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Abstract—Reconfigurable intelligent surface (RIS) is a new
and revolutionary technology to achieve spectrum-, energy-
and cost-efficient wireless networks. This paper studies the re-
source allocation for RIS-empowered device-to-device (D2D)
communication underlaying a cellular network, in which an
RIS is employed to enhance desired signals and suppress
interference between paired D2D and cellular links. We
maximize the overall network’s spectrum efficiency (SE) and
energy efficiency (EE), respectively, by jointly optimizing the
spectrum reuse indicators, the transmit power, the RIS’s
passive beamforming and the BS’s receive beamforming. To
solve both mixed-integer non-linear programming problems,
we first propose an efficient and low-complexity user-pairing
scheme based on relative channel strength to determine the
spectrum reuse indicators. Other variables are then optimized
to maximize the SE by an iterative algorithm, based on
the techniques of alternating optimization, successive convex
approximation, Lagrangian dual transform and quadratic
transform. The EE-maximization problem is solved by an
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alternating algorithm integrated with Dinkelbach’s method.
Numerical results show that the proposed design achieves
significant SE and EE enhancements compared to traditional
underlay D2D network without RIS, relay-assisted D2D
network and other benchmarks.

Index Terms—Device-to-device communication, reconfig-
urable intelligent surface, spectrum efficiency optimization,
energy efficiency optimization, resource allocation, passive
beamforming.

I. INTRODUCTION

A. Motivation

Device-to-device (D2D) communication underlaying a
cellular network allows a device to communicate with
proximity devices in licensed cellular bands. It is rec-
ognized as a promising wireless technology and a com-
petitive candidate for beyond 5th-Generation (5G) system
standards [1]. Specifically, the overall network’s spec-
trum efficiency (SE) can be enhanced, since additional
D2D links are supported by sharing the licensed cellular
spectrums; the overall network’s energy efficiency (EE)
can be improved by exploiting the proximity of D2D
users; also, the transmission delay can be reduced by
eliminating the forwarding through a cellular base station
(BS). Task offloading in edge computing networks can
effectively improve the mobile devices’ computation and
energy efficiency [2], [3]. D2D communications is also
a promising offloading solution in cellular networks with
high SE and EE. However, interference management is an
important challenge for underlay D2D communication [1],
[4], [5]. The D2D link and the cellular link operating in the
same band interfere with each other, and the interference
needs to be carefully suppressed via efficient interference
control [6] and resource allocation [7]. Existing interfer-
ence management schemes were designed assuming that
the wireless environment including interference channels
is fixed. Thus the extent of interference suppression is
fundamentally limited.

Recently, reconfigurable intelligent surface (RIS) has
emerged as a new and revolutionary technology to achieve
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spectrum-, energy- and cost-efficient wireless networks
[8]–[10]. An RIS consists of a large number of passive
low-cost reflecting elements, each of which can adjust
the phase and amplitude of the incident electromagnetic
wave in a software-defined way and reflect it passively
[11]. Thus, RIS is able to enhance desired signals and
suppress interference by designing passive beamforming
(i.e., changing each reflecting element’s reflecting coef-
ficient including amplitude and phase). In particular, a
typical RIS architecture consists of a smart controller and
three layers (i.e., a reflecting element, copper backplane,
and a control circuit board) [8]. The controller attached to
RIS can intelligently adjust the reflecting coefficients and
communicate with other network components. Hence, the
wireless propagation environment can be intentionally re-
configured, which opens up for fundamental improvements
in interference management for underlay D2D communi-
cation. Moreover, a full-duplex amplify-and-forward (AF)
relay actively processes the received signals and transmits
the amplified signals, which leads to additional noise and
self-interference at the relay. Therefore, RIS outperforms
full-duplex AF relay in terms of EE and cost efficiency
[12].

RIS can be explored to not only suppress the severe
interference between each paired D2D link and cellular
link, but also to enhance the strength of desired signals
for both D2D and cellular links. This motivates us to
study RIS-empowered D2D communication underlaying a
cellular network as shown in Fig. 1, which consists of mul-
tiple D2D pairs and multiple cellular users (CUs), as well
as an RIS. This RIS-empowered underlay D2D network
has not been comprehensively studied in the literature for
both SE and EE to our best knowledge. For the related
work, the EE of an RIS-assisted pure D2D network without
interplay with the cellular network was recently maximized
by optimizing only the D2D transmission power and the
RIS’s passive beamforming in [13].
B. Related Works

1) D2D Communication: The SE maximization with
interference management in D2D communication system-
s were studied in [14]–[16]. For D2D communication
underlaying cellular networks, the overall network’s SE
was maximized in [14] by jointly optimizing the spec-
trum reuse indicators and transmit power. For D2D com-
munication underlaying an orthogonal-frequency-division-
multiplexing (OFDM) cellular network, the average ergod-
ic sum rate over D2D pairs’ locations was maximized
in [15] by jointly optimizing the subcarrier assignment
and power allocation. For a direct D2D communication
network, a deep learning approach was proposed in [16]
to maximize the overall network SE by optimizing the
scheduling of D2D links.

Also, the EE maximization or energy minimization with
interference management in D2D communication systems

were studied in [17]–[20]. For D2D communication under-
laying a multiuser multiple-input multiple-output cellular
network, the total transmit power of the overall network
was minimized in [17], by jointly optimizing the BS’s
transmit beamforming and transmit power of both BS and
D2D transmitters. The overall EE of an underlay D2D
network, which allows multiple D2D users pair with a CU,
was maximized in [18] by jointly optimizing the spectrum
reuse indicators and power allocation. The overall EE
was maximized in [19] for dedicated transmission mode,
reusing transmission mode and cellular transmission mode,
while considering the circuit power consumption and the
QoS requirements for D2D users and CUs. The perfor-
mance of an underlay D2D network over fading channels
was analyzed in [20] by leveraging a stochastic geometric
approach.

The aforementioned works improve SE or EE per-
formance of the underlay D2D communication systems.
By optimizing the spectrum reuse indicators, BS’s trans-
mit beamforming or users’ transmit power, these works
carefully designed the interference management schemes.
However, in these works, the wireless environment is
considered to be fixed, and can only be compensated
through sophisticated transmission and reception design.
In contrast, through the RISs passive beamforming design,
our work reconfigures the wireless prorogation environ-
ment intelligently, thus further enhances the SE and EE
performance significantly compared to the aforementioned
works.

2) Wireless Communication with RIS: Wireless com-
munication systems with RIS can be divided into two
categories, i.e., RIS-based transceiver design and RIS-
assisted wireless communication. For the former, the RISs
are utilized as transmit antennas and receive antennas
to significantly reduce the hardware cost of traditional
wireless transceivers [21]. Most research belongs to the
latter category, in which RIS is applied to improve the
performance of wireless systems. RIS has similarities with
backscatter communications, with some important differ-
ences, however. Backscatter communication enables a tag
to deliver its own information to a receiver by intentionally
switching the antenna’s load impedances [22] [23], while
an RIS is used to enhance the existing communication link
performance.

RIS-assisted wireless communication was extensively
studied in the prior works. For example, the weighted
sum rate of an RIS-aided multiuser multiple-input single-
output (MISO) downlink system was maximized in [24],
by jointly optimizing the BS’s active beamforming and the
RIS’s passive beamforming (i.e., reflecting coefficients).
The ergodic sum rate of an RIS-assisted MISO system
was maximized in [25] through deep reinforcement learn-
ing, by jointly optimizing the BS’s transmit beamforming
and the RIS’s phase shifts. For an RIS-assisted downlink
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non-orthogonal-multiple-access system, the max-min rate
performance was optimized in [26]. The EE of an RIS-
empowered downlink multiuser system was maximized in
[27], by jointly optimizing the BS’s transmit power and the
RIS’s passive beamforming. Existing works which investi-
gated RIS-assisted multi-user wireless communication did
not involve the issue of user pairing. For RIS-empowered
underlay D2D communications, since the wireless environ-
ment depends on the RIS’s passive beamforming design,
the user pairing scheme is closely coupled with the RIS’s
passive beamforming design. The traditional user pairing
schemes are thus no longer applicative. This motivates
us to propose an efficient user-pairing scheme for RIS-
empowered underlay D2D communications.

