
Coded Caching in Presence of User Inactivity
Jialing Liao and Olav Tirkkonen

Aalto University
Department of Communications and Networking (Comnet)

FI-00076 Espoo, Finland
Email: jialing.liao@ieee.org, olav.tirkkonen@aalto.fi

Abstract—We consider a one-server cache-enabled network
under homogeneous file and network settings in presence of user
inactivity, which is inherent to wireless mobile networks. Coded
caching has been well studied for wired networks with static
network properties. However, the lack of user inactivity informa-
tion in the placement phase in the considered scenario requires
redesigning coded caching against uncertainty. Unlike random
or probabilistic caching studied in the literature, deterministic
coded caching is considered to minimize the worst-case backhaul
load by optimizing the file subpacketization and the caching
strategy. First, a coded caching method is used, where each file
is split into the same type of fragments labeled using sets with
fixed cardinality, and the optimality of the selected cardinality
is proved. Optimal file subpacketization by splitting the file into
multiple types of fragments labeled with multiple cardinalities
is then discussed. We show that the closed-form optimum turns
out to be given by the same fixed cardinality as the one obtained
without user inactivity—optimizing for user inactivity only affects
file delivery, cache placement is not affected.

I. INTRODUCTION

Coded caching can considerably reduce the backhaul load,
i.e. the number of coded messages transmitted in parallel,
with a considerable global caching gain [1], by making use of
the local cached content and transmissions at the backhaul to
exploit simultaneous coded multicasting. Most of the works on
the topic are targeted for wired networks with static network
and content properties. However, in practice, there are many
stochastic properties that impose the need to optimize coded
caching against uncertainty. Coded caching should be studied
considering the impacts of randomness [2]–[4], caused by
wireless channel fading, multiple antennas, transmission inter-
ference, dynamic file popularity, user inactivity, and mobility.

An important source of uncertainty in content delivery,
especially in a mobile network scenario, is user inactivity.
The main reason for inactivity is that users are free to
change location between cache placement and cache delivery.
Edge optimized caching is local, e.g., performed on a per
base station level. Due to mobility, a user present at the
cache placement phase may not be within the range of the
same cache during the delivery phase. When this happens,
the content will be delivered only to active devices being
served by the cache. As information about user activity is not
available during cache placement, the design of optimal cache
placement has to be addressed. The objective of this work is
to find optimal cache placement and delivery strategies in the
presence of user inactivity.

In [1], Maddah-Ali and Niesen (MAN) presented pioneering
information-theoretic research on coded caching, where the
network topology was deterministic without user inactivity,
inspiring a substantial body of scientific work. Of relevance to
this paper are [4]–[8] which considered coded caching either
from the perspective of optimization or with user inactivity.
Multi-server networks in a random topology were considered
in [6], where the users were randomly connected to a fixed
number of servers. Maximum distance separable (MDS) codes
were utilized to construct file pieces and thus enabled the users
to recover the required file with fewer fragments from a limited
number of servers out of all. This is an opposite scenario of
what is studied in this paper. Here we consider one server, and
the randomness is in the set of users connected to the server.

The paper [4] characterized user inactivity for a cache-
enabled D2D network with K users. Each user might be
inactive independently at a given probability, thus the number
of effective users can be predicted. With D2D, each user can
both transmit and receive content from others, and hence there
is a multiplier K − 1 in file subpacketization generally. When
part users became inactive, the multiplier might drop to some
K−1−α. One can choose a proper α with any given threshold
of the outage probability for successful transmission which is
a function of α. The D2D scenario in [4] is more similar to
the case of [6] with fewer transmitters available than to our
case. Instead of performance analysis, we pursue optimization
for the best subpacketization and caching strategy.

Papers [7] and [8] provided insights on optimization based
coded caching design for nonuniform file parameters. User
inactivity was not considered. In multi-round delivery when
multiple users share a cache [9]–[11], in some rounds not all
users are present. Thus, from a cache delivery perspective, the
results of [9]–[11] directly apply to an inactive user scenario.
However, the cache placement setting is different. The user
caching profile is assumed known during cache placement in
[9], decentralized caching is applied in [10], while MAN
cache placement with pre-selected cardinality is assumed
upfront in [11]. In contrast, here we consider deterministic
caching in a situation where the set of active users is not known
during cache placement, and optimize cache placement.

