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Abstract—Reconfigurable intelligent surfaces (RIS) are
a new and revolutionary technology to achieve spectrum-
, energy- and cost-efficient wireless networks. This paper
studies the resource allocation for RIS-empowered device-to-
device (D2D) communication underlaying a cellular network,
in which an RIS is employed to enhance desired signals
and suppress interference between paired D2D and cellular
links. We maximize the sum rate of D2D users and cellular
users by jointly optimizing the resource reuse indicators,
the transmit power and the RIS’s passive beamforming. To
solve the formulated non-convex problem, we first propose
an efficient user-pairing scheme based on relative channel
strength to determine the resource reuse indicators. Then,
the transmit power and the RIS’s passive beamforming
are jointly optimized by an iterative algorithm, based on
the techniques of alternating optimization, successive convex
approximation, Lagrangian dual transform and quadratic
transform. Numerical results show that the proposed design
outperforms the traditional D2D network without RIS.

Index Terms—Device-to-device communication, reconfig-
urable intelligent surfaces, passive beamforming, power al-
location, iterative algorithm.

I. INTRODUCTION

Device-to-device (D2D) communication underlaying

cellular networks, which allows a device to communicate

with its nearby device over the licensed cellular bandwidth,

is recognized as a promising technology in future networks

due to its advantages such as high spectrum efficiency,

high energy efficiency (EE) and low transmission delay [1].

Interference management is the most important challenge

for underlaying D2D communication. The D2D link and

the cellular link operating in the same licensed band

interfere with each other severely [2], and the interference

needs to be carefully suppressed via efficient interference

management [3] and resource allocation [4].

Recently, reconfigurable intelligent surfaces (RIS) have

emerged as a new and revolutionary technology to achieve

spectrum-, energy- and cost-efficient wireless networks [5].

Specifically, RIS consist of a large number of passive low-

cost reflecting elements, each of which can adjust the phase

and amplitude of the incident electromagnetic wave and

reflect it passively [6]. Thus, RIS are able to enhance

desired signals and suppress interference by designing the

reflecting coefficient (including phase and amplitude) of

each reflecting element. For instance, the weighted-sum

rate of an RIS-aided multiuser multiple-input single-output

downlink communication system was maximized in [7], by

jointly optimizing the base station’s (BS’s) active beam-

forming and the RIS’s passive beamforming (i.e., reflecting

coefficients). The EE of an RIS-empowered downlink

multi-user communication system was maximized in [8],

by jointly optimizing the BS’s transmit power and the

RIS’s passive beamforming.

RIS can be explored to enhance the strengths of de-

sired signals for both D2D links and cellular links, and

suppress the severe interference between each paired D2D

link and cellular link. This motivates us to study RIS-

empowered D2D communication underlaying a cellular

network. Specifically, we formulate a problem to maximize

the overall network sum rate, by jointly optimizing the

resource reuse indicators (i.e., user pairing between D2D

users and cellular users (CUs)), the transmit power and

the RIS’s passive beamforming, subject to the signal-to-

interference-plus-noise ratio (SINR) constraints for both

D2D links and cellular links. However, the problem is

challenging to be solved optimally, since the user pairing

and the resource allocation are closely coupled. Thus, we

first propose an efficient relative-channel-strength based

user-pairing scheme with low complexity. Under the ob-

tained user pairing, an iterative algorithm based on alter-

nating optimization is further proposed. The successive

convex approximation technique is exploited to optimize

the transmit power; while the Lagrangian dual transform

and quadratic transform techniques are utilized to optimize

the passive beamforming. The algorithm’s convergency is

proved and its complexity is analyzed. Numerical results

show that the proposed design achieves significant sum-

rate enhancement compared to underlaying D2D without

RIS, and suffers from slight degradation compared to the

best-achievable performance under ideal user pairing.

II. SYSTEM MODEL

As shown in Fig. 1, we consider an RIS-empowered

cellular network with underlay D2D, which consists of

an RIS, N ≥ 1 D2D transmitters (TXs) denoted as
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Fig. 1: An RIS-empowered underlaying D2D network.