C. Contributions

In this paper, we study the resource allocation for an
RIS-empowered underlay D2D communication network as
shown in Fig. 1. Compared with the conference-version
paper [28], this work extends the signal-antenna BS to
a practical multiple-antenna one, and also investigates
the EE-maximization problem. The main contributions are
summarized as follows
• We formulate a problem to maximize the overall

network SE (i.e., sum rate of D2D users and CUs)
[29], by jointly optimizing the spectrum reuse indica-
tors (i.e., user pairing between D2D users and CUs),
transmit power, RIS’s passive beamforming and BS’s
receive beamforming. This problem is challenging
to solve optimally, since the user pairing involves
integer variables and is closely coupled with resource
allocation. To our best knowledge, it is the first work
to investigate the joint design of user pairing, power
allocation and interference suppression via active-and-
passive beamforming in the RIS-empowered underlay
D2D communication networks.

• To decouple the SE-maximization problem, we first
propose an efficient relative-channel-strength (RCS)
based user-pairing scheme. Under the obtained user-
pairing design, an iterative algorithm based on alter-
nating optimization (AO), successive convex approx-
imations (SCA), Lagrangian dual transform (LDT)
and quadratic transform (QT) is further proposed.
The algorithm’s convergence and complexity are also
analyzed. The proposed user-pairing scheme is of
low-complexity, and suffers from slight performance
degradation compared to the ideal user-pairing bench-
mark based on high-complexity exhaustive search.

• We propose a practical RIS power-consumption mod-
el, which characterizes how the number of reflecting
elements and the quantization bits affect the power
consumption. Based on this model, we formulate
a problem to maximize the overall network EE,
by jointly optimizing the spectrum reuse indicators,

transmit power, RIS’s passive beamforming and BS’s
receive beamforming. To solve this non-convex prob-
lem, the proposed RCS-based user-pairing scheme is
first utilized to determine the spectrum reuse indi-
cators, and an AO-based algorithm integrated with
Dinkelbach’s method is then proposed to optimize
other variables iteratively. We also analyze the algo-
rithms’ convergence and complexity.

• Numerical results show that the proposed design
achieves significant SE and EE enhancements com-
pared to traditional underlay D2D without RIS, and
suffers from slight degradation compared to the best-
achievable performance under ideal user pairing. A
3-bit quantized phase shifter achieves sufficient SE
enhancement compared to the ideal case of a con-
tinuous phase shifters. As the number of reflecting
elements increases, the EE monotonically increases in
the considered practical parameter setup for the RIS-
empowered underlay D2D network, while it increases
first and then decreases for relay-assisted underlay
D2D network. The effects of other main parameters
on performances are also numerically verified.

D. Organization and Notations

The rest of this paper is organized as follows. Section II
presents the system model for RIS-empowered underlay
D2D communication network. Section III formulates the
SE maximization problem, and proposes an RCS-based
user-pairing scheme together with an efficient iterative
algorithm to solve this problem. Section IV formulates and
solves the EE-maximization problem. Section V provides
numerical results. Section VI concludes this paper.

The main notations are as follows. We denote scalars,
vectors and matrices by italic letters, bold-face lower-
case letters and bold-face upper-case letters, respectively,
e.g., a, a, A. The space of x × y complex matrices is
denoted by Cx×y . The set of real number and positive real
numbers are R and R+, respectively. The distribution of
a circularly symmetric complex Gaussian (CSCG) random
variable with mean µ and variance σ2 is CN (µ, σ2), and
the transpose and conjugate transpose of a vector v are vT

and vH , respectively. The l2-norm notation is denoted by
‖ ·‖. We denote the operation of taking real part by Re{·}.

II. SYSTEM MODEL

In this section, we first describe the RIS-empowered
underlay D2D communication network, and then present
the signal model.

A. System Description

As shown in Fig. 1, we consider an RIS-empowered
cellular network with underlay D2D, which consists of
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Fig. 1: An RIS-empowered underlay D2D communication
network.

an RIS1, N (N ≥ 1) D2D transmitters (TXs) denoted
as TX 1, . . . ,TX N, N D2D receivers (RXs) denoted
as RX 1, . . . ,RX N, K active CUs (i.e., cellular users)
denoted as CU 1, . . . , CU K, and a cellular BS. The BS
has Q antennas and the RIS has M (M ≥ 1) reflecting
elements; while each D2D TX, D2D RX and CU are
equipped with a single antenna. A controller is attached
to the RIS to control the reflecting coefficients and com-
municate with other network components through separate
wireless links. We assume that the D2D links share the
uplink (UL) spectrum of the cellular network, since the
UL spectrum is typically underutilized compared to the
downlink spectrum. To alleviate interference, we assume
that a D2D link shares at most one CU’s spectrum resource,
while the spectrum resource of a CU can be shared by at
most one D2D link [14] [31]. To ensure that each D2D link
can be paired with one cellular link, we further assume that
K ≥ N .

All channels are assumed to experience quasi-static
flat fading. The channels from TX i (1 ≤ i ≤ N) to
RX l (1 ≤ l ≤ N) and RIS are denoted by hl,i ∈ C
and fi ∈ CM×1, respectively. For notational clarity, we
represent all channels related to the cellular network with
a tilde. The channels from CU k (1 ≤ k ≤ K) to BS
and RIS are denoted by h̃k ∈ CQ×1 and f̃k ∈ CM×1 ,
respectively; the channels from RIS to RX l and BS are
denoted by gl ∈ CM×1 and G̃ ∈ CM×Q, respectively; the
interference channels from TX i to BS and from CU k to

1This work can be easily extended to a multiple-RIS setup, through
combining multiple phase-shift matrices and RIS-related channel matrices
(or vectors) into composite ones, respectively [30], and adopting the same
solving methods as in this work.

RX l are denoted by ui ∈ CQ×1 and vl,k ∈ C, respectively.
Since RIS is typically a passive device without signal
processing capabilities, it is challenging to estimate the
individual RIS-related channels. Nevertheless, there are
certain efficient algorithms to estimate the RIS-related
channels2. There are also a few papers investigating the
RIS-empowered communication with imperfect CSI3. This
paper focuses on system optimization, thus all the channels
are assumed to be perfectly known.

B. Signal Model

Let Φ = diag{β1, . . . , βM} ∈ CM×M denotes the
reflecting coefficient matrix of the RIS, where the ele-
ments are βm = αme

jψm , in terms of reflecting am-
plitude αm ∈ R+ and reflecting phase ψm ∈ R, for
1 ≤ m ≤ M . The reflecting coefficient βm belongs to
feasible set F . Denote the reflecting coefficient vector as
θ = [β1, . . . , βM ]T . Three different settings for reflecting
coefficients are considered in this paper.

1) Ideal Reflecting Coefficient: The amplitude
and phase of each reflecting element are
continuously adjustable, i.e., αm ∈ [0, 1] and
ψm ∈ [0, 2π). The ideal reflecting coefficient set is
F1 =

{
βm = αme

jψm
∣∣|βm|2 ≤ 1

}
.

2) Continuous Reflecting Phase Shift: The reflect-
ing phase shift ψm takes continuous values in the
range [0, 2π), and the amplitude is fixed to αm =
1. The continuous reflecting phase shift set is F2 ={
βm = ejψm

∣∣ψm ∈ [0, 2π)
}

.
3) Discrete Reflecting Phase Shift: The reflecting

phase shift ψm is B-bit quantized, taking 2B dis-
crete values, and the reflecting amplitude4 αm =
1. The discrete reflecting phase shift set is F3 ={
βm = ejψm

∣∣ψm ∈ {0, 2π
2B
, . . . , (2B−1)2π

2B

}}
.

From [10] [36], by switching different resistor loads and
setting different bias voltages to tuning elements like varac-
tor diodes, different reflecting amplitudes and phase shifts
can be realized. Due to hardware characteristics and cost
limitations, each reflecting element of the RIS typically
realizes a finite-resolution phase shift. Nevertheless, it is

2The RIS-related channels can be estimated as discussed in [32] [33].
For instance, an innovative three-phase framework was proposed in [32],
which exploited the correlations among the RIS reflected channels to
reduce the training overhead. In [33], the BS-to-RIS channel and the RIS-
to-user channel are estimated by exploiting sparse matrix factorization
and matrix completion, respectively. The RXs are supposed to feed the
estimated channels back to the BS.

3With imperfect CSI, the transmit power is minimized in [34] for
an RIS-aided MISO communication system, under the bounded CSI
error model the statistical CSI error model. In [35], an online stochastic
algorithm is developed, which satisfies QoS constraints stochastically
without requiring prior knowledge of CSI errors.