In this paper, we focus on a scenario where there are several
cache-enabled users connected to a single server via shared
links, and where there is inactivity. First, a method with file
fragments of one size is considered, and optimal fragment size
is found. Second, a general scheme is considered where each

Fig. 1: A cache-aided network in presence of user inactivity.

file is divided into fragments of different sizes, and fragment
sizes are optimized over. It is proved that the optimal cache
placement is the same for the basic case without user inactivity
and the case with user inactivity. Theoretical and simulation
results are presented to illustrate the advantage of the caching
scheme against user inactivity, and the equivalence among the
subpacketization optimization in all cases.

Notation: [a : b] denotes {a, a+1, . . ., b−1, b} consisting of
integers from a to b. Specially, [b] denotes the set {1, 2, . . ., b−
1, b}. The operator ⊕ denotes the bitwise “XOR” operation.

II. SYSTEM MODEL

There is a base station connected to the core network with
access to all the file library (N files W1,W2, . . . ,WN each
with equal size F and popularity), and K users each with local
storage of size MF . The users are connected to the server
via error-free shared links. The probability for each user to
be inactive is p. In the placement phase, the user inactivity is
unknown while the base station has the information of the user
inactivity in the delivery phase. Assuming that in a realization,
there are I inactive users forming an inactive user set I. To
ensure the significance of the discussion, we assume at least
one user is becoming inactive and at the same time, there is at
least one active user to be served, i.e. I ∈ [K−1]. The number
of active users is correspondingly defined as J = K − I . The
probability for I of the K users being inactive is

P (I) =

(
K

I

)
pI(1− p)K−I , I ∈ [K − 1]. (1)

The cached content at the local cache of a user k is defined
as Zk. The content delivered through the backhaul via coded
multicast is described as Xd, where d = (d1, d2, . . . , dK) with
dk ∈ [N], k ∈ [K] denoting the demand of user k.

As a common metric for measuring the performance of
coded caching methods, the backhaul load is defined as the
volume of content needed to be delivered via backhaul using
coded multicasting. The backhaul load can be calculated both
in the worst case when the active users each requesting a
different file, and the average case with all types of possible
demands considered. Here, the worst-case backhaul load is
considered which implies that the number of files is higher
than the number of users N > K. We aim to minimize the
worst-case backhaul load by designing the caching strategy
subject to file size and cache size constraints.

III. CODED CACHING IN PRESENCE OF INACTIVE USERS

A. Content Placement and Delivery with User Inactivity

We begin with the effective file subpacketization in Maddah-
Ali-Niesen’s (MAN) method to make full usage of the multi-
cast delivery opportunities. In the MAN method, all the users
have the same cache content placement and all the files are
equally cached in local storage because of the homogeneous
settings. Define a variable t , KM

N , and then divide each
file into

(
K
t

)
fragments equally. t is referred to as the cache

replication parameter in literature [12]. It is assumed t is an
integer. If not, content sharing can be used to deal with this is-
sue. The fragments are indexed by all subsets of users τ ⊂ [K]
of fixed cardinality |τ | = t. Accordingly the fragments of file
n are Wn,τ . For sake of simplicity, the set of all t-element
subsets of [K] is defined as ζ = {τ |τ ⊂ [K], |τ | = t}. It is
assumed that user k stores the fragments Wn,τ of each file
n when k ∈ τ, τ ∈ ζ. Hence, the cache content placement at
user k can be written as

Zk = (Wn,τ : τ ∈ ζ, k ∈ τ, n ∈ [N]). (2)

In each cache, there are
(
K−1
t−1
)

fragments for each file, and
each fragment has normalized size of 1/

(
K
t

)
. Thus the cache

capacity constraint holds as follows

N

(
K − 1

t− 1

)
1(
K
t

) = M. (3)

Without user inactivity (I = 0), the server can deliver
several packets each of which comprises coded fragments to
the users to help them reconstruct their requested files:

Xd = (Xd,S : S ∈ ϑ), (4)
Xd,S = ⊕k∈S Wdk,S\{k}, (5)

where the set S has one more element than set τ satisfying
S ⊂ [K], |S| = t + 1. The set of all S is ϑ. This coded
multicast strategy works in the way that all the users are able
to recover their request files using the same transmitted packets
and the cached fragments in local cache. For any user i in a
particular S, the linear combination Xd,S can be rewritten as

Xd,S = Wdi,S\{i} ⊕ (⊕k∈S,k 6=i Wdk,S\{k}), (6)

where Wdi,S\{i} is one of the fragments that user i needs to
recover the requested file di. The other fragments in linear
combination (⊕k∈S,k 6=i Wdk,S\{k}) are all cached at user i
according to the cache placement in (2) due to the fact that
i ∈ S \{k} for any k ∈ S but k 6= i. Therefore, Wdi,S\{i} can
be decoded by user i. Taking all types of S ∈ ϑ, i ∈ S into
account, user i is thus able to decode all the missing fragments
of di, i.e. (Wdi,S\{i} : S ∈ ϑ, i ∈ S) = (Wdi,τ : τ ∈ ζ, i 6∈ τ).