TX 1, . . . ,TX N, N D2D receivers (RXs) denoted as

RX 1, . . . ,RX N, K ≥ 1 active CUs (i.e., cellular users)

denoted as CU 1, . . . ,CU K, and a cellular BS. The RIS

has M ≥ 1 reflecting elements, while each D2D TX,

D2D RX, CU and the BS are equipped with a single

antenna. A controller is attached to the RIS to control the

reflecting coefficients and communicate with other network

components through separate wireless links. We assume

that the D2D links share the uplink (UL) spectrum of the

cellular network, since the UL spectrum is typically under-

utilized compared to the downlink spectrum. To alleviate

interference, we consider that a D2D link shares at most

one CU’s spectrum resource, while the resource of a CU

can be shared by at most one D2D link [3].

All channels are assumed to experience quasi-static flat-

fading and be known. The channels from TX i (1 ≤ i ≤
N) to RX l (1 ≤ l ≤ N) and RIS are denoted by hl,i ∈ C
and fi ∈ CM×1, respectively. For notational clarity, we

represent each channel related to the cellular network with

a tilde. The channels from CU k (1 ≤ k ≤ K) to BS and

RIS are denoted by h̃k ∈ C and f̃k ∈ CM×1 , respectively;

the channels from RIS to RX l and BS are denoted by

gl ∈ CM×1 and g̃ ∈ CM×1, respectively; the interference

channels from TX i to BS and from CU k to RX l are

denoted by ui ∈ C and vl,k ∈ C, respectively.

The transmitted signals from TX i and CU k are denoted

as si and xk, respectively, which follow independent cir-

cularly symmetric complex Gaussian (CSCG) distribution

with zero mean and unit variance, i.e., si ∼ CN (0, 1),
xk ∼ CN (0, 1). Denote the index set of active D2D pairs

as D ⊆ {1, . . . , N}. The corresponding SINR for RX n
decoding sn from D2D TX n ∈ D is

γd
n =

P d
n

∣∣gH
n Φfn + hn,n

∣∣2
K∑

k=1

ρk,nP c
k

∣∣∣gH
n Φf̃k + vn,k

∣∣∣2 + σ2

, (1)

where P d
i and P c

k are the transmit power of TX i and CU k,

respectively; Φ = diag{α1e
jθ1 , . . . , αMejθM } denotes the

reflecting coefficient matrix, where αm ∈ (0, 1] and θm ∈
(0, 2π]; ρk,n is the resource reuse indicator for cellular link

k and D2D link n, ρk,n = 1 when D2D link n reuses the

resource of CU k, and ρk,n = 0 otherwise; σ2 is the power

of additive white Gaussian noise (AWGN) at RX n.

The SINR for BS decoding xk from CU k is

γc
k =

P c
k

∣∣∣g̃HΦf̃k + h̃k

∣∣∣2
N∑
i=1

ρk,iP d
i |g̃HΦfi + ui|2 + σ2

, (2)

where σ2 is the power of AWGN at BS.

Hence, the overall network’s sum rate in bps/Hz is

R (ρ,p,Φ) =
∑
n∈D

log2(1 + γd
n) +

K∑
k=1

log2(1 + γc
k), (3)

where the length-(KN ) resource reuse indicator

vector ρ = [ρ1,1, . . . , ρ1,N , ρ2,1, . . . , ρK,N ]
T

,

and the length-(K + N ) power allocation vector

p =
[
P d
1 , . . . , P

d
N , P c

1 , . . . , P
c
K

]T
.

III. PROBLEM FORMULATION

This paper aims to maximize the sum rate in (3), by

jointly optimizing the resource reuse indicator vector ρ,

the transmit power vector p and the reflecting coefficients

matrix Φ. The optimization problem is formulated as

(P1) : max
ρ,p,Φ

R (ρ,p,Φ) (4a)

s.t. γd
n ≥ γd

min, n ∈ D (4b)

γc
k ≥ γc

min, 1 ≤ k ≤ K (4c)

K∑
k=1

ρk,n ≤ 1 (4d)

N∑
n∈D

ρk,n ≤ 1 (4e)