4Notice that the amplitude is typically smaller than 1 due to the power
consumption at the resistance of phase-shift tuning element, and depends
on the phase shift in practice [36]. For simplicity and convenience of
system optimization, we assume αm = 1.
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still valuable to evaluate the system performance with F1

and F2, which provides upper-bound performances for F3.
The transmit signals from TX i and CU k, si ∼

CN (0, 1) and xk ∼ CN (0, 1), follow independent CSCG
distribution with zero mean and unit variance. Denote
the index set of active D2D pairs as D ⊆ {1, . . . , N}.
The corresponding SINR for RX n decoding sn from
D2D TX n ∈ D is

γdn =
P dn
∣∣gHn Φfn + hn,n

∣∣2
K∑
k=1

ρk,nP ck

∣∣∣gHn Φf̃k + vn,k

∣∣∣2 + σ2

, (1)

where P di and P ck are the transmit power of TX i and
CU k; ρk,n is the spectrum reuse indicator for cellular link
k and D2D link n, ρk,n = 1 when D2D link n reuses
the resource of CU k, and ρk,n = 0 otherwise; σ2 is the
power of additive white Gaussian noise (AWGN) at RX n.
For convenience, we denote the length-(K + N ) power
allocation vector as p =

[
P d1 , . . . , P

d
N , P

c
1 , . . . , P

c
K

]T
, and

the length-(KN ) spectrum reuse indicator vector as ρ =
[ρ1,1, . . . , ρ1,N , ρ2,1, . . . , ρK,N ]

T ∈ CQ×K .
The SINR for the BS decoding xk from CU k is

γck =
P ck

∣∣∣wk(G̃HΦf̃k + h̃k)
∣∣∣2

N∑
i=1

ρk,iP di

∣∣∣wk(G̃HΦfi + ui)
∣∣∣2 + σ2‖wk‖2

, (2)

where wk ∈ C1×Q denotes the receive beamforming vec-
tor, and σ2 is the power of AWGN at the BS. The receive
beamforming matrix is denoted as W =

[
wT

1 , . . . ,w
T
K

]
.

As defined as the amount of transmitted information by
utilizing unit bandwidth in [29], the overall network’s SE
(i.e., sum rate of both D2D users and CUs) in bps/Hz is

R (ρ,p,Φ,W) =
∑
n∈D

log2(1 + γdn) +

K∑
k=1

log2(1 + γck).

(3)

III. SPECTRUM EFFICIENCY MAXIMIZATION

In this section, we formulate a problem to maximize the
SE in (3), by jointly optimizing the spectrum reuse indi-
cator vector ρ, the transmit power vector p, the reflecting
coefficients matrix Φ, and the receive beamforming matrix
W. The optimization problem is formulated as follows

(P1) : max
ρ,p,Φ,W

R (ρ,p,Φ,W) (4a)

s.t. γdn ≥ γdmin, n ∈ D (4b)
γck ≥ γcmin, 1 ≤ k ≤ K (4c)
ρk,n ∈ {0, 1} (4d)
K∑
k=1

ρk,n ≤ 1 (4e)

N∑
n∈D

ρk,n ≤ 1 (4f)

0 ≤ P dn ≤ P dmax (4g)
0 ≤ P ck ≤ P cmax (4h)

‖wk‖2 ≤ 1 (4i)
βm ∈ F , 1 ≤ m ≤M (4j)

where (4b) and (4c) indicate QoS constraints in terms of
required minimum SINRs γdmin and γcmin for D2D links
and cellular links, respectively; (4e) ensures that a D2D
link shares at most one CU’s resource, while (4f) indicates
that the resource of a CU can be shared by at most
one D2D link; (4g) and (4h) are the maximum transmit
power constraints on the TXs and CUs, respectively;
(4i) is the constraint on BS’s receive beamforming; and
(4j) is the constraint on the reflecting coefficients with
F ∈ {F1,F2,F3} .

Note that (P1) is a mixed-integer non-linear program
(MINLP), and thus NP-hard. Moreover, the objective func-
tion and the constraint functions of (4b) and (4c) are non-
concave with respect to the variables ρ, p, Φ and W,
and these variables are all coupled. There is no standard
method to solve such a MINLP. In the sequel, we first
propose a user-pairing scheme with low complexity to
determine the spectrum reuse indicator vector ρ. Then, to
solve the remaining non-convex problem with the contin-
uous variables, we propose an efficient algorithm based
on the alternating optimization (AO), successive convex
approximation (SCA), Lagrangian dual transform (LDT)
and quadratic transform (QT) techniques to optimize p, Φ
and W in an iterative manner. To begin with, we solve
(P1) with F = F1, which makes (4j) a convex constraint.
Afterwards, we utilize the projection method to obtain
heuristic solutions to (P1) with F = F2 and F = F3.

A. Relative-Channel-Strength based Pairing Scheme

Since the user-pairing design involves integer program-
ming which is hard to solve, we propose a RCS (i.e.,
relative-channel-strength) based low-complexity pairing
scheme to design the spectrum reuse indicators ρ.

From the user-pairing assumptions described in Subsec-
tion II-A, there are ANK different possible pairings that
form the set Π , {π1, . . . , πANK}, with the number of
permutations ANK = K(K − 1) · · · (K − N + 1). Each
possible pairing can be viewed as an index mapping
πq : k ∈ Uq−→n ∈ Dq , for q = 1, . . . , ANK , i.e., the πq
maps each CU index k ∈ Uq ⊂ {1, 2, . . . ,K} to a D2D-
link index n ∈ Dq ⊂ D. The RCS-based pairing scheme
determines the pairing πq? by the following criterion

πq? = arg max
πq∈Π

∑
k∈Uq

‖h̃k‖2

|vπq(k),k|2
+
|hπq(k),πq(k)|2

‖uπq(k)‖2
. (5)
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This heuristic pairing scheme chooses the pairing map-
ping which maximizes the sum of the relative channels
that is defined as the ratio of (transmitter-to-receiver)
useful channel strength over interference channel strength.
Specifically, the first term in the summation of (5) is the
ratio of each paired CU-to-BS channel strength over the
paired CU-to-RX interference channel strength, and the
second term is the ratio of each paired TX-to-RX channel
strength over the paired TX-to-BS interference channel
strength. The basic guideline for the proposed RCS-based
pairing scheme is to pair the users with both large useful-
channel strength and small interference-channel strength.
To implement this pairing scheme, the BS needs to estimate
its channel with each D2D TX, and each D2D RX needs
to estimate its channel with each CU and then feed it back
to the BS.

This heuristic pairing scheme that requires only simple
comparisons has low computational complexity. The resul-
tant design only suffers from slight performance degrada-
tion compared to the design with ideal pairing achieved
by exhaustive search, as numerically shown in Section V.
This RCS-based pairing scheme will also be used for EE
maximization in Section IV.

B. Optimize Transmit Power Vector p

Once the discrete pairing is found, the remaining vari-
ables will be optimized iteratively and alternately. In each
iteration j, for given reflecting coefficient matrix Φ(j)

and receive beamforming matrix W(j), the transmit power
vector p can be optimized by solving the following sub-
problem

(P1.1) : max
p

R(p) (6a)

s.t. (4b), (4c), (4g), (4h). (6b)

Since the objective function of (P1.1) is not concave
with respect to the optimization variable p, (P1.1) is non-
convex. The objective function can be rewritten as follows

R =
∑
n∈D

[
log2

(
P dnQ

(j)
n,n +A1

)
− log2 (A1)

]
+

K∑
k=1

[
log2

(
P ckQ

(j)
k +A2

)
− log2 (A2)

]
, (7)

where Qn,n = |gHn Φfn+hn,n|2, Q̃n,k = |gHn Φf̃k+vn,k|2,
Q̃k = |wk(G̃HΦf̃k + h̃k)|2, Qi = |wk(G̃HΦfi +

ui)|2, A1 =
∑K
k=1 ρk,nP

c
k Q̃

(j)
n,k + σ2 and A2 =∑N

i=1 ρk,iP
d
i Q

(j)
i + σ2‖w(j)

k ‖
2
.

The non-convexity of (7) comes from the terms
− log2(A1) and− log2(A2). We exploit the SCA technique
[37] to solve (P1.1). Specifically, from the fact that any
convex function can be lower bounded by its first-order
Taylor expansion at any point, we obtain the following

concave lower bound Rlb at the local point p(j)

R ≥
∑
n∈D

[
log2

(
P dnQ

(j)
n,n +A1

)
− log2

(
A

(j)
1

)
− 1

A
(j)
1

K∑
k=1

ρk,nQ̃
(j)
n,k

(
P ck − P

c(j)
k

)]

+

K∑
k=1

[
log2

(
P ck Q̃

(j)
k +A2

)
− log2

(
A

(j)
2

)
− 1

A
(j)
2

N∑
i=1

ρk,iQ
(j)
i

(
P di − P

d(j)
i

)]
, Rlb. (8a)

With given local point p(j) and lower bound Rlb, the
subproblem (P1.1) is approximated as

(P1.1.A) : max
p

Rlb (9a)

s.t. (4b), (4c), (4g), (4h). (9b)

Problem (P1.1.A) is a convex problem which can be
efficiently solved with standard toolbox, e.g., CVX [38].
Notice that the adopted lower bound Rlb implies that the
feasible set of (P1.1.A) is always a subset of that of (P1.1).
As a result, the optimal objective value obtained from
(P1.1.A) is in general a lower bound to that of (P1.1).