As the linear combination of several fragments has the same
size as a single fragment, i.e. F/

(
K
t

)
, the backhaul load can

be written as the size of a fragment multiplied by the number
of the different sets S as follows:

R =
F(
K
t

)(K

t+ 1

)
= F

K − t
t+ 1

. (7)

Because file size F performs as a multiplier in backhaul loads,
unit file size is assumed in the following for briefness.

In [9], multi-round delivery to users sharing caches is
considered. In each delivery round, a subset of cache profiles
may be present. Thus, for a given round, the cache delivery
problem addressed in [9] is the same as the delivery problem
in a situation with a set of inactive users. We shall thus use the
delivery policy of [9], rephrased to an inactive user scenario.

Assuming there are I inactive users forming an inactive user
set I ⊂ [K], we utilize a general cardinality l ∈ [K] in file
subpacketization instead of the cache replication parameter t =
KM/N that is used in the MAN method. The optimal value
of l will be optimized in Subsection III-B. The transmitted
packets would be

Xd=

 (Xd,S : S ∈ ϑ), if l+1>I,

(Xd,S : S ∈ ϑ,S 6⊂ I), if l+1≤I,
(8)

where the packet given any subset S is

Xd,S= ⊕k∈S,k/∈I Wdk,S\k. (9)

The worst case backhaul load then becomes [9]

R(l) =


1

(K
l)

(
K
l+1

)
, if l+1> I,

1

(K
l)

[(
K
l+1

)
−
(
I
l+1

)]
, if l+1≤ I.

(10)

Comparing (7) and (10), it is obvious that the worst-
case backhaul load in presence of user inactivity is either
the same as the one derived without user inactivity when
t + 1 > I or is smaller than the one without user inactivity
when t+1 ≤ I . For clarification, we summarize the procedure
of the centralized coded caching scheme in presence of user
inactivity in Alg. 1, based on (10). Note that in Alg. 1, l∗

denotes the optimal cardinality based on file subpacketization
optimization given by l∗ = KM/N , which shall be carefully
proved in Subsection III-B and Section IV.

While in (10) and Alg. 1 a framework of coded caching
with user inactivity is presented, there is an essential problem
remaining: What is the optimal cache placement policy if it is
known at the cache placement that a random set of I out of
K users will be inactive at the time of cache delivery?

B. Subpacketization Optimization with Fixed Cardinality
The subpacketization method and cache content placement

used here is based on a group of subsets τ ⊂ [K] with
|τ | = l to create possible multicast opportunities in the content
delivery phase. We strive to find the optimal cardinality of τ .

First, we consider the normal case without user inactivity,
and define an multiple cardinalities l = |τ |, l ∈ [K], to replace
the fixed t = KM/N . The optimal l should give the lowest
backhaul load R(l) =

(
K
l+1

)
/
(
K
l

)
= K−l

l+1 while satisfying
cache capacity constraint

(
K−1
l−1
)
/
(
K
l

)
= l/K ≤ M/N . The

optimization problem can be rewritten into

min
l

K + 1

l + 1
− 1 (11a)

s.t. l ≤ KM

N
, l ∈ [K]. (11b)

Algorithm 1 Coded Caching in Presence of User Inactivity

1: procedure PLACEMENT
2: l ← l∗ (the optimal solution in file subpacketization

optimization: l∗ = KM/N)
3: ζ ← {τ |τ ⊂ [K], |τ | = l}
4: for n ∈ [N] do
5: split Wn into (Wn,τ |τ ∈ ζ) with identical size
6: end for
7: for k ∈ [K] do
8: user k caches Zk ← (Wn,τ |τ ∈ ζ, k ∈ τ, n ∈ [N])
9: end for

10: end procedure
Users make requests d given the number and identity of
the inactive users (I, I)

