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Abstract—We consider sum rate maximizing linear zero in-
terference precoder–receiver pairs for multiuser single stream
transmission. We parametrize the transmit and receive filters
with a unit norm vector per user, leading to a transparent in-
terpretation of the tradeoff between aligning with the eigenspace
of the user and avoiding loss of power due to multiuser zero
forcing. With this formulation the sum rate may be numerically
maximized. We investigate performance for two users that have
two receive antennas in spatially correlated and uncorrelated
channels. The presented scheme outperforms zero interference
transmissions based on a maximum ratio combining receiver,
especially in correlated channels.

I. INTRODUCTION

For single-antenna receivers, zero forcing beamforming
(ZFBF) with the combined channel of multiple users is the
(asymptotically) optimum linear precoder under zero inter-
ference condition [1], [2]. When there are multiple receiver
antennas, a generalized version of the channel inversion,
called block diagonalization (BD), can be used [1], [3]. BD
orthogonalizes the whole signal spaces of the users even if
there is transmission only on part of the signal space. Thus,
when the number of transmitted streams per user is less than
the number of receive antennas, transmission schemes that
take the receiver processing into account perform better than
BD. In [4], a best combination of eigenmodes of the users
are iteratively selected for zero forcing transmission and the
receivers are then eigenvector combiners. Even though the
degrees of freedom offered by multiple receive antennas are
better exploited than in BD, the scheme is known subopti-
mal and thoroughly studied in [5]. In [6], [7], the transmit
beamformers and receiver vectors are iteratively computed for
single stream transmission per user in order to maximize the
sum rate. In [8], joint optimization of the precoder and receiver
for 2 × 2 multiple–input multiple–output (MIMO) with two
users is considered. The receiver is selected to be a maximum
ratio combining (MRC) receiver and the precoder is optimized
numerically in a spatially uncorrelated channel. In [8], the
MRC receiver is argued to be the optimum receiver when
the transmission constraints force zero interference reception.
In [9], [10] it is found that for two users, the generalized
eigenvectors of R1 and R2, where Rk are the normalized
instantaneous correlation matrices of the users, give the zero
interference solution when the receiver is MRC. Also, for 2×2

MIMO, the generalized eigenvectors were found to reproduce
the precoder of [8].

In this paper, we parametrize the transmitter and receivers
with a unit norm vector sk per user and consider a general
receiver which covers all commonly used linear combiners
such as MRC and the eigenvector combiner. Subject to the
channels, and the sk, a transmit precoder is selected that
removes the interference from the combined signals of the
users. The solutions in [8], [9], [10] for 2 × 2 MIMO are
special cases of our formulation.

The sk may be selected to maximize a suitable system
utility. Here, we consider maximization of the sum rate, with
equal power allocated to each user. We show results both in
uncorrelated and correlated scenarios for two users with two
receive antennas and two or four transmit antennas. The results
show that the presented scheme outperforms the generalized
eigenvector precoder especially in correlated scenarios, where
the eigenvalue spread is larger. Also, our parametrization leads
to a transparent interpretation of the tradeoff between aligning
with the eigenspace of the user and avoiding loss of power
due to multiuser zero forcing.

The rest of the paper is organized as follows. In Section 2,
we give the system model. In Section 3, we give the general
description of the receiver-precoder pair for single stream
transmission and in Section 4 we consider the solution for
the sum rate maximization. Section 5 presents the simulation
results and in Section 6 we give the conclusions.

II. SYSTEM MODEL

We consider a single cell MIMO downlink system, where
the base station has Nt transmit antennas and the users have
Nr receive antennas each. It is natural to assume Nr ≤ Nt

as the number of antennas at the UEs is considerably more
limited by size than at the BS. There are K users, with K ≤
Nt, and we assume single stream transmission per user. The
Nr × 1 signal vector yk received by the k:th user reads

yk = HkWAx+ nk, (1)

where Hk is the Nr × Nt MIMO channel between the base
station and user k and W = [w1 , ..., wK ] is the Nt × K
precoding matrix, where wk is the precoding vector for user
k. The diagonal matrix A controls the power division between



users. A precoder that includes the power control is denoted as
Ŵ = WA. The K×1 vector x = [x1 , ..., xK ]T contains the
transmitted symbols for the users and nk is the scaled noise
vector whose entries are IID complex Gaussian distributed
with zero mean and variance σ2

P , where σ2 is the variance of
additive white Gaussian noise (AWGN) and P is transmitted
signal power. The MIMO channel H ∈ CNr×Nt is a complex
Gaussian matrix written as H = H̃R