C. Optimize Reflecting Coefficient Matrix Φ with F = F1

In each iteration j, for given transmit power vector
p(j) and receive beamforming matrix W(j), the reflecting
coefficient matrix Φ can be optimized by solving the
following subproblem

(P1.2) : max
Φ

R(Φ) (10a)

s.t. (4b), (4c), (4j). (10b)

In this subsection, we utilize the LDT (i.e., Lagrangian
dual transform) [39] and QT (i.e., quadratic transform) [39]
techniques to convert (P1.2) into a quadratic constrained
quadratic programming (QCQP) problem, and the intro-
duced auxiliary variables are obtained from Φ(j) in closed
forms.

As the first step, the LDT technique is exploited to con-
vert the sum-logarithm objective function R(Φ) to a sum-
fraction expressions. Specifically, introducing auxiliary
variables ηd = [ηd1 , . . . , η

d
N ]T and ηc = [ηc1, . . . , η

c
K ]T ,

the subproblem (P1.2) can be equivalently reformulated as

(P1.2.L) : max
Φ,ηd,ηc

Ra(Φ,ηd,ηc) (11a)

s.t. (4b), (4c), (4j), (11b)

where the new objective function Ra(Φ,ηd,ηc) is ex-
pressed as

Ra =

(∑
n∈D

log
(
1+ηdn

)
−
∑
n∈D

ηdn+
∑
n∈D

(1 + ηdn)γdn
1 + γdn

)
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+

(
K∑
k=1

log(1 + ηck)−
K∑
k=1

ηck+

K∑
k=1

(1 + ηck)γck
1+γck

)
. (12a)

We proceed by first optimizing ηdn and ηck with fixed γdn
and γck; then we optimize γdn and γck with fixed ηdn and ηck. It
can be easily checked that Ra is a concave differentiable
function over ηdn with fixed γdn, so the optimal value of
ηdn can be obtained by setting ∂Ra(γ

d(j)
n )/∂ηdn = 0, i.e.,

η
d(j)
opt,n = γ

d(j)
n . Similarly, ηc(j)opt,k = γ

c(j)
k . Replacing ηdn and

ηck with η
d(j)
opt,n and η

c(j)
opt,k, respectively, we find that the

optimal objective values of (P1.2) and (P1.2.L) are equal,
i.e., Ra = R.

We define θHωn,n = gHn Φfn, θHω̃n,k = gHn Φf̃k,
θHω̃k = w

(j)
k G̃HΦf̃k and θHωi = w

(j)
k G̃HΦfi. From

(1) and (2), optimizing the reflecting coefficient matrix Φ
can be equivalently transformed into optimizing θ in the
following objective function

Rb(θ)=
∑
n∈D

(
1 + η

d(j)
opt,n

)
P
d(j)
n Qwn,n

P
d(j)
n Qwn,n +

K∑
k=1

ρk,nP
c(j)
k Q̃wn,k + σ2

+

K∑
k=1

(
1 + η

c(j)
opt,k

)
P
c(j)
k Q̃wk

P
c(j)
k Q̃wk +

N∑
i=1

ρk,iP
d(j)
i Qwi + σ2‖w(j)

k ‖
2
, (13)

where Qwn,n = |θHωn,n + hn,n|2, Q̃wn,k = |θHω̃n,k +

vn,k|2, Q̃wk = |θHω̃k + w
(j)
k h̃k|2 and Qwi = |θHωi +

w
(j)
k ui|2. Hence, (P1.2.L) can be equivalently reformulated

as follows

(P1.2.T) : max
θ

Rb(θ) (14a)

s.t. (4b), (4c), (4j). (14b)

As the second step, we utilize the QT tech-
nique [39] to further convert the multiple-ratio frac-
tional programming problem (P1.2.T) into a QCQP
problem. Specifically, introducing the auxiliary variable
y = [yd1 , . . . , y

d
N , y

c
1, . . . , y

c
K ]T , the objective function of

(P1.2.T) can be transformed as follows

Rc(θ,y)=
∑
n∈D

[
2

√(
1+η

d(j)
opt,n

)
P
d(j)
n Re

{(
ydn
)∗√

Qwn,n

}
−|ydn|2

(
P d(j)
n Qwn,n+

K∑
k=1

ρk,nP
c(j)
k Q̃wn,k + σ2

)]

+

K∑
k=1

[
2
√

(1 + η
c(j)
opt,k)P

c(j)
k Re

{
(yck)

∗
√
Q̃wk

}

− |yck|2
(
P
c(j)
k Q̃wk +

N∑
i=1

ρk,iP
d(j)
i Qwi +σ2‖w(j)

k ‖
2

)]
. (15)

We can first optimize y with fixed θ, then optimize

θ with fixed y. It can be easily checked that Rc(θ,y)
is a concave differentiable function over y with fixed θ,
so the optimal solution of y can be obtained by setting
∂Rc(y,θ

(j))/∂y = 0. Thus, the optimal values of y are
given by

y
d(j)
opt,n =

√(
1 + η

d(j)
opt,n

)
P
d(j)
n Q

w(j)
n,n

P
d(j)
n Qwn,n+

K∑
k=1

ρk,nP
c(j)
k Q̃wn,k+σ2

, (16)

y
c(j)
opt,n =

√(
1 + η

c(j)
opt,k

)
P
c(j)
k Q̃

w(j)
k

P
c(j)
k Q̃wk +

N∑
i=1

ρk,iP
d(j)
i Qwi +σ2‖w(j)

k ‖
2
. (17)

Substituting the above optimal yd(j)
opt,n and yc(j)opt,n into (15),

the resulting objective function Rc(θ) can be formally
written as the following quadratic expression

Rc(θ) = −θHB1θ + 2Re
(
θHe1

)
+ C1, (18)

where C1 is a constant, the matrix B1 and vector e1 are
given by

B1 =
∑
n∈D

∣∣∣yd(j)
opt,n

∣∣∣2(B1n+B2n)+

K∑
k=1

∣∣∣yc(j)opt,k

∣∣∣2 (B1b+B2b),

(19a)

e1 =
∑
n∈D

[√(
1+η

d(j)
opt,n

)
P
d(j)
n

(
y
d(j)
opt,n

)∗
ωn,n−

∣∣∣yd(j)
opt,n

∣∣∣2(e1n+e2n)

]
(19b)

+

K∑
k=1

[√(
1+η

c(j)
opt,k

)
P
c(j)
k

(
y
c(j)
opt,k

)∗
ω̃k−

∣∣∣yc(j)opt,k

∣∣∣2(e1b + e2b)

]
,

with the matrices B1n = P
d(j)
n ωn,nω

H
n,n,

B2n =
∑K
k=1 ρk,nP

c(j)
k ω̃n,kω̃

H
n,k, B1b =

P
c(j)
k ω̃kω̃

H
k , B2b =

∑N
i=1ρk,iP

d(j)
i ωiω

H
i , and

the vectors e1n = P
d(j)
n h∗n,nωn,n, e2n =∑K

k=1 ρk,nP
c(j)
k v∗n,kω̃n,k, e1b = P

c(j)
k (̃w

(j)
k h̃k)∗ω̃k

and e2b =
∑N
i=1ρk,iP

d(j)
i (w

(j)
k ui)

∗ωi.

Similar to the objective function Rb(θ) in (P1.2.T), the
constraint functions of (4b) and (4c) can be transformed
through the QT technique. Specifically, introducing auxil-
iary variables xd and xc , the left hand sides of (4b) and
(4c) can be equivalently written as

fd(θ, xd) = 2

√
P
d(j)
n Re

(
(xd)

∗
√
Qwn,n

)
− |xd|2

(
K∑
k=1

ρk,nP
c(j)
k Q̃wn,k + σ2

)
, (20a)

fc(θ, xc) = 2

√
P
c(j)
k Re

(
(xc)

∗
√
Q̃wk

)
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− |xc|2
(

N∑
i=1

ρk,iP
d(j)
i Qwi + σ2‖w(j)

k ‖
2

)
.