11: procedure DELIVERY
12: l← KM/N
13: ϑ← {S|S ⊂ [K], |S| = l + 1}
14: if l + 1 > I do
15: Xd ← (⊕k∈S,k/∈I Wdk,S\{k} : S ∈ ϑ)
16: else if l + 1 ≤ I do
17: Xd ← (⊕k∈S,k/∈I Wdk,S\{k} : S ∈ ϑ,S 6⊂ I)
18: end if
19: end procedure

Since the objective (11a) decreases with respect to l, the
optimal solution is the largest l with cache capacity constraint
satisfied with equality, i.e. l = KM

N , which agrees with the
cache replication parameter t = (KM)/N used in the MAN
method. In particular, when (KM)/N is not an integer, the
optimal cardinality becomes l = bKM/Nc, which works for
the scenario with user inactivity as well.

Similarly, we substitute the worst case backhaul load with
user inactivity (10) into the objective function and again
replace the fixed t = KM/N with a variable l to be optimized.
The coded caching optimization with user inactivity after
simplification can be written as

min
l

R(l) (12a)

s.t. l ≤ KM

N
, l ∈ [K − 1]. (12b)

where the objective function is given by (10).
To find the optimal l, the analysis of (12) can be divided

into two parts. We have
Lemma 1: The backhaul load R(l) of (10) is a decreasing

function of l in the interval l ∈ [I − 1].
Proof: See Appendix A.

We can now show
Theorem 1: If MAN cache placement with cardinality l

of all caching subsets τ is used in the presence of user
inactivity, minimum worst-case backhaul load is achieved with
cardinality l = KM

N .
Proof: We first treat separately the minimization in the

regions l > I − 1 and l ≤ I − 1 separately. In the region
l > I−1, the backhaul load (10) is the same as the one without

user inactivity (7), for which the optimal cardinality has been
proved to be l = MK/N . Thus if I ≤ KM/N , this yields
the minimum backhaul in this region, while if I > KM/N ,
all of this region is infeasible.

According to Lemma 1, the minimum backhaul in the
second region l ≤ I − 1 is achieved at the maximal feasible
point l = min(KM/N, I − 1).

It remains to find the smaller value of the solutions in the
two regions, in the case KM/N ≥ I . For this, we compute

R(I − 1)−R
(
KM

N

)
=

(I − 1)!

I(KM/N + 1)K!
×B Γ, (13)

where B = I(KM/N + 1)(K − I + 1)! and

Γ + 1 =
(K + 1)(KM/N + 1− I)

I(KM/N + 1)(K − I + 1)!
(
K
I−1
)

≥ K + 1

KM/N + 1
> 1. (14)

This completes the proof.
Theorem 1 thus states that the optimal cardinality in file

subpacketization for coded caching in presence of user inac-
tivity in the whole interval I ∈ [K−1] is always l = KM/N ,
which is the same as t used in the MAN method without user
inactivity.

IV. SUBPACKETIZATION WITH MULTIPLE CARDINALITIES

The analysis in previous section contains redundancy in the
content placement caused by caching the fragments related to
the inactive users. For instance, the fragments (Wn,τ : k ∈
τ, τ ∩I 6= ∅, n ∈ [N]) stored in an active user k seem to take
up storage space without contributing in reducing backhaul
load. The optimal file subpacketization and cache placement
is to cache only the fragments corresponding to the active
users, e.g. (Wn,τ : k ∈ τ, τ ∩ I = ∅, n ∈ [N]). However, the
information about user inactivity is unknown in the placement
phase, which means that the set I can not be specified.

Given an inactivity probability, the probability of a user
caching a file fragment in vain grows with fragment label
cardinality |τ |. Above, we found that the optimal cardinality
is given by l = KM/N if all labels have the same cardinality.
As the number of active users decreases, there is a possibility
that having labels of multiple cardinalities might lead to more
efficient use of the caches. In [8], the multiple cardinalities
based file subpacketization is utilized to deal with the het-
erogeneous of file popularity which imposes multilevel file
subpacketization in terms of popularity.