0 ≤ P d
n ≤ P d

max (4f)

0 ≤ P c
k ≤ P c

max (4g)

0 < αm ≤ 1, 1 ≤ m ≤ M (4h)

0 < θm ≤ 2π, 1 ≤ m ≤ M (4i)

where (4b) and (4c) indicate the required minimum SINRs

(i.e., quality-of-service) γd
min and γc

min for the D2D links

and cellular links, respectively; (4d) ensures that a D2D

link shares at most one CU’s resource, while (4e) indicates

that the resource of a CU can be shared by at most one

D2D link; (4f) and (4g) are the maximum transmit power

constraints on the TXs and CUs, respectively; (4h) and (4i)

are the practical constraints on the reflecting coefficients.

Notice that (P1) is a non-convex problem. First, (P1)

involves integer variables ρ and thus is NP-hard. Moreover,

the objective function and the constraint functions of (4b)



and (4c) are non-concave with respect to the variables ρ,

p and Φ, and these variables are all coupled. There is no

standard method to solve such a non-convex problem.

IV. PROPOSED SOLUTION TO (P1)

In order to solve (P1) effectively, we first propose an

efficient user-pairing scheme to determine integer variables

ρ, then optimize p and Φ in an iterative manner.

A. Relative-Channel-Strength based Pairing Scheme
Since the user-pairing design involves integer program-

ming which is hard to solve, we propose a relative-channel-

strength (RCS) based low-complexity pairing scheme to

design the resource reuse indictors ρ.

Notice that there are AN
K different possible pairings

denoted as a set Π � {π1, . . . , πAN
K
}. Each possible pairing

can be viewed as an index mapping denoted as πm : k ∈
Um−→n ∈ Dm, for m = 1, . . . , AK

N , i.e., the mapping πm

maps each CU index k ∈ Um ⊂ {1, 2, . . . ,K} to a D2D-

link index n ∈ Dm ⊂ D. The RCS-based pairing scheme

determines the pairing πm� by the following criterion

πm� = argmax
πm∈Π

∑
k∈Um

|h̃k|2
|vπm(k),k|2 . (5)

This heuristic pairing scheme chooses the pairing map-

ping which maximizes the sum of the ratios of each

paired-CU-to-BS channel strength over the paired CU-to-

RX interference channel strength. Clearly, this heuristic

pairing scheme that requires only simple comparison fea-

tures low complexity, but fortunately its resultant design

only suffers from slight performance degradation compared

to the design with ideal pairing achieved by exhaustive

search, as numerically shown in Section V.

B. Algorithm for Solving (P1) with Given Pairing Design

After heuristic pairing, we apply the alternating opti-

mization (AO) [9] algorithm to decouple the variables p
and Φ. For given Φ, we optimize p based on the successive

convex approximation (SCA) technique [10]. For given p,

we optimize Φ based on the Lagrangian dual transform

and quadratic transform techniques [11].

1) Optimizing Transmit Power Vector p: In each it-

eration j, for given reflecting coefficient matrix Φ, the

transmit power vector p can be optimized by solving

(P1.1) : max
p

R (p) (6a)

s.t. (4b), (4c), (4f), (4g). (6b)

The objective function of (P1.1) is non-convex due to

its p-dependence. We exploit the SCA technique to solve

(P1.1). Specifically, we need to find a concave lower bound

to approximate the objective function. Since any convex

function can be lower bounded by its first-order Taylor

expansion at any point, we obtain the following concave

lower bound Rlb at the point p(j)

R ≥
∑
n∈D

[
log2

(
K∑

k=1

P d
nQ

(j)
n,n +A1

)
− log2

(
A

(j)
1

)
− 1

A
(j)
1

K∑
k=1

ρk,nQ̃
(j)
n,k

(
P c
k − P

c(j)
k

)]

+
K∑

k=1

[
log2

(
P c
k Q̃

(j)
k +A2

)
− log2

(
A

(j)
2

)
− 1

A
(j)
2

N∑
i=1

ρk,iQ
(j)
i

(
P d
i − P

d(j)
i

)]
= Rlb, (7)

where Qn,n=|gH
n Φfn+hn,n|2, Q̃n,k = |gH

n Φf̃k+vn,k|2,

Q̃k = |g̃HΦf̃k+ h̃k|2, Qi = |g̃HΦfi + ui|2, A1 =∑K
k=1ρk,nP

c
k Q̃

(j)
n,k + σ2 and A2 =

∑N
i=1 ρk,iP

d
i Q

(j)
i +σ2.