(20b)

With fixed θ, fd(xd,θ(j)) and fc(xc,θ(j)) are concave
differentiable functions over xd and xc, respectively. The
optimal solution of xd and xc can be obtained by setting
∂fd(xd,θ

(j))/∂xd = 0 and ∂fc(xc,θ
(j))/∂xc = 0,

respectively, and they are given as follows

x
(j)
opt,d =

√
P
d(j)
n Q

w(j)
n,n∑K

k=1 ρk,nP
c(j)
k Q̃wn,k + σ2

(21)

x
(j)
opt,c =

√
P
c(j)
k Q̃

w(j)
k∑N

i=1 ρk,iP
d(j)
i Qwb,i + σ2‖w(j)

k ‖
2 . (22)

By substituting x
(j)
opt,d and x

(j)
opt,c in (22) into (20a) and

(20b), the constraints (4b) and (4c) are equivalent to the
following constraints

fd(θ) = −θHB2θ + 2Re
(
θHe2

)
+ C2 ≥ γdmin, (23a)

fc(θ) = −θHB3θ + 2Re
(
θHe3

)
+ C3 ≥ γcmin, (23b)

where the positive-definite matrixes B2 =

|x(j)
opt,d|2B2n, B3 = |x(j)

opt,c|2B2b; the vectors

e2 =

√
P
d(j)
n × (x

(j)
opt,d)

∗ωn,n − |x(j)
opt,d|2e2n,

e3 =

√
P
c(j)
k (x

(j)
opt,c)

∗ω̃k − |x(j)
opt,c|2e2b; and the

constants C2 = 2

√
P
d(j)
n × Re

{
(x

(j)
opt,d)

∗hn,n

}
−

|x(j)
opt,d|2

(∑K
k=1 ρk,nP

c(j)
k |vn,k|2 + σ2

)
and

C3 = 2

√
P
c(j)
k Re

{
(x

(j)
opt,c)

∗w
(j)
k h̃k

}
−

|x(j)
opt,c|2

(∑N
i=1 ρk,iP

d(j)
i |w(j)

k ui|2 + σ2‖w(j)
k ‖

2)
.

Therefore, from (18), (P1.2.T) is transformed as the
following QCQP problem

(P1.2.Q) : max
θ
− θHB1θ + 2Re

(
θHe1

)
(24a)

s.t. (23a), (23b), (4j). (24b)

Problem (P1.2.Q) can be effectively solved by standard
toolbox like CVX [38].

D. Optimize Receive Beamforming Matrix with F = F1

In each iteration j, for given transmit power vector
p(j) and reflecting coefficient matrix Φ(j), the receive
beamforming matrix W can be optimized by solving the
following subproblem

(P1.3) : max
W

R(W) (25a)

s.t. (4c), (4i). (25b)

The techniques of LDT and QT are utilized to solve
(P1.3) once again. The details are omitted herein. By

Algorithm 1 Proposed algorithm for solving (P1)

Step 1: Initialize p(0),Φ(0),W(0), a small threshold
constant ε = 10−3. Let j = 0.
Step 2: Exploit RCS-based pairing scheme to determine
the spectrum reuse indicator vector ρ?.
repeat

Step 3: Solve (P1.1.A) for given Φ(j) and W(j), and
obtain the optimal solution as p(j+1).
Step 4: Solve (P1.2.Q) for given p(j+1) and W(j),
and obtain the optimal solution as Φ(j+1).
Step 5: Solve (P1.3.Q) for given p(j+1) and Φ(j+1),
and obtain the optimal solution as W(j+1).
Step 6: Update iteration index j = j + 1.

until The increase of objective value is smaller than ε.
Step 7: Return the suboptimal solution ρ?, p? = p(j−1),
Φ? = Φ(j−1) and W? = W(j−1).

defining qk = G̃HΦ(j)f̃k+hk and qk,i = G̃HΦ(j)fi+ui,
(P1.3) can be equivalently written as follows

(P1.3.Q) :max
W

K∑
k=1

[
wkB4w

H
k + 2Re{wke4b}

]
(26a)

s.t.wk(−|ξ∗k|2B4n)wH
k + 2Re{wke4n} ≥ γdmin

(26b)
(4i), (26c)

where ζk =

√
(1+γ

(j)
k )P

c(j)
k w

(j)
k qk

P
c(j)
k |w(j)

k qk|2+
∑N
i=1 ρk,iP

d(j)
i |w(j)

k qk,i|2+σ2‖w(j)
k ‖

2 ,

ξk =

√
P
c(j)
k w

(j)
k qk∑N

i=1 ρk,iP
d(j)
i |w(j)

k qk,i|2+σ2‖w(j)
k ‖

2 , B4n =(∑N
i=1 ρk,iP

d(j)
i qk,iq

H
k,i

)
+ σ2I, B4b = P

c(j)
k qkq

H
k ,

B4 = −|ζ∗k |2(B4n + B4b), e4n =

√
P
c(j)
k ξ∗kqk, and

e4b =

√
(1 + γ

(j)
k )P

c(j)
k ζ∗kqk.

(P1.3.Q) is also a QCQP problem, which can be effec-
tively solved by standard toolbox.

E. Overall Algorithm with Convergence and Complexity
Analyses

The overall algorithm is summarized in Algorithm 1.
There are four blocks of variables to be optimized, i.e., ρ,
p, Φ and W. We first use a low-complexity user-pairing
scheme based on the RCS to determine the spectrum reuse
indicator vector ρ. Under the obtained user-pairing design,
we use the AO (i.e., alternating optimization) technique to
optimize p, Φ and W alternatively in an outer iteration.

Problem (P1) with F = F2 and F = F3 makes (4j)
a non-convex constraint. We utilize the projection method
to solve this non-convex problem. For the convenience,
the optimal solutions to reflecting coefficient matrix with
F = F1, F = F2 and F = F3 are denoted by Φ?

1, Φ?
2

and Φ?
3, respectively. We project Φ?

1 into Φ?
2 and Φ?

3, and
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the corresponding elements are given by

Φ?m,2 = ej∠Φ?m,1 , (27)

Φ?m,3 = arg min
ψm∈{0, 2π

2B
,...,

(2B−1)2π

2B
}

∣∣ψm − ∠Φ?m,1
∣∣ , (28)

where Φ?m,1, Φ?m,2 and Φ?m,3 denote the m-th diagonal
element of Φ?

1, Φ?
2 and Φ?

3, respectively.

Theorem 1. Algorithm 1 is guaranteed to converge.

Proof: First, in Step 3, since the suboptimal solution
p(j+1) is obtained for given Φ(j) and W(j), we have the
following inequality on the sum rate

R(p(j),Φ(j),W(j))
(a)
= Rlb(p(j),Φ(j),W(j))

(b)

≤ Rlb(p(j+1),Φ(j),W(j))

(c)
= R(p(j+1),Φ(j),W(j)), (29)

where (a) and (c) hold since the Taylor expansion in (8a)
is tight at given local point p(j) and p(j+1), and (b) comes
from the fact that p(j+1) is the optimal solution to problem
(P1.1.A).

Second, in Step 4 and Step 5, since Φ(j+1) and W(j+1)

are the optimal solution to (P1.2.Q) and (P1.3.Q), respec-
tively, we can obtain the following inequalities

R(p(j+1),Φ(j),W(j)) ≤ R(p(j+1),Φ(j+1),W(j)),
(30)

R(p(j+1),Φ(j+1),W(j)) ≤ R(p(j+1),Φ(j+1),W(j+1)).
(31)

From (29), (30) and (31), it is straightforward that

R(p(j),Φ(j),W(j)) ≤ R(p(j+1),Φ(j+1),W(j+1)),
(32)

which implies that the objective value of (P1) is non-
decreasing after each iteration in Algorithm 1. In addition,
the objective value of (P1) is upper-bounded by some finite
positive number since the objective function is continuous
over the compact feasible set. Hence, the objective values
form a Cauchy sequence, and Algorithm 1 is guaranteed
to converge.

In Algorithm 1, the subproblems (P1.1.A), (P1.2.Q) and
(P1.3.Q) are alternatively solved in each outer-layer AO
iteration, and the overall complexity of Algorithm 1 is
mainly introduced by the update of p, Φ, W and aux-
iliary variables. Since all optimal values of the introduced
auxiliary variables are in closed forms, the computational
complexity is negligible. Specifically, (P1.1.A) can be
solved in O

(
(N +K)3

)
operations [40], while (P1.2.Q)

and (P1.3.Q) are convex QCQP which can be solved
using interior point methods with complexity O(M3.5)
and O(Q3.5), respectively [41]. Hence, the complexity of
Algorithm 1 is O

(
Iite[(N +K)3 +M3.5 +Q3.5]

)
, where

Iite denotes the number of outer-layer AO iterations. As
numerically shown later in Section V, Iite takes the typical
value of 5 in general.

