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Abstract—The existing solutions for multi-user detection in
uplink (UL) grant-free sparse code multiple access (SCMA) rely
on the prior knowledge of user sparsity, i.e., the number of
active users. An alternative solution, which sets the sparsity as a
statistically empirical value to get a rough active user set and then
eliminates the false detected inactive users with joint message
passing algorithm (JMPA), leads to either increasing computation
complexity of JMPA or high missed detection probability. In this
paper, we propose a receiver for UL grant-free SCMA which
relies on no prior knowledge of user sparsity. We propose a
detection-based group orthogonal matching pursuit (DGOMP)
active user detector to get an accurate active user set rather
than a rough active user set. Then we modify the JMPA by
taking the channel gain and noise power into consideration when
calculating the prior information of the zero codeword. The
modified JMPA helps to further eliminate the false detections
caused by noise, channel fading and non-orthogonality of pilot
sequences. Simulation results show that our proposed receiver
without prior knowledge of user sparsity has acceptable per-
formance degradation compared with currently existing solution
with ideal, however unable to get in practice, prior knowledge
of user sparsity.

I. INTRODUCTION

The fifth generation mobile networking (5G) has require-

ments on massive connectivity and low latency. To enable

massive connectivity in wireless multiple access systems,

sparse code multiple access (SCMA) [1], featured by exces-

sive codeword overloading, is a promising candidate multiple

access technology. To reduce the transmission latency, uplink

grant-free transmission [2] is can be used, which reduces

transmission latency and signaling overhead by allowing users

to transmit data as soon as a data packet arrives, without

a complex scheduling procedure. This strategy is especially

suit for machine type massive communications with burst

transmission of small packets.

In [3], the basic structure for UL grant-free SCMA transmis-

sion is described. In [2], a blind muti-user detection (MUD)

algorithm has been proposed to detect active user and pilot

in UL grant-free SCMA transmission, where a joint message

passing algorithm (JMPA) has been used for active data

decoding without the knowledge of codebook activity. In [4],

MUD in UL grant-free non-orthogonal multiple access sys-

tems has been formulated under the compressive sensing (CS)

framework, and solved by employing compressive sample

matching pursuit (CoSaMP) algorithm and JMPA.

In previous research, user sparsity, i.e, the number of active

users, is assumed to be a priori known for MUD. However,

in reality, due to data packets arrival at random, user sparsity

is usually unknown for MUD. In [2], the number of active

users is fixed at the beginning and then the false detected

inactive users are eliminated later by JMPA. However, when

there are fewer active users than the preset sparsity, the

complexity of JMPA will increase because the factor graph

involves more function nodes. On the other hand, when there

are more active users than the preset sparsity, the missed

detection probability will be very high since the active users

exceeding the preset sparsity cannot be detected. To solve

the problem, a detection-based orthogonal matching pursuit

(DOMP) algorithm is proposed in [5]. The DOMP runs binary

hypothesis on the residual vector of OMP at each iteration and

stops when there is no signal component in the residual vector.

In this paper, we exploit DOMP to solve user sparsity issue

in the UL grant-free SCMA system.

In wideband UL grant-free SCMA systems, pilot trans-

mission on each sub-band undergoes independent Rayleigh

fading. The pilots on the sub-bands for some users with deep

fading may be submerged by noise or the pilots of other users

with higher channel gains on these sub-bands. To recover the

submerged pilots, grouped greedy algorithms can be employed

to MUD [6–8], which make decision on user activitiy jointly

according to the received signal on every sub-band.

For decoding in scheduled SCMA transmission, the prior

probabilities for each codeword are assumed to be identical,

thus the prior information of codewords in message passing

algorithm (MPA) [9] can be simply set as all 1. However,

in the JMPA, the prior probability of the zero codeword is

different from that of other codewords. The prior information

for zero codeword has been discussed in [2]. However, in our

proposed receiver, the false detection probability is very small,

which makes the likelihood of zero codeword convergence to

a small value after MPA iterations and thus causes failure

to eliminate the false detection. We therefore will modify

the JMPA by taking channel gain and noise power into

consideration. Simulation results show that the modified JMPA

has better performance on finding the false detections.