With given p(j) and Rlb, (P1.1) is approximated as

(P1.2) : max
P

Rlb (8a)

s.t. (4b), (4c), (4f), (4g). (8b)

(P1.2) is convex and can be solved by CVX [12].

2) Optimizing Reflecting Coefficient Matrix Φ: In each

iteration j, for given transmit power vector p, the reflecting

coefficient matrix Φ can be optimized by solving

(P2.1) : max
Φ

R(Φ) (9a)

s.t. (4b), (4c), (4h), (4i). (9b)

We tackle the logarithm in the objective function via the

Lagrangian dual transform technique. Introducing auxiliary

variables ηd
n = [ηd1 , . . . , η

d
N ]T and ηc

k = [ηc1, . . . , η
c
K ]T , the

new objective function can be equivalently expressed as

Ra(Φ)=max
ηd
n

(∑
n∈D

log
(
1+ηdn

)−∑
n∈D

ηdn+
∑
n∈D

(1+ηdn)γ
d
n

1 + γd
n

)

+max
ηc
k

(
K∑

k=1

log(1+ηck)−
K∑

k=1

ηck+

K∑
k=1

(1+ηck)γ
c
k

1 + γc
k

)
. (10)

It is easy to validate that the optimal values of η
d(j)
opt

and η
c(j)
opt are γd(j) and γc(j), respectively. We define

θHωn,n = gH
n Φfn, θHω̃n,k = gH

n Φf̃k, θHω̃k = g̃HΦf̃k
and θHωi = g̃HΦfi. From (1) and (2), optimizing the

reflecting coefficient Φ can be equivalently transformed

into optimizing θ in the following objective function

Ra(θ) =
∑
n∈D

(
1 + η

d(j)
opt,n

)
P

d(j)
n Qw

n,n

P
d(j)
n Qw

n,n +
K∑

k=1

ρk,nP
c(j)
k Q̃w

n,k + σ2

+
K∑

k=1

(
1 + η

c(j)
opt,k

)
P

c(j)
k Q̃w

k

P
c(j)
k Q̃w

k +
N∑
i=1

ρk,iP
d(j)
i Qw

i + σ2

, (11)



where Qw
n,n = |θHωn,n + hn,n|2, Q̃w

n,k = |θHω̃n,k +

vn,k|2, Q̃w
k = |θHω̃k + h̃k|2 and Qw

i = |θHωi + ui|2.

Then, utilizing the quadratic transform method pro-

posed in [11], we introduce an auxiliary variable y =
[yd1 , . . . , y

d
N , yc1, . . . , y

c
K ]T , transforming (11) to

Rb(θ,y) =∑
n∈D

[
2

√(
1 + η

d(j)
opt,n

)
P

d(j)
n Re

{
yd∗n θHωn,n + yd∗n hn,n

}
− |ydn|2

(
P d(j)
n Qw

n,n +

K∑
k=1

ρk,nP
c(j)
k Q̃w

n,k + σ2

)]

+
K∑

k=1

[
2
√

(1 + η
c(j)
opt,k)P

c(j)
k Re

{
yc∗k θHω̃k + yc∗k h̃k

}
− |yck|2

(
P

c(j)
k Q̃w

k +

N∑
i=1

ρk,iP
d(j)
i Qw

i + σ2

)]
. (12)

