

Fγη−µ(z
α/2
1 , . . . , z

α/2
n ).

III. PERFORMANCE ANALYSIS OF COMMUNICATION
SYSTEMS

A. Single-branch Transmission

For a single branch transmission, an expression for the
average bit-error rate over the generalized gamma fading
channel was obtained in [10, eq. (14)] under the condition
that the bit-error rate for the additive white Gaussian noise
channel is expressed as

Pb =
Γ(b, aγeff.)

2Γ(b)
(13)

where γeff. is the effective SNR, and Γ(b, t) =∫∞
t

zb−1exp(−z)dz is the complementary incomplete
gamma-function. Formula (13) is a generic bit-error rate
expression for binary modulation schemes [14, eq. (8.100)].
It involves such modulation formats as binary phase-shift
keying (BPSK) (a = 1, b = 0.5), differential BPSK (DBPSK)
(a = 1, b = 1), binary frequency-shift keying (BFSK)
(a = 0.5, b = 0.5), and non-coherent BFSK (a = 0.5,
b = 1). Eq. (13) involves as a particular case the Gaussian
Q-function Q(bM

√
x) = Γ(1/2, b2Mx/2)/ [2Γ(1/2)], and

thus scaled versions of (13) may be used for the BER
evaluation for a large variety of M -ary modulation formats
where Pb = aMQ(bM

√
x) with aM and bM defined by the

modulation-detection combination [14].
On the basis of Proposition 1 one can also obtain an

approximate expression for the ergodic channel capacity [16],
[11]:

Cerg = B · E{log2 (1 + γ)}

≈ B

∫ ∞

0

log2 (1 + γ) fggen(γ)dγ =
α

2Γ(m)ϑm

× B

kln2·
l1/2

(2π)k+l/2−3/2
G

(2k+l)(k)
(2k)(2k+l)[

(l · ϑ)−l ∆(k,−χ), ∆(k, 1− χ)
∆(l, 0), ∆(k,−χ), ∆(k,−χ)

]
(14)

where B is the channel bandwidth, and χ = m · k/l. The
integral in (14) is solved via the representation of exp(.) and
ln (1 + γ) in terms of the Meijer G-function [8, eq. 8.4.3.1]
and [8, eq. 8.4.6.5], respectively, and application of [8, eq.
2.24.1.1].

For integer values of µ, the PDF fγ(x) is expressed as a
linear combination of PDFs of generalized gamma distribu-
tions (see (9)). Thus in this case, an exact expression for the



ergodic channel capacity can be derived on the basis of (9)
and (14).

B. Multi-antenna Systems

1) Maximal Ratio Combining over Independent Branches:
We consider a diversity scheme applying the MRC technique
[14] over L independent branches. We use the MGF-based
approach [14] and obtain a finite-integral expression for Paver:

Paver =
aM
π

∫ π/2

0

L∏
i=1

Mγi

(
b2M

2sin2θ

)
dθ (15)

where Mγi (s) is the MGF of the SNR over the i th branch
expressed by (7) for arbitrary fading parameters or by (10) for
integer values of the fading parameters µi at the individual
branches.

2) Selection Combining over Correlated Branches: We
consider the evaluation of the outage probability Pout (q)
of a communication system employing the SC method and
operating over the correlated branches. The outage probability
under SC is expressed as

Pout (q) = Pr

(
max
1≤i≤L

SNRri ≤ q

)
= Fγ (q)

= Fγη−µ (qα/2, . . . , qα/2)︸ ︷︷ ︸
L

(16)

where SNRri is the received SNR over the i th branch (i.e.
the product of the transmitted SNR and channel power gain),
and q = {q, . . . , q︸ ︷︷ ︸

L

}.

IV. NUMERICAL RESULTS

In this Section, we present a few performance metrics eval-
uated on the basis of the results obtained in this paper. Both
analytical estimates and numerical results are given. Numerical
estimates were obtained via Monte-Carlo simulations where
the α − λ − η − µ variable was generated as the (2/α)th
power of the sum of two correlated gamma variables (see
(1)). We also applied a simpler way based on Proposition 1
where the sum of independent gamma variables with properly
chosen parameters was used. Both methods provide identical
results. Additionally, we compared the analytical estimates
with the results obtained via the numerical integration of the
corresponding equations. Under all scenarios considered in
this work, we observed a very good agreement between the
estimates obtained in different ways.

In Fig. 2, we show the ergodic channel capacity (per unit
bandwidth) for the case of the single-antenna transmission.
The curves are given for a few values of the fading parameters.
For µ = 1, we use an exact analytical method based on the
application of (9) and (14). For µ = 2.8, an approximate
solution is obtained by the application of (4) and (14). The
presented results allow estimating impacts of the fading pa-
rameters on the channel capacity. In Fig. 3, estimates of the
average BER are given for the cases of the single-antenna
transmission and for MRC over two i.i.d. branches. The curves

are given for two modulation formats, BPSK and DBPSK, and
for µ = 1 and µ = 2.8. In this case, η = 0.1 and λ = 0.5.
Finally, the curves in Fig. 4 present the outage probability
versus the normalized outage threshold (γ/γ̄) for the multi-
antenna system employing SC over independent and correlated
branches. We consider three- and four-branch receivers. The
fading parameters are: α = 4, λ = 0.5, η = 0.1, and µ = 1.
We consider the case of the constant correlation between
branches with the correlation coefficient ρ = Ri,j = 0.6 as
well as the case of independent branches.

In all cases considered we observe a good accuracy of the
approximation (4).

V. CONCLUSION

In this paper, we present results that can be useful for the
performance evaluation of communication systems operating
over generalized α − λ − η − µ fading. We recognize the
relation between the α − λ − η − µ variable and the η − µ
variable: the α − λ − η − µ fading envelope is a nonlinear
function (1/αth power) of the η − µ power variable. Thus
the α − λ − η − µ statistical model can be referred to as a
generalized η−µ distribution. The recognized relation allowed
us deriving closed-form expressions for the multivariate PDF
and CDF that can be employed in the performance evaluation
of multi-antenna systems.

For integer values of the fading parameter µ, we present
PDF and CDF expressions in terms of elementary functions,
and an MGF expression in terms of the Meijer G-function.
For arbitrary values of the fading parameters, we propose an
approximate method reducing the α − λ− η − µ distribution
to the generalized gamma distribution. All the derived results
give possibilities of analyzing performances of communica-
tion systems operating over α − λ − η − µ fading without
cumbersome and time-consuming computer simulations.
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