For this, we split each file based on subsets with a series of
different cardinalities l ∈ [0 : K] instead of a fixed number t.
That is to say, each file is split into 2K fragments labeled with
Wn,Al : Al ⊂ [K], |Al| = l, l ∈ [0 : K]. Similarly, we assume
that in the cache placement phase, a fragment is cached by
user k if its fragment label Al, l ∈ [0 : K] includes k:

Zk = (Wn,Al : k ∈ Al,Al ⊂ [K], |Al| = l,

l ∈ [0 : K], n ∈ [N]). (15)

According to the cardinality l, the fragments for each file
n can be divided into K + 1 groups as W l

n = (Wn,Al :

Al ⊂ [K], |Al| = l), l = 0, 1, . . . ,K. There are
(
K
l

)
types of fragments in fragment group W l

n. In total, there are∑
l

(
K
l

)
= 2K different fragments for each file. By adjusting

the weights of the fragment groups W l
n, l ∈ [0 : K] for each

file, the space that each fragment group takes from the cache
is decided accordingly. The number of effective users involved
in the caching design can then be controlled to some degree.

It is assumed that the fragments in the same group l have
the same size. Define a weight vector as α , [α0, α1, . . . , αK]
with αl denoting the size of a fragment in fragment group l
normalized by file size F , i.e. αl = |Wn,Al |, n ∈ [N]. Hence,
the size of fragment group l of file n, W l

n, is
(
K
l

)
αlF .

Now the file size and cache capacity constraints are:

K∑
l=0

(
K

l

)
αl = 1,

K∑
l=1

αl
(
K − 1

l − 1

)
≤ M

N
, (16a)

αl ≥ 0, l = 0, . . . ,K. (16b)

The content to be delivered to the users via backhaul then
becomes:

Xd=


(Xd,Al+1 : Al+1 ⊂ [K], |Al+1| = l + 1), if l+1>I,

(Xd,Al+1 : Al+1 6⊂ I,Al+1 ⊂ [K], |Al+1| = l + 1),
if 1 < l + 1 ≤ I,

Xd,Al , if l = 0,

where the packet corresponding to a given fragment label set
Al+1 is given by

Xd,Al+1 =


⊕k∈Al+1,k/∈I Wdk,Al+1\{k}, if l+1>I,
⊕k∈Al+1,k/∈I Wdk,Al+1\{k}, if 1< l + 1≤ I,

Wdk,Al , if l = 0.

In particular, there is an exceptional case for l = 0 when A0

equals to ∅ and thus none of the users has stored the subfiles
Wn,A0 , n ∈ [N]. Accordingly, the backhaul load normalized
by file size F is written as

R(α) =

K−1∑
l=0

(
K

l + 1

)
αl −

I−1∑
l=0

(
I

l + 1

)
αl . (17)

The caching design turns to solving a linear programming of
minimizing the backhaul load subject to the file size and cache
capacity constraints (16):

min
α

R(α) s.t. (16a)− (16b). (18)

Existing solvers, e.g. CVX [13], can be used to solve problem
(18) with K + 1 variables and K + 3 constraints [14]. It is
important to figure out the structure of the optimal solution
which is discussed below.

To simplify the problem, we replace the original variables
with the variables satisfying βl =

(
K
l

)
αl, l ∈ [0 : K]. Thus

we derive a new weight vector as β , [β0, β1, . . . , βK]. In

this case, problem (18) can then be rewritten into

min
{βl}

K−1∑
l=0

K − l
l + 1

βl −
I−1∑
l=0

(
I

l + 1

)
/

(
K

l

)
βl (19a)

s.t.

K∑
l=1

lβl ≤ t, (19b)

K∑
l=0

βl = 1, βl ≥ 0, l ∈ [0 : K]. (19c)

It can be observed that the terms related to the inactive users
in the objective destroy the similarity among the combination
terms in the objective, and thus it becomes challenging to find
a closed-form solution to problem (19).

To proceed, we analyze the properties of the objective
function and the linear constraints. The discussion is generally
accomplished in four steps each of which is formulated as a
Lemma given below, discussing the objective, the constraints,
the structure of the optimal solution, and an exceptional case.
Due to space limitation, the proofs of the lemmas are omitted
here, with details available in the longer version from Arxiv:
2109.14680.

Lemma 2: The first derivative of coefficients in the objec-
tive function (19a) is negative while the second derivative is
positive when I ∈ [K − 2] and equal to 0 when I = K − 1.

Lemma 3: The optimal solution to problem (19) must have
a tight cache capacity constraint (19b).

Lemma 4: The optimal solution has at most one non-zero
variables of β (two for non-integer t).

Lemma 5: There is an exceptional case I = K − 1 when
the second derivative equals 0. It will destroy the proof of
Lemma 4 which strictly requires a positive second derivative.
The optimal solution, in this case, is no longer unique, but the
solution in the general case still works.