We first optimize y with fixed θ, then optimize θ
with fixed y. It can be easily confirmed that Rb(θ,y)
is a concave differentiable function over y with fixed θ,

so the optimal solution of y can be obtained by setting

∂Rb(θ
(j),y)/∂y = 0. The optimal value of y is given by

y
d(j)
opt,n =

√(
1 + η

d(j)
opt,n

)
P

d(j)
n

[
θH(j)ωn,n + hn,n

]
P

d(j)
n Qw

n,n +
K∑

k=1

ρk,nP
c(j)
k Q̃w

n,k + σ2

(13)

y
c(j)
opt,n =

√(
1 + η

c(j)
opt,k

)
P

c(j)
k

[
θH(j)ω̃k + h̃k

]
P

c(j)
k Q̃w

k +
N∑
i=1

ρk,iP
d(j)
i Qw

i + σ2

. (14)

Then, we replace ydn and yck with y
d(j)
opt,n and y

c(j)
opt,k,

respectively. Denote B1n = P
d(j)
n ωn,nω

H
n,n, B2n =∑K

k=1 ρk,nP
c(j)
k ω̃n,kω̃

H
n,k, B1b = P

c(j)
k ω̃kω̃

H
k , B2b =∑N

i=1ρk,iP
d(j)
i ωiω

H
i , e1n = P

d(j)
n h∗

n,nωn,n, e2n =∑K
k=1 ρk,nP

c(j)
k v∗n,kω̃n,k, e1b = P

c(j)
k h̃∗

kω̃k and e2b =∑N
i=1ρk,iP

d(j)
i u∗

iωi. Optimizing θ for given y, the objec-

tive function is transformed as follows

Rb(θ,y) = −θHB1θ + 2Re
(
θHe1

)
+ C1, (15)

where C1 is a constant, the matrix B1 and vector e1 are

B1 =
∑
n∈D

∣∣∣yd(j)opt,n

∣∣∣2 Bn +
K∑

k=1

∣∣∣yc(j)opt,k

∣∣∣2 Bb (16)

e1 =
∑
n∈D

[√(
1+η

d(j)
opt,n

)
P

d(j)
n

(
y
d(j)
opt,n

)∗
ωn,n−

∣∣∣yd(j)opt,n

∣∣∣2en]

+
K∑

k=1

[√(
1+η

c(j)
opt,k

)
P

c(j)
k

(
y
c(j)
opt,k

)∗
ω̃k−

∣∣∣yc(j)opt,k

∣∣∣2eb], (17)

with Bn = B1n+B2n, Bb = B1b+B2b, en = e1n+e2n,

Algorithm 1 Proposed algorithm for solving (P1)

Step 1: Initialize p{0}, Φ{0}, a small threshold constant

ε = 10−4. Let j = 0.

Step 2: Exploting RCS-based pairing scheme to deter-

mine the resource resue indictor vector ρ.

repeat
Step 3: Solve problem (P1.2) for given Φ(j), and

obtain the optimal solution as p{j+1}.

Step 4: Solve problem (P2.2) for given p{j+1}, and

obtain the optimal solution as Φ{j+1}:

Step 5: Update iteration index j = j + 1.

until The increase of objective value is smaller than ε
Step 6: Return the suboptimal solution ρ� = ρ{j−1},

p� = p{j−1} and Φ� = Φ{j−1}

and eb = e1b + e2b.

Similarly, leveraging the quadratic transform method,

the constraints (4b) and (4c) can be transformed into

fd(θ) = −θHB2θ + 2Re
(
θHe2

)
+ C2 ≥ γd

min, (18)

fc(θ) = −θHB3θ + 2Re
(
θHe3

)
+ C3 ≥ γc

min, (19)

where xd =

√
P

d(j)
n (θH(j)ωn,n+hn,n)∑K
k=1 ρk,nP

c(j)
k Q̃w

n,k+σ2
, B2 =

|xd|2B2n, e2 =

√
P

d(j)
n x∗

dωn,n − |xd|2e2n, C2 =

2

√
P

d(j)
n Re {x∗

dhn,n} − |xd|2(
∑K

k=1 ρk,nP
c(j)
k |vn,k|2 +

σ2);xc =

√
P

c(j)
k (θH(j)ω̃k+h̃k)∑N

i=1 ρk,iP
d(j)
i Qw

b,i+σ2
,B3 = |xc|2B2b,

e3 =

√
P

c(j)
k x∗

cω̃k − |xc|2e2b, and C3 =

2

√
P

c(j)
k Re

{
x∗
c h̃k

}
− |xc|2

(∑N
i=1ρk,iP

d(j)
i |ui|2 + σ2

)
.