1/2
T [11], where H̃ is an

i.i.d. complex circular Gaussian matrix and RT = E
{
HHH

}
is the transmitter end spatial correlation matrix. We consider
both i.i.d. spatial fading and channels with transmit correlation.
According to [12] the receiver correlation is typically small
thus the receiver covariance matrix RR is set to identity. For
transmit correlation, we use a simple exponential correlation
model, a uniform linear array (ULA) [13], where the amplitude
correlation between the signals in antennas m and n is given
by ρ|m−n|. To avoid favoring a particular direction of the
signal or codewords, we define

[RT]m,n = ρ|m−n| exp(j(m− n)ϕ), (2)

where the direction of transmission ϕ is uniformly distributed
across different channel realizations. The singular value de-
compositions (SVD) of the channels are Hk = UkΣkV

H
k ,

where Σk is a Nr ×Nr diagonal matrix of ordered non-zero
singular values, and Uk and Vk are Nr × Nr and Nt × Nr

unitary matrices, respectively.

III. GENERAL SINGLE STREAM MULTIUSER
TRANSMISSION

We consider single-stream transmission to each user and
perfect channel state information (CSI) at the transmitter.
The transmission requirements for interference free multiuser
single stream transmission are written as

gH
k HkW = gH

k Hkwke
H
k , (3)

where gk is the Nr × 1 receiver combining and ek is the
Nt ×K Euclidean basis vector. When Nr = 1 and Nt = K,
there exists only one precoder matrix achieving zero-forcing
transmission—the inverse of the square combined channel
H = [hH

1 , ...,h
H
K ]H. In case Nt ≥ K, the inverse is not unique.

A general inverse may be expressed as

W = H† + P⊥B, (4)

where H† denotes the pseudo inverse, P⊥ = I − H†H
is the orthogonal projection onto the null space of H and
B is an arbitrary matrix. By choosing B = 0, the non-
normalized precoder equals the pseudo inverse of H. The
resulting precoder does not transmit energy to the null space
of H. In [14], it has been proven that pseudo inverse based
precoders are optimal among the generalized inverses for
maximizing any performance measure under a total power
constraint assumption.

Here, we consider zero-interference single stream transmis-
sion to multiple users with more than one receive antenna. The
users use linear receivers (vector combiners) when receiving a

single stream transmission. Instead of restricting to a specific
combiner, like MRC, we consider general combiners. The ef-
fective channel for each user is a 1×Nt vector heff,k = gH

k Hk,
where gH

k is the normalized combiner. The combined effective
channel is a K ×Nt matrix

Heff = [hH
eff,1, ...,h

H
eff,K ]H. (5)

Interference-free multiuser transmission-reception is achieved
if and only if

HeffŴ = Ã, (6)

where Ã = diag(ã) is a diagonal matrix defined by a vector
ã of K arbitrary non-zero real positive numbers.1 Consider
the SVD of the effective channel, Heff = UeffΣeffV

H
eff . The

matrix VH
eff spans the space seen by the users equipped with

the general combiners gH
k . Consequently, a general precoder

which does not send energy to the part of the transmission
subspace that is not visible to any of the receivers can be
expressed as a linear combination of the vectors in VH

eff . We
have

Ŵ = VeffW̃, (7)

where W̃ is a K ×K matrix of complex numbers. Applying
the general precoder of (7) to (6) we have UeffΣeffW̃ = Ã.
If we fix the vector ã and assume Σ invertible, W̃ has an
unambiguous solution W̃ = Σ−1

eff UH
effÃ. It follows that any

solution to (6) can be written as

Ŵ = VeffΣ
−1
eff UH

effÃ, (8)

which is an inverse of the combined effective channels. One of
these solutions is the pseudo inverse Ŵ = HH

eff(HeffH
H
eff)

−1.
The combined effective channel and therefore the precoder

is a function of the receiver combiners. Finding receiver
combiners to maximize a performance metric is a nonconvex
optimization problem. We approach the problem by parame-
terizing the receiver combiners by unit norm vectors sk from
which the overall phase can be removed. Without loss of
generality, the gH

k can be written as

gH
k =

sHk Σ−1
k UH

k

||sHk Σ−1
k ||

, (9)

where we assume Σk to be invertible. With this combiner the
effective channel for each user becomes

heff,k =
(Vksk)

H

||sHk Σ−1
k ||

. (10)

The combining vectors sk select linear combinations of the
Nr eigendirections of each user, which form the effective
channels. Next define a Nt ×K matrix

C = [V1, ...,VK ]S , (11)

where S is a KNr×K-matrix with the vectors sk on the block
diagonal. The columns of C are the effective channels without