In this paper, a receiver for UL grant-free SCMA systems,

which requires no prior knowledge on user sparsity, is pro-

posed. The rest of this paper is organized as following. Section

II introduces the system model for UL SCMA-based grant-free

multiple access. Section III describes the proposed receiver,

in which a detection-based group orthogonal matching pursuit

(DGOMP) mutiuser detector is developed to get the accurate



active user set and a modified JMPA is proposed to further

eliminate the false detection. Simulation results are provided

in Section IV to demonstrate the performance of the proposed

receiver. Section V concludes the paper.

II. SYSTEM MODEL

In this section, the signaling of UL grant-free SCMA

systems is first described. Then the transceiver signal model

for pilot and data transmission are described separately.

A. Signaling of UL Grant-Free SCMA transmission

The basic resource to support UL grant-free SCMA is the

contention transmission unit (CTU) [3], in which a time-

frequency resourse, SCMA codebooks to encode data, and

pilot sequences used for user identification and channel estima-

tion are defined. As shown in Fig. 1 (a), over a time-frequency

resource, there are NCB SCMA codebooks, {C1, · · · , CNCB
},

each of which contains M codewords of length K, Cn =
{c1n, c2n, · · · , cMn }, where cmn ∈ C

K . The SCMA encoder

[1] maps each log2 M input data bits to a codeword. The

codewords are sparse such that most of entries in a codeword

are zero. Furthermore, the number of non-zero entries in a

codeword is fewer than K. When OFDM is used, each entry

in a codeword is mapped to a subcarrier and K subcarriers

make up an SCMA block. Each codebook is associated with

NP pilot sequences. Therefore, there are J = NCB × NP

different pilot sequences, {φ1, · · · , φJ}, where φj ∈ C
L.

Fig. 1 (b) shows an example of how the (Np +2)-th grant-

free user transmits its pilot sequence and data. This user is

assigned with pilot sequence φN+2 and codebook C2 according

to the above mentioned codebook-to-pilot mapping rule. The

whole frequency bandwidth of CTU is divided into B blocks,

each of which contains L sub-carriers. We adopt the LTE

specification into our implementation of UL grant-free SCMA

systems, where each block in a CTU is mapped to one or

more resource blocks, and the time resource T in a CTU is

defined by a time slot which consists of 7 OFDM symbols,

where the central OFDM symbol is used for pilot transmission

and the other OFDM symbols are used for data transmission.

In pilot phase, the pilot φNp+2 is transmitted on each block

simultaneously. In codeword phase, each block is divided into

B0 = L
K sub-blocks. Each sub-block, which contains K

subcarriers, transmits a lenght-K codeword during an OFDM

symbol.

B. Signal Model for Pilot Transmission

We assume that the L subcarriers in one block are within

the coherent bandwidth, therefore channel gains remain un-

changed over one block. The received pilot signal at the base

station (BS) on block b is represented as

yb
p =

∑
u∈A

hb
uφu +wb =

J∑
j=1

Ijh
b
jφj +wb = Φhb +wb, (1)

where A is the active user set with user sparsity |A| = U ,

hk is the channel response between user k and the BS, Φ =
[φ1, · · · , φJ ], h

b = [I1h
b
1, · · · , IJhb

J ]
T, Ij for j = 1, · · · , J , is
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Fig. 1. (a) Definition of a CTU; (b) an example of signaling for the (NP+2)-
th grant-free random access user.

a binary logical variable to indicate user k is active or not, i.e.,

Ij = 1 if j ∈ A, while Ij = 1 if k /∈ A, and wb ∼ CN (0, σ2I)
is the noise.

The method to detect active users is described in detail in

Section III. Given the the detected active user set, Â = {j|Ij =
1}, The least square estimation of the channel response of each

active user on block b is represented as

ĥb
Â =

(
ΦH

ÂΦÂ
)−1

ΦH
Ây

b
p, (2)

where ΦÂ is the submatrix of Φ by extracting the columns

corresponding to Â.

Note that Â may be inaccurate and represented as Â =
A ∪ Afalse\Amissed, where Afalse = {j | Ij = 0, Îj = 1}
is the set of false detected users, and Amissed = {j | Ij =
1, Îj = 0} is the set of missed detected users. The JMPA

detector is used to eliminate Afalse from Â. However, neither

the channel estimator nor the JMPA decoder can recover the

users in Amiss.

C. Signal Model for Data Transmission

The recieved data signal of the BS on a length-K SCMA

block is represented as

yd =
∑
u∈A

huxu +w, (3)

where xu is the transmit symbol of the user u chosen from its

assigned codebook Cu = {cmu | m ∈ M}, hu is the channel

response of user u, and w ∼ CN (0, σ2I) is the noise.