Hence, (P2.1) is transformed into the following problem

(P2.2) : max
θ

− θHB1θ + 2Re
(
θHe1

)
+ C1 (20)

s.t. (18), (19), (4h), (4i). (21)

The resulting (P2.2) is a quadratic constrained quadratic

programming (QCQP) problem. Thus, (P2.2) can also be

effectively solved by standard methods.

C. Overall Algorithm

Theorem 1. Algorithm 1 is guaranteed to converge. 1

Proof: First, in Step 3, since the optimal solution

p{j+1} is obtained for given Φ{j}, we have the following

inequality on the sum rate

R
(
p{j},Φ{j}

)
(a)
= Rlb

(
p{j},Φ{j}

)
1Notice that AO algorithm can generally converge to a stationary

point [9], but AO-based Algorithm 1 can not guarantee to converge to a
stationary point due to the applied techniques of SCA, Lagrangian dual
transform and quadratic transform.



(b)

≤ Rlb
(
p{j+1},Φ{j}

)
(c)
= R

(
p{j+1},Φ{j}

)
, (22)

where (a) and (c) hold since the Taylor expansion in (7) is

tight at given local points p{j} and p{j+1}, respectively,

and (b) holds since p{j+1} is the optimal solution to (P1.2).

Second, in Step 4, since Φ{j+1} is the optimal solution

to (P2.2), we can obtain the following inequality

R
(
p{j+1},Φ{j}

)
≤ R

(
p{j+1},Φ{j+1}

)
. (23)

From (22) and (23), it’s straightforward that

R
(
p{j},Φ{j}

)
≤ R

(
p{j+1},Φ{j+1}

)
. (24)

Since the objective value is non-decreasing after each

iteration and is upper bounded by some positive constant,

the overall Algorithm 1 is guaranteed to converge.

Problems (P1.2) and (P2.2) are alteratively solved in

each outer-layer AO iteration. Specifically, (P1.2) can be

solved in (N+K) log2(N+K) operations by the extended

water-filling algorithm [13], while (P2.2) is a convex

QCQP which can be solved by using interior point methods

with complexity O(M3.5) [14]. Hence, the complexity of

Algorithm 1 is O (
Iite[(N +K) log2(N +K) +M3.5]

)
,

where Iite denotes the number of outer-layer AO iterations.

V. NUMERICAL RESULTS

We assume that hl,i, ui, h̃k and vl,k are independently

Rayleigh fading distributed, while fi, f̃k, gl and g̃ follow

independent Rician fading distribution, i.e.,

fi =

√
K1

K1 + 1
fL,i +

√
1

K1 + 1
fN,i, (25)

where K1 is the Rician factor of fi, fL,i is the line of

sight (LoS) component, and fN,i is the non-LoS (NLOS)

component each element of which follows distribution

CN (0, βi), where βi is the large-scale pathloss. Set K1 =
10. Similarly, f̃k, gl and g̃ are generated in the same way

as fi with Rician factors K2 = K3 = K4 = 10.

We assume that the CUs are uniformly distributed in

the cellular cell with radius R = 250 meters (m). We

adopt the clustered distribution model in [3] for D2D

users, i.e., the clusters are randomly located in the cell,

and each D2D link is uniformly distributed in one cluster

with radius r = 60 m. We set K = 4 and N = 2. The

RIS is located between two D2D clusters. Using the above

method, the locations of CUs and D2D users are generated

by one realization, and then fixed in all the simulations.

The coordinates of CU 1, CU 2, CU 3 and CU 4 are (38,

54), (87, 92), (112, 136) and (155, 89), respectively; the

coordinates of TX 1 and RX 1 are (97, 28), (144, 52),

respectively; the coordinates of TX 2 and RX 2 are (44,

103), (52, 154), respectively; the coordinate of RIS is

(100, 0). The large-scale path losses β’s from TXs and

CUs to RXs are 10−3d−4, from TXs and CU to BS are
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Fig. 2: Sum rate versus maximum transmit power P d
max.