Theorem 2: The optimal solution to problem (19) is the
same as the optimal solution to the file subpacketization
optimization with fixed cardinality, which is given by

βl =

{
1, if l = t,
0, else, (20)

assuming t = KM/N is integer. When t = KM/N is
non-integer, there are two adjacent nonzero elements in {βl}
around t. Letting η = dte − t, the solution becomes

βl =

 η, if l = btc,
1− η, if l = dte,

0, else.
(21)

Proof: This follows directly from following the four steps
given in Lemma 2-Lemma 5.

Corollary 1: Based on Theorem 1 and Theorem 2, Alg. 1
is optimal for integer KM/N .

Note that the optimal solutions to problems (12) and (18)
are proven to be independent on I . The considered schemes
can thus be used in a user inactivity case knowing neither
I nor the number I of inactive users and content placement
phase.

0 10 20 30 40 50

0

10

20

30

40

50

Fig. 2: Backhaul load of coded caching with user inactivity.

V. SIMULATIONS

A. Coded Caching with Fixed Cardinality

A one-server cache-enable network is considered. There are
K = 50 users and N = 100 files with equal popularity
and size. Fig. 2 presents the impacts of cache size M and
the number of active users J on worst case backhaul load.
The performance of the proposed optimization-based coded
caching with fixed cardinality is compared to the unicast
caching method, and the ideal MAN method [1] where perfect
user inactivity information is assumed in the placement phase.

As can be seen Fig. 2, the proposed scheme outperforms
the unicast caching scheme while providing a compatible
performance to the idea MAN method against user inactivity.
In general, the backhaul load decreases with the increase of
cache size M and rises with the increase of the number of
active users J . Increasing M , the backhaul load decreases
dramatically. The decrease of backhaul load is more obvious
with more active users, i.e. larger J . The gap between them
decreases when the cache size M rises. When M = 20,
the proposed method is approximately the same as the MAN
method in the ideal case. Increasing J causes some increase in
backhaul load, but the gap is limited for the proposed method,
e.g. less than 10. The gap is getting narrower when increasing
cache size M . That is to say, the proposed method can provide
an acceptable solution to user inactivity. Particularly when
J = K = 50, the proposed method is the same as the MAN
method as all the users are active. Moreover, the backhaul
load tends to be stable when J tends to K, which agrees with
(10) since the backhaul load is independent of the number of
inactive users I when I < t + 1, i.e. J > K − t + 1. For
instance, when M = 8, the solid curve in orange becomes
stable after reaching J = 43.

B. Optimal Coded Caching with Multiple Cardinalities

To investigate the optimal coded caching scheme against
user inactivity, the performance of coded caching using fixed
cardinality and multiple cardinalities in file subpacketization
is compared. Results obtained using optimization solver CVX
are compared to the closed-form optimal solution (20)-(21).

0 10 20 30 40 50

0

2

4

6

8

10

12

14

Fig. 3: Performance comparison between coded caching with
fixed l and optimal scheme with multiple cardinalities against
user inactivity.

In Fig. 3 we consider a cache enabled network where we let
K = 50, N = 100,M = 5/10/20, and the number of inactive
users varies within [0 : K), to compare the performance of
the optimal solution for coded caching with multiple l ∈ [0 :
K] and the one with fixed l = t. The simulation confirms
the closed-form solution. The backhaul load for the proposed
caching scheme with fixed cardinality is always the same as
the optimal solution with multiple l for all the different values
of inactive users and cache size.

VI. CONCLUSIONS

In this paper, we studied the coded caching strategy for one-
server cache-enabled networks with inactive users. Based on
the classic file subpacketization and coded multicast strategy,
we considered a coded caching method with fixed cardinality
of the fragment label set, and proved the optimality cardinality
t = KM/N . This is known as the cache replication parameter
used in the MAN method without user inactivity. The scheme
was extended to a scenario where multiple cardinalities can be
used instead of a fixed one. The weights for different types of
fragments labeled with different cardinalities were optimized
to minimize the worst-case backhaul load. The optimal so-
lution turns out to be the same as the one derived from the
caching scheme with fixed cardinality. Numerical results show
that the considered coded caching scheme approximates the
ideal MAN method.

ACKNOWLEDGMENT

This work was funded in part by the Academy of Finland
(grant 319058).