The maximum likelihood decoding of the active users is

represented as

{x̂1, x̂2, · · · , x̂U} = max
cu∈Cu,u∈A

Pr {c1, c2, · · · , cU | yd,h} .
(4)

Utilizing the codeword sparsity, MPA [9], an iterative al-

gorithm based on factor graph, can calculate this likelihood

function with low complexity.

III. PROPOSED RECEIVER FOR UL GRANT-FREE SCMA

A. Structure of the Receiver

Fig. 2 shows the structure of the proposed receiver. The

procedure is described as follows: 1© based on the the received

pilot signal, the active user set Â is acquired by the DGOMP



detector; 2© channel responses of the active users are estimated

according to (2). 3© based on the received data signal, false

detected users in Afalse are eliminated by JMPA; 4© channel

responses for the active users are estimated again; 5© at last,

data of the active users is decoded with JMPA.

GDOMP User Detector

Channel estimation

JMPA decoder

Active user list

Ative user list 
& channel response

Updated active user list

Updated active user list 
& channel response

 Decoded data

Received pilot signal

Received data signal

Fig. 2. Structure of the proposed receiver for UL grant-free SCMA.

B. Active User Detection with DGOMP

In this subsection, a DGOMP detector is proposed to detect

active users in UL grant-free SCMA systems without requiring

the prior knowledge of user sparsity. In order to improve

the robustness of active user detection in Rayleigh fading,

our proposed DGOMP detector makes decision on whether

the iteration should stop based on the received pilot signal

on several blocks rather than on a single block. Specifically,

procedures of the proposed DGOMP detector are described

by Algorithm 1. In the rest of this subsection, we analyze

the residual in the DGOMP decoder, deduce the criteria to

stop the iteration, and describe the method to determine the

threshold for the stopping criterion.

Algorithm 1 The DGOMP active user detector

Input: Φ,yb
p, ∀b = 1, · · · , B, σ2, PFA.

Initialize: rb0 ← yb, ∀b = 1, · · · , B,

A0 ← ∅,

t ← 1.

repeat
ebt ← ΦHrbt−1, ∀b = 1, · · · , B,

i ← argmaxi∈U
∑B

b=1

∣∣ebt(i)∣∣,
At ← At−1

⋃{i},

rbt ← P⊥
St
yb
p, ∀b = 1, · · · , B,

zbt ← Pm−tr
b
t , ∀b = 1, · · · , B.

until T (zbt) < γt, ∀b = 1, · · · , B
Output: Active user set Â ← At.

1) Analysis on the Residual in DGOMP: We denote At as

the active user set in the t-th iteration of DGOMP, and Φt as

the active pilot matrix, the columns of which correspond to the

pilots of the users in At. In each iteration, the received signal

is projected onto the null space of Φt to get the residual vector.

By denoting P⊥
t = I − Pt as the orthogonal projector onto

null space of Φt and Pt = Φt(Φ
H
t Φt)

−1ΦH
t , the residual

vector on block b is given by

rbt = P⊥
t y

b = P⊥
t Φth

b +P⊥
t n

b. (5)

We assume that the pilot matrix Φ satisfies the RIP [10],

(1− δk)‖hb‖2l2 ≤ ‖Φth
b‖2l2 ≤ (1 + δk)‖hb‖2l2 , ∀hb 
= 0, (6)

for any subset At with |At| < k, where k = max |A|
is the maximum number of active users. Since we assume

that δk+1 < 1√
k+1

, we have δk < 1√
k−1+1

≤ 1, and

then ‖Φth
b‖2l2 ≥ (1 − δk)‖hb‖2l2 > 0, In other words,

Φth
b = 0 has no nonzero solutions. Therefore, rank(Pt) = t,

rank(P⊥
t ) = m − t, and a projection matrix Pm−t can be

constructed with (m − t) independent rows in P⊥
t , that is

Pm−t = Im−tP
⊥
t , where Im−t is defined in [5]. The autocor-

relation matrix of Pm−t is denoted as Cm−t = Pm−tP
H
m−t.