IV. ENERGY EFFICIENCY MAXIMIZATION

In this section, we maximize the EE of the overall
network, by jointly optimizing the spectrum reuse indicator
vector ρ, the transmit power vector p, the reflecting
coefficients matrix Φ, and the receive beamforming matrix
W.

A. Problem Formulation for EE Maximization

Before formulating the EE-maximization problem, we
model the power consumption of the RIS. Due to the pas-
sive reflecting characteristic, the RIS’s power consumption
mainly comes from the control circuits [27]. For typical
control circuits, a field programmable gate array (FPGA)
outputs digital control voltages with given sampling fre-
quency, which are converted into analog control voltages
by multiple digital-to-analog converters (DACs). The ana-
log control voltage from each DAC adjusts the capacitance
of each varactor diode in a continuous way, and thus
controls the phase shift and amplitude of each element’s
reflected signals [27]. Hence, the power consumption of
RIS is modeled as follows

PRIS(B) = PFPGA +MPDAC(B) +MPv(B), (33)

where PFPGA, PDAC(B) and Pv(B) denote the power of
the FPGA, a B-bit DAC, and a varactor diode with 2B

different bias voltages, respectively. From [42], the DAC’s
power PDAC(B) = 1.5×10−5 ·2B+9×10−12 ·B ·fs, where
fs is the sampling frequency. The varactor-diode power5

Pv(B) = Evb∈V [vbir], where V = {V1, V2, . . . , V2B} is the
set of designed bias voltages.

Hence, the EE-maximization optimization problem is
formulated as

(P2) : max
ρ,p,Φ,W

R (ρ,p,Φ,W)
K∑
k=1

P ck+
∑
n∈D

P dn+(K+2N+1)P0+PRIS(B)

(34a)
s.t.(4b), (4c), (4d), (4e), (4f), (4g), (4h), (4i), (4j), (34b)

where
K∑
k=1

P ck and
∑
n∈D

P dn are the total transmit power

of CUs and D2D transmitters, respectively, and P0 is the
circuit-power consumption at each transmitter or receiver
of the overall network.

The constraints of (P2) are the same as in (P1). They
are non-convex, and the objective function of (P2) is a

5Notice that Pv(B) is negligible in practice, since the current of a
varactor diode in the reversely-biased (until reverse breakdown) working
status is almost constant and very small (typically, tens of nanoAmperes
(nA)).
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fractional non-convex function. Hence, there is no standard
method to solve (P2).

B. Solution to (P2)

To solve (P2), we first determine ρ through the RCS-
based user-pairing scheme. Then, the variables p, Φ and
W are decoupled through AO technique.

1) Solution to Subproblems: In each iteration j, for
given reflecting coefficient matrix Φ(j) and receive beam-
forming matrix W(j), the transmit power vector p can be
optimized by solving the following problem

(P2.1) :max
p

R (p)
K∑
k=1

P ck+
∑
n∈D

P dn+(K+2N+1)P0+PRIS(B)

(35a)
s.t. (4b), (4c), (4g), (4h). (35b)

We utilize the SCA technique as mentioned before to
tackle the non-convexity of the numerator in (35a), then
transform it through the fractional programming into a
parametric subtractive form with an introduced parameter
λ, and exploit Dinkelbach’s method [43] to obtain a
solution of λ and p. The solving sub-algorithm based on
Dinkelbach’s method is summarized in Algorithm 2.

For given transmit power vector p(j) and receive beam-
forming matrix W(j), the reflecting coefficient matrix Φ
can be optimized by solving the following subproblem

(P2.2) :max
Φ

R (Φ)
K∑
k=1

P
c(j)
k +

∑
n∈D

P
d(j)
n +(K+2N+1)P0+PRIS(B)

(36a)
s.t. (4b), (4c), (4j). (36b)

Since the denominator in the objective function is a
constant, this subproblem (P2.2) can be solved in the same
way as in III-C to obtain a solution to Φ.

For given transmit power vector p(j) and reflecting
coefficient matrix Φ(j), the receive beamforming matrix
W can be optimized by solving the following subproblem

(P2.3) :max
W

R (W)
K∑
k=1

P
c(j)
k +

∑
n∈D

P
d(j)
n +(K+2N+1)P0+PRIS(B)

(37a)
s.t. (4c), (4i). (37b)

Since the denominator in the objective function is a
constant, this subproblem (P2.3) can be solved in the same
way as in III-D.

2) Overall Algorithm with Convergence and Complex-
ity Analyses: The overall algorithm for solving (P2) is
summarized in Algorithm 2. Specifically, the RCS-based
algorithm is exploited to determine the spectrum reuse

Algorithm 2 Proposed algorithm for solving (P2)

Step 1: Initialize p(0),Φ(0),W(0), λ(0) = 0, permissi-
ble error δ = 10−3, a small threshold constant ε = 10−2.
Let i = 0, j = 0.
Step 2: Exploit RCS-based pairing scheme to determine
the spectrum reuse indicator vector ρ?.
repeat

Step 3: Solve (P2.1) for given Φ(j) and W(j), and
obtain the optimal solution as p(j+1).
repeat

3.1: Solve the following optimization problem to
obtain the optimal transmit power p∗(i)

max
p
f(λ(i)) = Rlb(i) − λ(i)(

K∑
k=1

P
c(i)
k +

∑
n∈D

P
d(i)
n

+(K + 2N + 1)P0 + PRIS(B))
3.2: Update the introduced parameter with λ(i) =

Rlb(i)(p∗(i))

K∑
k=1

P
c∗(i)
k +

∑
n∈D

P
d∗(i)
n +(K+2N+1)P0+PRIS(B)

3.3: Update iteration index i = i+ 1.
until f(λ) < δ
return p(j+1) = p∗(i−1).
Step 4: Solve (P2.2) for given p(j+1) and W(j), and
obtain the optimal solution as Φ(j+1).
Step 5: Solve (P2.3) for given p(j+1) and Φ(j+1),
and obtain the optimal solution as W(j+1).
Step 6: Update iteration index j = j + 1.

until The increase of objective value is smaller than ε.
Step 7: Return the suboptimal solution ρ?, p? = p(j−1),
Φ? = Φ(j−1) and W? = W(j−1) .

indicator ρ, and subproblem (P2.1), (P2.2) and (P2.3) are
alternatively solved in each outer-layer iteration.

Theorem 2. Algorithm 2 is guaranteed to converge.

Proof: (Sketch) The Dinkelbach’s method is used to
solve subproblem (P2.1) in Step 3. Since the Dinkelbach’s
method converges superlinearly for nonlinear fractional
programming problems [43], the convergence of Algorithm
2 can be proved by similar steps as in the proof of Theorem
1, and is omitted for brevity.

The number of iterations required for Dinkelbach’s
method’s convergence is O

(
log2 ( 1

δ )
)
, where δ is the

permissible error [43]. Each iteration of the proposed
Dinkelbachs method solves a convex optimization problem,
and the complexity of each iteration is O

(
(N +K)

3
)

[40]. (P2.2) and (P2.3) can be transformed as con-
vex QCQPs which can be solved using interior point
methods with complexity O(M3.5) and O(Q3.5), re-
spectively. [41]. Hence, the complexity of Algorithm 2
is O

(
Iite
[
log2 ( 1

δ )(N +K)3 +M3.5 +Q3.5
])

, where Iite
denotes the number of outer-layer AO iterations. As nu-
merically shown later in Section V, Iite takes the typical
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value of 5 in general.

V. NUMERICAL RESULTS

This section provides numerical results for the RIS-
empowered D2D underlaying a cellular network, which
show significant performance enhancement of the proposed
design as compared to the conventional underlay D2D
network without RIS and other benchmarks.