1Note that the phase of these numbers is irrelevant, as information is packed
into the phases of the symbols xk .



normalization, Vksk, and the columns have unit norm. Now
we can rewrite the precoder as

W = C(CHC)−1A, (12)

where A has the diagonal entries ak = ãk||sHk Σ
−1
k || and the

matrix CHC represents the instantaneous correlation matrix
of the effective channels of the users. With this precoder and
the receiver of (9), the received signal for user k after receiver
processing is

rk =
ak

||sHk Σ−1
k ||

xk + nk, (13)

where nk is receiver processed noise. Due to the normalization
of the combiner (9), the covariance of nk remains σ2. The post
processing SINR for user k is

γk =
a2k

σ2sHk Σ
−2
k sk

, (14)

which depends on the power normalization factor ak and the
vector sk that defines the use of the eigenmodes of the users.

The vector sk is needed at the reception and a dedicated
pilot transmission may be arranged so that each user gets
information about his pertinent sk. The overhead from such a
pilot transmission is similar to a dedicated pilot transmission
needed in the techniques proposed in [8], [9], [10].

A. Power constraint

We assume a total power constraint and normalize the
precoder (12), so that

Tr
(
WHW

)
= Tr

((
CHC

)−1
A2

)
= 1. (15)

The normalization is thus effected by the instantaneous corre-
lation matrix CHC between the effective channels of the users,
and the power allocation matrix A2, where

∑
a2k

(
CHC

)−1

k,k
=

1. With equal power allocation to users we have a2k = a2 and

a2 =
1

Tr (CHC)
−1 =

det
(
CHC

)
Tr[Adj (CHC)]

. (16)

It can be seen that when the effective channels of the users
are orthogonal, a2 = 1

K . For two users, the instantaneous
correlation matrix between the effective channels reads

CHC =

(
1 sH1 Es2

sH2 E
Hs1 1

)
, (17)

where E = VH
1 V2 is the Nr×Nr inner product matrix of the

Nr eigenvectors of the two users. Denoting the instantaneous
correlation of the effective channels of the two users by β =
sH1 Es2, the normalization factor becomes

a =

√
1− |β|2

2
. (18)

Due to the forced orthogonalization, the transmission for one
user is not steered towards the optimum single user direction
for that user—it is steered towards the best possible inter-
ference free direction. The normalization loss i.e. the penalty
of forced orthogonal transmission between the users depends
only on the non-orthogonality β of the effective channels of
the users.

B. Special cases as sub-solutions

Our general design for the precoder and combiner includes
solutions where the combiner is fixed as special cases. The
scheme presented in [4], where a best combination of eigen-
modes of the users are iteratively selected for zero forcing
transmission refers in our formulation as the case where the sk
are binary selection vectors. Applying binary selection vectors
to (10) and (9) the effective channels become eigenmodes
of the users and the receivers become eigenvector combining
receiver uH.

In [8], [9], [10], MRC processing is used at the receiver,
and the number of users is restricted to two. For the special
case of two users with Nr = 2 and Nt = 2, the generalized
eigenvectors f1 and f2 of R1 and R2, where Rk = HH

k Hk

are the Nt×Nt normalized instantaneous correlation matrices
of the users, give the optimum precoding selection for MRC.
For GE precoders the MRC receiver is

gH
mrc = fHk HH

k . (19)

If these are applied to the criteria of the zero interference
transmission we get

fH1 R1w2 = 0, (20)
fH2 R2w1 = 0.

From the definition, if f1 and f2 are generalized eigenvectors
of R1 and R2, then selecting w2 = f2 and w1 = f1 fulfills
the requirements of (21).

The effective channel heff,k for user k assuming a GE
precoder and the corresponding MRC combiner is

heff,k = fHk Rk. (21)

By making a pseudo inverse of the resulting combined effec-
tive channel, the transmission is redirected such that no power
is transmitted to the common null space. Thus the precoders
are formed as

W = HH
eff(HeffH

H
eff)

−1, (22)

where Heff = [hH
eff,1h

H
eff,2]

H. In this special case, the pre-
coders of (22) are the generalized eigenvectors f1 and f2.
This coincides with the result of [9], [10] that the generalized
eigenvectors give the optimum precoding selection for MRC
for two users for 2× 2 MIMO.