With the projection matrix Pm−t, we denote the projected

residual vector zbt = Pm−tr
b
t . Then based on zbt , we form

a binary hypothesis test on whether there are active users

existing in the residual after the t-th iteration,

H0 : zbt = Pm−tn
b,

H1 : zbt = Pm−t

(
Φhb

t + n
)
,

(7)

where hb
t , with entries hb

t(i) = hb
i for i ∈ At and hb

t(i) = 0
for other cases, denotes the channel response of the active

users in the residual rbt . With hypothesis H0, where no active

user exists in the residual, the projected residual follows

zbt ∼ CN (
0, σ2Cm−t

)
. With hypothesis H1, where active

users exist in the residual, the projected residual follows

zbt ∼ CN (
0, (θbt + σ2)Cm−t

)
, where the total channel gain

of the active users in the residual, θbt = ‖hb
t‖l2 , is an unknown

parameter. Therefore, we have the PDF of the projected

residual under H0 and H1, p
(
zbt ;H0

)
and p

(
zbt ; θ

b
t , H1

)
,

respectively, as

p
(
zbt ;H0

)
={

(2πσ2)
m−t

2 det
1
2 (Cm−t)

}−1

exp

{
− (zb

t)
HC−1

m−tz
b
t

2σ2

}
,

(8)
p
(
zbt ; θ

b
t , H1

)
={[

2π(θbt + σ2)
]m−t

2 det
1
2 (Cm−t)

}−1

exp

{
− (zb

t)
HC−1

m−tz
b
t

2(θb
t+σ2)

}
.

(9)

Let ∂
∂θb

t
ln p

(
zbt ; θ

b
t , H1

)
= − m−t

θb
t+σ2 +

(zb
t)

HC−1
m−tz

b
t

(θb
t+σ2)2

= 0, the

maximum likelihood estimation of θbt is represented as

θ̂bt =

[
(zbt)

HC−1
m−tz

b
t

m− t
− σ2

]+

. (10)

2) Stopping Criterion for DGOMP: When θ̂bt = 0 holds for

every block b, we accept the hypothesis H0, i.e., there exists

no active pilot in the residual, and then the iteration stops.

When there exists θ̂bt > 0 holds for at least one block, we

need to refine the criterion for accepting the hypothesis H0

and stopping the iteration.



The log likelihood ratio of H1 versus H0 is represented as

L(zbt) = ln
p(zbt ; θ̂

b
t , H1)

p(zbt ;H0)

=
m− t

2
ln

σ2

θ̂bt + σ2

+
1

2

(
1

σ2
− 1

θ̂bt + σ2

)
(zbt)

HC−1
m−tz

b
t .

(11)

When the L(zbt) on every block is lower than a given

threshold γ̃t, the hypothesis H0 is accepted and the iteration

stops. Substituting (10) into (11), the stopping criterion is

represented as

m− t

2

(
(zbt)

HC−1
m−tz

b
t

σ2(m− t)
− ln

(
(zbt)

HC−1
m−tz

b
t

σ2(m− t)

)
− 1

)
< γ̃t.

(12)

Denoting g(x) = x − lnx − 1, (12) can be written as

m−t
2 g

(
(zb

t)
HC−1

m−tz
b
t

σ2(m−t)

)
< γ̃t. Note that θ̂bt =

(zb
t)

HC−1
m−tz

b
t

m−t −

σ2 > 0 holds in this case, thus
(zb

t)
HC−1

m−tz
b
t

σ2(m−t) > 1. Since g(x)
monotonically increases on x > 1, and its inverse function

g−1 exists for x > 1, (12) is equivalent to

(zbt)
HC−1

m−tz
b
t

m− t
− σ2 < g−1

(
2γ̃t

m− t

)
. (13)

We define an indicator w.r.t. zbt , T (zbt) =
(zb

t)
HC−1

m−tz
b
t

m−t −
σ2, and a threshold, γt = g−1

(
2γ̃t

m−t

)
, which are respectively

the left side and the right side of the inequity (13). Then the

stopping criterion for DGOMP is simplified to

T (zbt) < γt, ∀b = 1, 2, · · · , B. (14)

In summary, the iteration of DGOMP stops when θ̂bt = 0
or T (zbt) < γt holds on every block b.

3) Determination of the Threshold γt: A constant false alar-

m criterion is used to determine the threshold γt. According to

[5], with hypothesis H0, the T (zbt)’s on blocks b = 1, 2, · · · , B
are i.i.d. following

T (zbt)

σ2
∼ χ2

m−t, ∀b = 1, 2, · · · , B, (15)

and the false alarm probability of DGOMP is represented as

PFA = Pr
{∃1 ≤ b ≤ B, T (zbt) > γt | H0

}
= 1−∏B

b=1 Pr
{
T (zbt) > γt | H0

}
= 1−

(
1−Qχ2

m−t

(
γt

σ2

))B

,

(16)

where Qχ2
v
(a) is the right-tail probability of χ2

v function given

in [5].