A. Simulation Setups

Each channel response consists of a large-scale fading
component and a small-scale fading component. With-
out loss of generality, the large-scale fading is distance-
dependent and can be modeled as Cd−α, where d is the
distance between transmitter and receiver with unit of
meter (m), C = 10−3 is the path loss at the reference
distance of 1 m, and α is the path loss exponent of
the channel. The path loss exponents from TXs/CUs to
RXs/BS are α = 4, from IRS to BS is α = 2, and for
other RIS-related channels we have α = 2.2 [14] [27].
Following the literature [24] [27] [36] [44], the small-scale
fading components hl,i, ui, h̃k and vl,k are considered
as independently Rayleigh fading distributed6, while the
small-scale fading components of fi, f̃k, gl and G̃ follow
independent Rician fading distribution, i.e.,

fi =

√
K1

K1 + 1
fL,i +

√
1

K1 + 1
fN,i, (38)

where K1 is the Rician factor of fi, fN,i is the non-LoS
(NLoS) component where each element follows CSCG
distribution CN (0, 1), and fL,i is the line of sight (LoS)
component which can be expressed by the steering vector
model. f̃k, gl and G̃ are generated in the same way
as fi with Rician factors K2, K3 and K4, respectively.
Specifically, fL,i = aM (θAoA1 ), f̃L,k = aM (θAoA2 ),gL,l =
aM (θAoD3 ), G̃H

L = aQ(θAoA4 )aHM (θAoD4 ), where aX(θ) =

[1, ej
2πda
λw

sin θ, . . . , ej
2πda
λw

(X−1) sin θ]T , X = {M,Q}, da
is the antenna spacing, λw is the wavelength. θAoA1 and
θAoA2 are the angle of arrival (AoA) at RIS of (TX i)-to-
RIS channel and (CU k)-to-RIS channel; θAoA4 is the AoA
at BS of RIS-to-BS channel; θAoD3 and θAoD4 are the angle of
departure (AoD) at RIS of RIS-to-(RX l) channel and RIS-
to-BS channel. We generate 1000 channel realizations with
independent small-scale fading, and the final results are
obtained through averaging the results of these realizations.

We assume that the CUs are uniformly distributed in
a circular cell with radius R = 200 m. We adopt the
clustered distribution model in [14] for D2D users. There
are clusters of D2D users randomly distributed in the cell,
and each D2D link is uniformly distributed in one cluster
with radius r = 60 m. We set K = 6 and N = 3. Since

6The channels irrelevant to the RIS can also be assumed to be Rician
in general, which do not change the results.

x

y

Fig. 2: Topology of RIS-empowered underlay D2D com-
munication network.

the double-fading reflected channel will be better when the
RIS is located near the BS or users [12] [24], we deploy
the RIS near the BS. The heights of the BS and RIS are
25 m, and the heights of all users are 1.5 m. Using the
above method, the locations of CUs and D2D users are
generated by one realization, as illustrated in Fig. 2, and
then fixed in all the simulations. The simulation results for
fixed user locations are given in the following Subsections
V-B and V-C, while the system-level simulation results for
random user locations are given in Subsection V-D7. The
power spectral density of noise is -174 dBm/Hz, and the
system bandwidth is 1 MHz.

B. SE Simulation Analyses for Fixed User Locations
In this subsection, we evaluate the SE performance.

For comparison, we consider the following benchmark
schemes.

1) Underlay D2D Without RIS: We consider an un-
derlay D2D network without RIS. The SE and EE are
maximized by exhaustively searching over ANK possible
user-pairings and jointly optimizing the transmit power
vector p and the BS’s receive beamforming matrix W
under each pairing.

2) RIS-Empowered D2D With Ideal User Pairing: We
exhaustively search over ANK possible user-pairings, and
jointly optimize p together with Φ and W under each
pairing. This benchmark gives achievable upper-bound per-
formance of the RIS-empowered underlay D2D network.

3) RIS-Empowered D2D With Random Phase Shift:
The user pairing is performed by the proposed RCS-based
pairing scheme. We then jointly optimize p and W, while
Φ is set randomly. This benchmark is utilized to show the
benefits of passive beamforming optimization.

7For the general case of randomly distributed users in the whole
cell, it typically needs to deploy multiple RISs and validate the average
performance over multiple drops of user locations. For the considered
single-RIS case, the RIS can enhance the communication performance
for users in a nearby region, which is set as the right upper quadrant in
this paper.



12

15 17 19 21 23 25
Maximum transmit power P d

max (dBm)

20

30

40

50

60

70

80

90

100

110

120

130

S
p
ec
tr
u
m

effi
ci
en
cy
(b
p
s/
H
z)

Ideal pairing
Proposed, F=F

1

Proposed, F=F
2

Proposed, F=F
3
, 4bit

Proposed, F=F
3
, 3bit

Proposed, F=F
3
, 2bit

Proposed, F=F
3
, 1bit

Cellular-only, F=F
1

Underlay D2D W/O RIS
Random

Fig. 3: SE v.s. maximum transmit power Pmax.

16 36 64 100 144 196 256
Number of reflecting elements M

20

30

40

50

60

70

80

90

100

110

120

S
p
ec
tr
u
m

effi
ci
en
cy

(b
p
s/
H
z)

Ideal pairing
Proposed
Cellular-only
Underlay D2D W/O RIS
Random

Fig. 4: SE v.s. number of reflecting elements M .

4) RIS-Empowered cellular-only network: We consider
a pure cellular network without D2D users, where CUs
transmit with the maximum power. We jointly optimize Φ
and W to enhance the channel strength between the CUs
and the BS. This benchmark can be used to check if the
underlay D2D scheme is beneficial for the network’s SE
and EE.

We set M = 256, P dmax = P cmax = 20 dBm [14], the
required rate constraints for D2D users and CUs as Rdmin =
log2(1 + γdmin) = 1 bps/Hz and Rcmin = log2(1 + γcmin) =
2 bps/Hz, respectively, if not specified locally for some
figures.

Fig. 3 plots the SE versus the maximum transmit power
Pmax for the proposed design and different benchmarks.
First, the proposed design achieves significant SE en-
hancement compared to the underlay D2D without RIS.
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Fig. 5: SE v.s. CU’s SINR requirement γcmin.

For instance, the SE of the proposed design is 132.43%
and 109.62% higher than that of the underlay D2D with-
out RIS, for Pmax = 15, 25 dBm, respectively. Also,
the proposed design outperforms the random phase shift
benchmark, which validates the significance of passive
beamforming optimization. Then, compared to the ideal
pairing benchmark, the proposed design suffers from slight
SE performance degradation, but obviously outperforms
this benchmark in computational complexity. The proposed
design solves the joint resource-allocation optimization
problem only once, while this benchmark needs to solve
such problem for ANK times under all possible pairings,
resulting into unaffordable complexity especially for large
numbers of D2D or cellular links. Moreover, the network
with underlay D2D scheme achieves higher SE than that
with cellular-only scheme, which indicates that the supe-
riority of the underlay D2D scheme.

Fig. 3 also shows that the finite-resolution phase shifters
of the reflecting elements degrade the SE performance.
The SE increases with the phase-shift quantization bits B,
since the realized reflecting coefficients approximate their
optimal values for larger B. In particular, the 3-bit phase
shifters can obtain sufficiently high performance gain with
a slight performance degradation compared to the ideal
case of continuous phase shifters. Furthermore, the SE of
the proposed design with F = F2 is almost the same
as the proposed design with F = F1. Numerical results
show that the reflecting amplitudes take the maximal value
1 for F = F1, since the channel strength enhancement and
inter-link interference suppression can be achieved to the
greatest extent by adjusting the reflecting phase shifts.

Fig. 4 plots the SE versus the number of reflecting
elements M of the RIS. First, the SE of proposed design in-
creases as M increases, since more reflecting elements can
further enhance equivalent channel strength and suppress
the inter-link interference; while the SE of the underlay
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D2D without RIS almost remains unchanged. Then, we
observe that the gap between the proposed design and
the ideal pairing benchmark enlarges with the increase
of M . The reason is that larger M affects the reflecting
channel strength to a greater extent; whereas the RCS-
based pairing scheme considers the channel strength of the
direct links exclusively, which does not take advantage of
the reflecting channel information. Moreover, compared to
the ideal pairing benchmark with extremely high complex-
ity, the proposed design achieves 86.59% and 88.18% SE
performance of the ideal pairing benchmark (upper bound)
when M is 36 and 256, respectively.

Fig. 5 plots the SE versus the CUs’ minimum rate
requirement Rcmin. The SE decreases as Rcmin increases,
which reveals the rate tradeoff between D2D links and
cellular links. When Rcmin is relatively small,the proposed
design achieves significant SE enhancement by introducing
an RIS as compared to the underlay D2D without RIS
and the cellular-only benchmark. When Rcmin is relatively
large, both the proposed design and the underlay D2D
without RIS achieve low SE, while the ideal pairing bench-
mark and cellular-only benchmark achieve satisfactory SE
performance. The reason is that both the pairing scheme
and the benefits introduced by the RIS affect the SE
performance. When Rcmin is relatively large, the formulated
problem is likely to be unsolved under a suboptimal pairing
scheme for the proposed design; nevertheless, the ideal
pairing scheme can obtain an optimal pairing scheme,
and the cellular-only scheme has more relaxed constraints
without the minimum rate requirement of the D2D users.