IV. SUM RATE MAXIMIZING LINEAR SINGLE STREAM
TRANSMISSION FOR TWO USERS

In this section, we concentrate on sum rate maximizing
linear precoding for two users with single stream transmission.
The sum rate to be maximized is

C =
2∑

k=1

Ck =
2∑

k=1

log2 (1 + γk), (23)

where γk is the post processing signal-to-noise ratio (SINR)
for user k. When K = 2, the post processing SINR for user
k is

γk =
1− |β|2

2σ2sHk Σ
−2
k sk

. (24)
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Fig. 1. Sum rate of two paired users in IID channel.

The SINR optimization is a tradeoff between the penalty of
forced orthogonalization and the effective utilization of the
eigenmodes. This tradeoff is controlled by the combiners sk.
The degrees of freedom are characterized by the set {sk}.
Each sk is a complex unit norm Nr-dimensional vector. It can
be unambiguously defined in terms of a real Nr-dimensional
vector bk with non-negative entries, and a vector pk of phases.
The pk affect only the term |β|2 in the numerator of (24). Thus
the optimization problem splits into two parts; an outer and
inner optimization. In the inner optimization, for any values
of bk, optimal pk exist, which minimize |β|2. The outer
optimization finds the optimal bk, subject to a solution of
the inner problem.

For the special case of two receive antennas, we parametrize
bk = [sin θk cos θk]

H with θ ∈ [0, π/2] , so that

γk =
(1− |β|2)

2σ2
(

sin2 θk
λ1,k

+ cos2 θk
λ2,k

) , (25)

where λl,k is the l:th eigenvalue of Hk. It can be seen that
the more equal the eigenvalues of the user k are, the less
influence the angle θ has. The extreme is that λ1,k = λ2,k and
all θ values result in same SINR.

To get initial values for the sk, or bk and pk, N random
pairs of s1 and s2 are generated and the bk and pk are selected
as starting point that result in maximum sum rate (23) out of
the N samples. Then |β| is minimized to find pk. With these
pk the sum rate in (23) is maximized to find bk.

V. SIMULATION RESULTS

In [9], the Generalized Eigenvector (GE) precoder is found
to perform at least as well as the numerically optimized
precoder scheme in [8] and the iterative schemes of [6], [7].
Thus here we compare our scheme to the GE solution, and to
Dirty Paper Coding [15], where the interference is assumed to
be pre-canceled without altering the optimum single stream
transmission to each user. For rank deficient channels the
GE problem is ill posed due to common null spaces of the
matrices [16] and is not considered in [9]. For example, for
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Fig. 2. Sum rate of two paired users in ULA correlated channel with spatial
correlation ρ = 0.9.

4 × 2 MIMO, the null-space of each Rk is 2-dimensional,
and there are two GEs with ∞ eigenvalue and two with
eigenvalue 0. The GEs of (R1,R2) with eigenvalue ∞ are
in the null-space of R2, and the ones with eigenvalue 0
are in the null-space of R1. Thus the ∞-eigenvalue vectors
of q1,q2 can be used to transmit to user 1, and the 0-
eigenvalue vectors q3,q4 to user 2. Any linear combination
of the two vectors per user may be used, and an optimum
linear combination may be sought for. In addition of a brute
force search, the optimum linear combination can be found
by finding regularized generalized eigenvectors, which means
that Rk are first regularized by adding a small constant to the
diagonal. Out of the regularized GEs qreg,j , j = 1, . . . , 4 of
(Rreg,1,Rreg,2), the best GE transmission to user 1 is qreg,1

and to user 2 qreg,4. Here, for 4-Tx, we have regularized the
instantaneous correlation matrices Rk with diag(0.01).

In the simulations two users are generated with flat Rayleigh
fading channels. Then precoders and receive filters according
to each specific scheme are generated and the SINRs are
calculated. From the SINRs the sum rates are evaluated.
Simulations are link level Monte Carlo simutions where the
SNR of the users are controlled by the noise level.

Figures 1 and 2 show the sum rate versus SNR for
Nr = 2 and Nt = 2, 4 in uncorrelated and correlated flat
Rayleigh fading channel with antenna correlation ρ = 0.9,
respectively. Figure 3 compares the schemes as a function of
antenna correlation ρ at SNR=10 dB. First, it can be seen
that the single stream DPC performance increases for higher
antenna correlation as the stronger eigenvalue of the channel
increases. When comparing Figures 1 and 2, the optimized
linear precoding performs better in uncorrelated channel as
here the eigenmodes have more equal weights which gives
more flexibility in balancing between orthogonality and power
streering. Also, in uncorrelated channels the optimal solution
is closer to the MRC solution than in correlated channels.
It can be seen that especially in correlated channels, where
the eigenvalue spread is larger, our receiver–transmitter pair
outperforms the precoder optimized for MRC in 2×2 MIMO.
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Fig. 3. Sum rate of two paired users as a funtion of ρ at SNR=10dB.