Since the function f(x) = 1 − (1 − x)B monotonically

increases on 0 < x < 1, the threshold for stopping criterion

(14) with the false alarm probability PFA is given as

γt = σ2Q−1
χ2
m−t

(
1− B

√
1− PFA

)
. (17)

In this paper, the threshold γt is calculated so as PFA = 0.1.

C. Data Decoding with JMPA
The main idea of JMPA [2] is to regard that the false

detected inactive users virtually transmit a length-K zero

codeword 0. We assign the zero codeword with index m = 0,

i.e., c0j = 0, and then have the extended codebook represented

as C̄j = Cj∪{c0j}. JMPA is to implement MPA on the extended

codebook. If the zero codeword for some user is with the

highest likelihood, then this user is regarded as a false detected

inactive user and eliminated from Â. To get more accurate

detection, the likelihood for each codeword is unified across

all SCMA blocks.
In the t-th iteration of JMPA, the message passed from

function node k to variable node u, E
(t)
k←u(c

m
u ), and the

message passed from variable node j to function node k,

E
(t)
k→u(c

m
u ), are represented as

E
(t)
k←u (c

m
u ) =

∑
cv∈C̄v,v∈Uk\u

cu=cm
u

1√
2πσ

exp

{
− 1

2σ2

∣∣yk
− ∑

v∈Vk

hvc
mv

v,k

∣∣2} ∏
v∈Uk\u

E
(t−1)
k→v (cmv ) ,

E
(t)
k→u (c

m
u ) = αm

j

∏
l∈Ku\k

E
(t−1)
u←l (cmu ) ,

(18)

where Uk is the set of the variable nodes connecting to the

function node k, Ku is the set of the function nodes connecting

to the variable node u, cmi

i,k denotes the complex value on the

k-th entry of the ni-th codeword in the i-th codebook, and

αm
j is the prior information about the m-th codeword of user

j. After the last iteration, the likelihood for each codeword is

calculated as

Pr{ĉj = cmj | y} = λj
m

∑
k∈Ku

E
(t)
k←u (c

m
u ) , (19)

where λj
m is choose so as

∑
m∈M Pr{ĉj = cm | y} = 1.

The algorithmic and hardware-implementation complexity

of MPA are analyzed in [11] and [12], respectively, which

indicates that the computational complexity and the overhead

for hardware resource are proportional to the number of

detected active users, i.e. |Â|. Therefore, compared with other

algorithms when their preset user sparsity exceeds active users,

DGOMP has advantages on lowering the complexity of JMPA,

because it outputs a more precise active user set which means

fewer function nodes for JMPA.
In our work, we find that the prior information αm

j , involved

in the calculation of E
(t)
k→u (c

m
u ) in each JMPA iteration, sig-

nificantly affects the convergence of the normalized likelihood

for zero codeword. In [2], the prior information for the zero

codeword is set according to the probability of false detection,

and for other codewords it is set as 1. However, the false de-

tection probability is relatively small after DGOMP, therefore

this criteria shrinks the likelihood of the zero codeword, and

thus results in failure to the eliminate the false detected users.

Here, the prior information is calculated as

αm
j =

{
1, m 
= 0,

σ2/|ĥj |2, m = 0,
(20)
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Fig. 3. Histogram of the unified likelihood of the zero codeword with three
mentioned algorithms after the last JMPA iteration.

where |ĥj |2 is the estimated channel gain for user j. This is

based on the fact that, in greedy compressive sensing with

noise, the recovered entries with lower power are more likely

to be erroneous ones or false detection.

In our simulation, we make a comparison of the following

three algorithms to get the prior information:

Alg. 1) based on noise power and channel response as (20),

Alg. 2) based on false alarm probability PFA as [2],

Alg. 3) unified so as α0
j = α1

j = · · · = αM
j .