APPENDIX A

To proceed, we compute the ratio R(l+ 1)/R(l), with 1 ≤
l ≤ I − 2. By expanding the binomial coefficients we get

R(l + 1)

R(l)
=

[(
K
l+2

)
−
(
I
l+2

)][(
K
l+1

)
−
(
I
l+1

)] (Kl)(
K
l+1

)
=

A(l)

A(l) +B(l)− C(l)

where

A = (l + 1)

(
K!

(K − l − 2)!
− I!

(I − l − 2)!

)
B =

(K + 1)!

(K − l − 1)!

C = (K + 1 + (K − I)(l + 1))
I!

(I − l − 1)!
.

Because K ≥ I , we have A ≥ 0, as well as B > 0 and
C > 0 in the domain of interest. It is thus sufficient to prove
that B > C for all l in the domain. For this, we first use the
fact that (K −m)/(I −m) ≥ K/I for non-negative m and
K ≥ I to lower bound the l+1 smallest terms in the l+2-fold
product in B to get

B ≥ (K + 1)

(
K

I

)l+1
I!

(I − l − 1)!
(22)

Writing K/I = 1 + (K − I)/I we can expand (K/I)l+1

using the binomial expansion. When K > I , all terms in
the expansion are positive. Comparing the two first terms in
this expansion to C directly shows that B > C holds. This
completes the proof.

REFERENCES

[1] M. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE
Trans. Inf. Theory, vol. 6, no. 5, pp. 2856–2867, May 2014.

[2] M. Bayat, K. Wan, M. Ji, and G. Caire, “Cache-Aided modulation for
heterogeneous coded caching over a Gaussian broadcast channel,” arXiv
preprint arXiv:2001.05784.

[3] A. Tölli, S. P. Shariatpanahi, J. Kaleva, and B. H. Khalaj, “Multi-
Antenna interference management for coded caching,” IEEE Trans.
Wireless Commun., vol. 19, no. 3, pp. 2091–2106, 2020.

[4] C. Yapar, K. Wan, R. F. Schaefer, and G. Caire, “On the optimality
of D2D coded caching with uncoded cache placement and one-shot
delivery,” IEEE Trans. Commun., vol. 67, no. 12, pp. 8179–8192, 2019.

[5] M. A. Maddah-Ali and U. Niesen, “Decentralized coded caching attains
order-optimal memory-rate tradeoff,” IEEE/ACM Trans. Netw., vol. 6,
no. 99, pp. 281–288, 2014.

[6] N. Mital, D. Gündüz, and C. Ling, “Coded caching in a multi-server
system with random topology,” IEEE Trans. Commun., vol. 68, no. 8,
pp. 4620–4631, 2020.

[7] Y. Deng and M. Dong, “Optimal uncoded placement and file grouping
structure for improved coded caching under nonuniform popularity,” in
Proc Int. Sym. Modeling and Opt. in Mobile, Ad Hoc, and Wireless Net.
(WiOPT), 2020, pp. 1–8.

[8] A. M. Daniel and W. Yu, “Optimization of heterogeneous coded
caching,” IEEE Trans. Inf. Theory, vol. 66, no. 3, pp. 1893–1919, Mar.
2020.

[9] E. Parrinello, A. unsal, and P. Elia, “Fundamental limits of coded caching
with multiple antennas, shared caches and uncoded prefetching,” IEEE
Trans. Inf. Theory, vol. 66, no. 4, pp. 2252–2268, Apr. 2020.

[10] S. Jin, Y. Cui, H. Liu, and G. Caire, “Order-Optimal decentralized coded
caching schemes with good performance in finite file size regimeorming
for MIMO-OFDM with partial feedback,” in Proc. IEEE GLOBECOM,
Washington, DC, USA, Dec. 2016, pp. 1–7.

[11] M. Bayat, K. Wan, and G. Caire, “Coded caching over multicast routing
networks,” arXiv preprint arXiv:2008.08900.

[12] S. Wang, W. Li, X. Tian, and H. Liu, “Fundamental limits of heteroge-
nous cache,” arXiv preprint arXiv:1504.01123v1.

[13] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.0 beta,” http://cvxr.com/cvx, Sep. 2013.

[14] M. Tao, D. Gündüz, F. Xu, and J. P. Roig, “Content caching and delivery
in wireless radio access networks,” IEEE Trans. Inf. Theory, vol. 67,
no. 7, pp. 4724–4749, Jul. 2019.