VI. CONCLUSION

We have formulated a general sum rate maximizing linear
precoder and receiver pair for zero interference multiuser
single stream transmission. The formulation is independent
of the number of transmit/receive antennas and users. The
analysis is simplified by first taking two users, then two
receive antennas. Monte Carlo simulations are performed for
two users with two receive antennas both in correlated and
uncorrelated scenarios with two and four transmit antennas.
The proposed maximization outperforms outperforms zero
interference transmissions based on maximum ratio combining
receiver, especially in correlated channels. Both the proposed
scheme and those in [8], [9], [10] are subject to further
optimization by water-filling power allocation.

REFERENCES

[1] Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-forcing
methods for downlink spatial multiplexing in multiuser MIMO,” IEEE
Trans. Sign. Proc., vol. 52, no. 2, pp. 461–471, Feb. 2004.

[2] T. Yoo and A. Goldsmith, “On the optimality of multiantenna broadcast
scheduling using zero-forcing beamforming,” IEEE J. Sel. Areas Comm.,
vol. 24, no. 3, pp. 528–541, Mar. 2006.

[3] R. Chen, R. W. Heath, and J. G. Andrews, “Transmit selection diversity
for unitary precoded multiuser spatial multiplexing systems with linear
receivers,” IEEE Trans. Sign. Proc., vol. 55, no. 3, pp. 1159–1170, Mar.
2007.

[4] F. Boccardi and H. Huang, “A near optimum technique using linear
precoding for the MIMO broadcast channel,” in Proc. IEEE ICC, 2007.

[5] A. Bayesteh and A. K. Khandani, “On the user selection for MIMO
broadcast channels,” IEEE Trans. Inf. Th., vol. 54, no. 3, pp. 1086–1107,
Mar. 2008.

[6] Z. Pan, K.-K. Wong, and T.-S. Ng, “Generalized multiuser orthogonal
space-division multiplexing,” IEEE Trans. Wireless Comm., vol. 3, no.
6, pp. 1969–1973, Nov. 2004.

[7] C.-B. Chae, J. R. W. Heath, and D. Mazzarese, “Achievable sum rate
bound of zero-forcing based linear multi-user MIMO systems,” in Proc.
Allerton Conf., Sept. 2006, pp. 1134–1140.

[8] K.-K. Wong, “Maximizing the sum-rate and minimizing the sum-power
of a broadcast 2-user 2-input multiple-output antenna system using a
generalized zeroforcing approach,” IEEE Trans. Wireless Comm., vol.
5, no. 12, pp. 3406–3412, Dec. 2006.

[9] C.-B. Chae, D. Mazzarese, N. Jindal, and J. R. W. Heath, “Coordinated
beamforming with limited feedback in the MIMO broadcast channel,”
IEEE J. Sel. Areas Comm., vol. 26, no. 8, pp. 1505—1515, Oct. 2008.

[10] C.-B. Chae and J. R. W. Heath, “On the optimality of linear multiuser
MIMO beamforming for a two-user two-input multiple-output broadcast
system,” IEEE Sign. Proc. Lett., vol. 16, no. 2, pp. 117–120, Feb. 2009.

[11] D.-S. Shiu, G. Foschini, M. Gans, and J. Kahn, “Fading correlation and
its effect on the capacity of multielement antenna systems,” IEEE Trans.
Comm., vol. 48, no. 3, pp. 502–513, Mar. 2000.

[12] Lucent, Nokia, Siemens, Ericsson, “A standardized set of
MIMO radio propagation channels,” 3GPP: TSG RAN 1 contribution
#23 R1-01-1179, Nov. 2001.

[13] S. Loyka, “Channel capacity of MIMO architecture using the exponen-
tial correlation matrix,” IEEE Comm. Lett., vol. 5, pp. 369 – 371, Oct.
2001.

[14] A. Wiesel, Y. C. Eldar, and S. Shamai, “Zero-forcing precoding and
generalized inverses,” IEEE Trans. Sign. Proc., vol. 56, no. 9, pp. 4409–
4418, Sept. 2008.

[15] H. Weingarten, Y. Steinberg, and S. Shamai, “The capacity region of the
Gaussian MIMO broadcast channel,” in Proc. IEEE ISIT, June 2004.

[16] J. Demmel and B. Kgstrm, “The generalized schur decomposition
of an arbitrary pencil a − λb: Robust software with error bounds
and applications. part i: Theory and algorithms,” AMC Trans. Math.
Software, vol. 19, no. 2, pp. 160–174, Mar. 1993.