We record the unified likelihood of zero codeword for both

correctly detected users (active users) and falsely detected

users (inactive users) based on these three methods. Based on

the recorded results for 105 shots, we plot the histogram of the

unified likelihood in Fig. 3, where the length of each interval

in the horizontal axis is 0.005. The histograms demonstrate

that with Alg. 1, the unified likelihood of zero codeword

convergences closely to 0 or 1, depending on whether the

codebook is active or not, which makes it easy to discriminate

the correct detection and false detection of DGOMP. However,

with Alg. 2 and Alg. 3, the distribution area for the unified

likelihood of zero codeword of active users and that of inactive

users shows some overlap, which leads to failures in picking

out the inactive users.

IV. SIMULATION RESULTS

In the simulations, we consider J = 60 potential active

users. Therefore 60 unique pilot sequences with length L = 24
are used. In order to generate these 60 pilot sequence, we first

generated 6 root Zadoff-Chu (ZC) sequences, and then have

10 cyclic-shifts on each root ZC sequence. The simulation

is deployed in Rayleigh fading channel. Users employ slow

power control to compensate the pathloss, such that the

received power for the users at the BS is assumed to be unified.
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Fig. 4. Missed detection rate performance comparison among DGOMP,
FOCUSS, GOMP and CoSaMP. SNR = 10 dB.

The small scale fading is not compensated because it helps the

codeword decoding when more than one user share the same

codebook [13].

In Fig. 4, we compare the missed detection rate performance

among the DGOMP, FOCUSS [2], GOMP [7], and CoSaMP

[4] user active detectors under SNR = 10 dB. Note that user

sparsity is assumed to be unknown for DGOMP and FOCUSS,

but ideally known, even though this is an impractical assump-

tion, for GOMP and CoSaMP. With single-block transmission,

CoSaMP has the best performance when user sparsity is in a

lower level. However, its performance degrades most seriously

when user sparsity gets higher. This is due to the inaccurate

computation of pseudo inverse on the active pilot matrix,

which has a larger condition number when user sparsity

gets higher. FOCUSS has the most robust performance when

user sparsity increases, however, with lower user sparsity, its

performance is worse than that of GDOMP. When comparing

the DGOMP detector with GOMP, we find that DGOMP

outperforms GOMP with single-block transmission and in

higher user sparsity regime with multi-block transmission. The

advantage of DGOMP is that, when a specific active user

undergoes serious small scale fading and is replaced by a

false detection in OMP iteration, GOMP will still stop the

iteration when the number of detected users reaches the preset

value, which leads to the missed detection of this user. On

the contrary, DGOMP will continue the iteration as long as

this user is detected in the residual. Moreover, both DGOMP

and GOMP have better performance with more transmission

blocks. Note that the simulation results of CoSaMP and

GOMP are based on ideal knowledge of user activity. In case

that the exact user sparsity, for example 10, is not exactly

known, however the detector is given a statistically empirical

value, for example 6, as the sparsity, then at least 4 active

users will be missed, and the missed detection rate will be

much higher than the curves show.

Fig. 5 illustrates the Codeword Error Rate (CER) perfor-

mance of the proposed DGOMP-JMPA detector. The influence

of both user sparsity and the number of predefined codebooks
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Fig. 5. CER performance for data decoding of the proposed UL grant-free
SCMA receiver in Rayleigh fading channel.

on the CER performances are considered. We assume that

the codebooks are all of size M = 4 and fixed codeword

sparsity S = 2. Note that with fixed codeword sparsity, the

number of predefined codebooks is determined by the length

of the codeword, which is NCB =
(
K
S

)
. Here we consider

two cases of codebooks: 1) K = 4 and NCB = 6, and 2)

K = 6 and NCB = 15. As expected, the signal detection

performance degrades with an increasing number of active

users. Furthermore, with more predefined codebooks, the data

decoding performance is improve. The reason is that more

codebooks lowers the probability of codebook conflicts, i.e.

more than one active user uses the same codebook.

V. CONCLUSIONS

In this paper, we proposed a blind detector of UL grant-free

SCMA which requires no prior knowledge on user sparsity.

The contribution of this paper is two-fold: i) the DGMOP

active user detector is proposed to solve the problem of

unknown user sparsity in UL grant-free SCMA systems, and

ii) the JMPA decoder is modified to fit the scenario where

false detection probability is low. Simulation results show that

the performance of the proposed DGOMP detector without

knowledge on user sparsity is very close to that of the currently

existing detectors with ideal knowledge on user sparsity. Such

ideal information is, however, not possible to have in a

practical system. The modified JMPA decoder identifies the

false detection well when false detection probability is low.

Moreover, a larger codebook set improves the data decoding

performance of JMPA.
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