10−3d−3.8, the other pass-losses of RIS-related channels

are 10−3d−2.2 [3] [7] [15], where d is the distance in me-

ters. We set M = 200, Pmax = P d
max = P c

max = 24dBm

, Rd
min = Rc

min = log2(1 + γd
min) = 0.3 bps/Hz, and

σ2 = −114 dBm [16]. The simulation results are based on

1000 channel realizations.

For comparison, we consider the following three bench-

marks, i.e., (1) underlaying D2D without RIS, (2) pro-

posed design with random reflecting coefficients, (3) RIS-

empowered D2D with ideal user pairing. For the first

benchmark, we consider the traditional RIS-empowered

D2D underlaying a cellular network without RIS. We

maximize the sum rate by jointly optimizing the resource

reuse indicator ρ and the transmit power vector p. We use

the solving algorithm in [3] for this problem, and omit the

details herein. For the second benchmark, we maximize the

sum rate by jointly optimizing ρ and p. All reflecting ele-

ments are set with random phase and maximal amplitude.

For the third benchmark, we exhaustively search over AN
K

possible user-pairings, and jointly optimize p as well as Φ
under each pairing. This benchmark gives an achievable

upper-bound sum-rate performance.

Fig. 2 plots the sum rate versus D2D TX’s maximum

transmit power Pmax. The proposed design achieves sig-

nificant sum rate gain compared to the first benchmark.

For instance, the sum rate of the proposed RCS-based

design is 77.42% and 73.8% higher than that of the first

benchmark when Pmax is 20 and 30 dBm, respectively.

In addition, the proposed design outperforms the second

benchmark without optimizing Φ, which shows the benefit

of passive beamforming optimization. Moreover, compared

to the third benchmark based on exhaustive search, the

proposed design has slight degradation of performance,

but obviously outperforms this benchmark in terms of

computational complexity. The proposed design solves the

joint-resource-allocation optimization problem only once,

while the third benchmark needs to solve such problem

for AN
K times under all possible pairings, resulting into
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unaffordable complexity especially for large numbers of

D2D and cellular links. Furthermore, the sum rate increases

as the phase-shift quantization bit B increase. In partic-

ular, the 2-bit phase shifter can obtain sufficiently high

performance gain with a slight performance degradation

compared to the ideal case of continuous phase shifters.

Fig. 3 plots the sum rate versus the CUs’ minimum

rate requirement Rc
min. The sum rate decreases as Rc

min

increases, which reveals the rate tradeoff between the

D2D links and the cellular links. Compared to the first

benchmark, the proposed design achieves significant sum-

rate gain by introducing the RIS for Rc
min ≤ 1.5 bps/Hz.

For Rc
min ≥ 1.5 bps/Hz, the first benchmark achieves

higher sum rate as compared to the proposed design. The

reason is that both the pairing scheme and the benefits

introduced by the RIS affect the sum rate performance.

When Rc
min is relatively small, the proposed design with

a suboptimal pairing scheme is able to obtain a feasible

solution, the performance enhancement comes from the

well-designed RIS; in contrast, when Rc
min is too large,

the problem is not likely to be solved under a suboptimal

pairing scheme, which results into worse performance of

the proposed design as compared to the first benchmark

with ideal pairing. Also, the proposed design outperforms

the second benchmark, and suffers from slight sum-rate

performance degradation compared to the third benchmark.

VI. CONCLUSION

This paper has maximized the overall sum rate of

an RIS-empowered underlaying D2D communication net-

work. First, an efficient relative-channel-strength based

user-pairing scheme with low complexity is proposed to

determine the resource reuse indicators. Then, the transmit

power and the passive beamforming are optimized by uti-

lizing the proposed alternating-optimization based iterative

algorithm. Numerical results show that the proposed design

achieves significant performance enhancement compared

to underlaying D2D network without RIS, and suffers

from slight performance degradation compared to RIS-

empowered underlying D2D with ideal user-pairing. This

work can be extended to other scenarios such as multi-

antenna BS/users and multiple RISs.
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