Fig. 6 plots the SE versus the Rician factor K4 for
the BS-to-RIS channel. It is observed that the SE of the
proposed design increases as K4 increases, since larger K4

indicates stronger LoS path and thus lower probability of
deep channel fading. Furthermore, the slope of the curve
decreases with K4. When K4 is small (e.g., less than 5
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dB), NLoS path is dominant and the effect of enhanced
LoS-path strength from increasing K4 is obvious; when
K4 is relatively large (e.g., 10 dB above), the LoS path is
absolutely dominant and K4 has little effect on the channel.
The SE of the underlay D2D without RIS almost remains
unchanged.

Fig. 7 plots the average convergence performance of
the proposed Algorithm 1. We observe that the proposed
scheme takes about five iterations to converge. Each itera-
tion takes about one minute. Thus, the convergence speed
of Algorithm 1 is fast. For example, the converged average
SE is 98.02 bps/Hz and 72.13 bps/Hz for the proposed
design, when M is 256 and 36, respectively.

Fig. 8 plots the SE versus the number of CUs. We set the
coordinates of added CUs as (138, 162) and (74, 121) re-
spectively. The proposed design significantly outperforms
the underlay D2D without RIS when the number of CUs is
relatively large. The reason is explained as follows. With
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TABLE I: Power consumption (mW) of each reflecting element.

M
B

1 2 3 4 5 6 7 8 9 10

200 5.970 6.000 6.060 6.180 6.420 6.900 7.860 9.780 13.620 21.300
500 2.406 2.436 2.496 2.616 2.856 3.336 4.296 6.216 10.056 17.736
1000 1.218 1.248 1.308 1.428 1.668 2.148 3.108 5.028 8.868 16.548

the number of CUs increases, the SE performance for the
underlay D2D without RIS only benefits from the potential
better pairing and the rate of added CUs, while the SE
performance for the proposed design also benefits from
the enhancement of the RIS.

C. EE Simulation Analyses for Fixed User Locations

In this subsection, we evaluate the EE performance.
For comparison, we consider the aforementioned three
benchmark, and further consider a relay-assisted underlay
D2D network, where an amplify-and-forward (AF) relay
equipped with M antennas is located at the position of the
RIS. The notations remain unchanged. Both the signals
from CUs and D2D TXs can be amplified and forwarded
through the AF relay. Denote the AF matrix by Wr. The
relay transmit power is

PAF =
∑
n∈D

P dn‖Wrfn‖2+

K∑
k=1

P ck‖Wr f̃k‖
2
+σ2‖Wr‖2F .

(39)

The SINR for RX n decoding sn from D2D TX n, and
for BS decoding xk from CU k are

γ̂dn=
P dn
∣∣gHn Wrfn+hn,n

∣∣2
K∑
k=1

ρk,nP ck

∣∣∣gHn Wr f̃k+vn,k

∣∣∣2+σ2‖gHn Wr‖2+σ2

,

(40a)

γ̂ck=
P ck

∣∣∣wk(G̃HWr̃fk+h̃k)
∣∣∣2

N∑
i=1

ρk,iP di

∣∣∣wk (̃GHWrfi+ui)
∣∣∣2+σ2(‖wkG̃HWr‖

2
+‖wk‖2)

.

(40b)

The EE maximization problem in relay-assisted D2D net-
work is

(P3) : max
ρ,p,Wr,W

∑
n∈D

log2(1+γ̂dn)+
K∑
k=1

log2(1+γ̂ck)

K∑
k=1

P ck+
∑
n∈D

P dn+(K+2N+1)P0+PAF

(41a)
s.t.(4b), (4c), (4d), (4e), (4f), (4g), (4h), (4i). (41b)∑
n∈D

P dn‖Wrfn‖2+

K∑
k=1

P ck‖Wr f̃k‖
2
+σ2‖Wr‖2F ≤ Pr,max,

(41c)
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Fig. 9: EE v.s. number of reflecting elements M .

where Pr,max is the maximum transmit power of the AF
relay. The structures of γ̂dn and γ̂ck are the same as (1) and
(2), respectively, an algorithm analogous to Algorithm 2 is
utilized to solve (P3).

As in [36], we take the diode SMV1231-079 with inverse
current less than 20 nA, and estimate the power Pv(B)
for different B’s. We take the typical Xilinx Spartan-
7 FPGA for consideration, and use its typical power
PFPGA = 1.188W. The average power consumption of
each reflecting element for different quantization bit B
with reflecting-element number M is given in Table I. In
the simulations, we set M =256, Rdmin = 1 bps/Hz and
Rcmin = 2 bps/Hz, Pr = 20 dBm, Pr,max = 6 W, fs = 10
KHz, and the dissipated power at each AF relay transmit-
receive antenna is 10 dBm. The bias voltages of varactor
diode are chosen in the range of [0.12, 8.83]. Other settings
remain unchanged as in subsection VI-C.

Fig. 9 plots the EE versus the number of reflecting ele-
ments M . For the proposed design, EE increases as Pmax

increases first, then almost remains unchanged for large M ,
since the increment of SE is not as fast as the increment
of power consumption. The proposed design significantly
outperforms the underlay D2D without RIS. The proposed
design also achieves far better EE performance than the
random phase shift benchmark, which shows the great sig-
nificance of passive beamforming optimization. Moreover,
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the proposed design suffers from slight EE performance
degradation, but outperforms the ideal pairing benchmark
in terms of computational complexity. For relay-assisted
underlay D2D, EE increases first and then decreases. The
reason is as follows. The increment of M makes the
AF beamforming more accurate. When M is small, the
introduced larger noise power and higher AF relay energy
consumption due to increasing M is negligible, thus the
benefit from accurate AF beamforming is obvious; when
M is relatively large, the introduced noise power and
AF relay energy consumption are large enough, which
cause the decrement of the EE performance. Moreover,
the network with underlay D2D scheme achieves higher
EE than that with cellular-only scheme, which indicates
that the superiority of the underlay D2D scheme.

Fig. 10 plots the EE versus the number of reflecting
elements M for different phase-shift quantization bits B.
With fixed M = 100, it is observed that as the number of
phase-shift quantization bits B increases, the EE increases
first and then decreases. The reason is that despite the
increment of B makes the setting of reflecting coefficients
more accurate, it results into higher power consumption
simultaneously. When B is large enough, the SE im-
provement from RIS is not enough to compensate for the
incremental power consumption as B increases. Moreover,
for the proposed design with 10-bits quantization, the
EE increases first and then decreases as M increases,
which reveals the trade-off between the EE and number
of reflecting elements.

Fig. 11 plots the average convergence performance
of Dinkelbach-based Algorithm 2 for solving EE-
maximization problem (P2). We observe that the proposed
design takes about five iterations to converge. Each iter-
ation takes about two minutes. Thus, the convergence of
Algorithm 2 is fast. The converged average EE is 27.42
bps/Joule/Hz for the proposed design.
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Fig. 11: Convergence of Dinkelbach-based Algorithm 2 for
(P2).

D. System-level Simulation Analyses for Random User
Locations

We consider system-level simulation in terms of the
average performance under random locations of D2D users
and CUs. Specifically, we assume the horizontal coordinate
and longitudinal coordinate for each user follows inde-
pendent uniform distribution U[0, 200] m. Fig. 12 plots
the average SE versus the maximum transmit power Pmax

from system level, and Fig. 13 plots the average EE versus
the number of reflecting elements M from system level. By
comparing Fig. 12 and Fig. 13 with Fig. 3 and Fig. 9 for
fixed user locations, respectively, we observe that both SE
and EE decrease slightly for each scheme. The reason is
that the relative positions of D2D pairs and CUs definitely
affect the system performance. However, both the curve
trends and the related conclusions still hold.

VI. CONCLUSION

This paper has studied an RIS-empowered underlay D2D
communication network. The overall network’s spectrum
efficiency (SE) and energy efficiency (EE) are maximized,
respectively, by jointly optimizing the spectrum reuse indi-
cators, the transmit power, the RIS’s passive beamforming
and the BS’s receive beamforming. An efficient relative-
channel-strength based user-pairing scheme with low com-
plexity is first proposed to determine the spectrum reuse
indicators. Other variables are then optimized by utilizing
the proposed alternating-optimization based iterative algo-
rithms. Numerical results show that the proposed design
achieves significant performance enhancement compared
to traditional underlay D2D network without RIS, and
suffers from slight performance degradation compared to
RIS-empowered underly D2D with ideal user-pairing. This
work can be extended to practical and complex scenarios
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such as multiple RISs and imperfect channel state infor-
mation.
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