
1

Coded Caching Clusters with
Device-to-Device Communications

Joonas Pääkkönen, Amaro Barreal, Camilla Hollanti, Member, IEEE , and Olav Tirkkonen, Member, IEEE

Abstract—We consider a geographically constrained caching community where popular data files are cached on mobile terminals and
distributed through Device-to-Device (D2D) communications. To ensure availability, data files are protected against user mobility, or
churn, with select caching and erasure coding methods. Communication and storage costs are considered, with an objective of
minimizing the consumption of radio resources, given an available storage size. We focus on finding the coding method that minimizes
the overall cost. Closed-form expressions for the expected consumption of radio resources incurred by data delivery and redundancy
maintenance are derived. Closed form transmission costs in a circular caching community with a specific node density and caching
method are calculated, when cost obeys a power law of distance. Our results are illustrated by numerical examples and verified by
extensive computer simulations.

Index Terms—Device-to-Device Communications, Regenerating Codes, Wireless Caching, Markov Processes, Distributed Data
Storage

F

1 INTRODUCTION

R ECENT years have seen an unprecedented growth in
wireless data traffic and this growth is not slowing

down. Compared to 2016, aggregate smartphone traffic is
expected to increase almost tenfold by 2020 [3]. One promis-
ing technology to help meet the needs of heavily loaded
future cellular networks is Device-to-Device (D2D) communi-
cations. The major benefit of D2D is that it allows for direct
communication between proximate user equipment without
the need of base stations, hence potentially offering higher
data transfer speeds, lower latency, decreased interference,
increased spectral efficiency and lower overall power con-
sumption [4], [5], [6], [7], [8].

Another uprising technology is wireless caching – either
directly on user terminals, base stations or both [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26]. Wireless D2D caching is an enticing future
technology where data could be stored and distributed di-
rectly between mobile terminals – especially if the involved
mobile terminals are geographically close to each other
and can thus form D2D clusters. Geographically constrained
caching is of particular interest since the popularity of data
is highly location dependent [20].

Wireless content caching and data distribution through

• J. Pääkkönen and O. Tirkkonen are with the Department of Communica-
tions and Networking, Aalto University, Finland.

• A. Barreal and C. Hollanti are with the Department of Mathematics and
Systems Analysis, Aalto University, Finland.
Emails: firstname.lastname@aalto.fi

• Parts of this work were presented at IEEE GLOBECOM 2013 [1] and
MACOM 2015 [2].

• The authors are financially supported by the Academy of Finland un-
der Grants #276031, #282938, #283262, #284725 and #299916, the
Finnish Funding Agency for Technology and Innovations under grant
2383/31/2014, as well as a grant from the Finnish Foundation for
Technology Promotion. The support from the ESF COST Action IC1104
is gratefully acknowledged. The work of Joonas Pääkkönen is supported by
TKK tukisäätiö.

direct links have been proposed in several works such as
[27], where delay-tolerant networking is considered for mes-
sage dissemination and forwarding. In [28], a wireless peer-
to-peer type of application is studied and it is shown that
caching can greatly increase the application-level through-
put. The potential of coded wireless D2D caching is in-
vestigated in [29], while [12] shows that D2D caching can
improve the throughput of wireless video transmission. A
method for minimizing the energy consumption of D2D
caching nodes is analyzed in [30], whereas a joint transmis-
sion and caching policy that reduces both the total energy
consumption at the base station and the economical cost for
the operator is presented in [31]. In [32], the authors study
cluster-centric D2D networks and demonstrate significant
improvements in the network performance.

Joint use of caching and erasure coding for D2D clus-
ters has been proposed in our previous work [1], [2] for
instantaneous repairs. This work has been extended in [33]
to efficiently scheduled repairs. Further work on distributed
storage with D2D communications has been done in [34],
where a combination of D2D and social networks is con-
sidered. In [1] we looked for a way to strictly minimize the
amount of data traffic in caching clusters and found that
repetition coding yields the best results for the considered
system model. We then found in [2] that the optimal coding
method, i.e., the coding method that minimized a predeter-
mined cost function, highly depends on the popularity of
the file.

A clear drawback of wireless caching on mobile termi-
nals is unconstrained user mobility, a coming-and-going
phenomenon of mobile users here referred to as churn:
when a caching node moves away from the caching cluster,
its content is lost. To combat this, we introduce erasure
coding to ensure data availability. The focus of this article
is studying the performance of such coded caching clusters.

2

The aim of this work is to investigate under what kind of
circumstances storage coding outperforms caching without
coding. The aim is not to propose new coding methods or
to promote certain caching schemes, but to study whether
storage coding can improve the system performance com-
pared to schemes without coding. The main contributions
of this article can be summarized as follows:

• Closed-form expressions for the expected transmis-
sion cost based on signal attenuation of both un-
coded and coded D2D caching methods are derived.

• We examine under which conditions coded caching
outperforms uncoded caching without redundancy.
We stress that we focus on investigating the maxi-
mum theoretical gains without considering the effect
of interference or retransmissions.

• It is shown that coded caching can yield significant
cost savings in terms of overall consumption of radio
resources, e.g., energy.

The rest of this article is organized as follows. In Sec-
tion 2, we present the system model used throughout this
work. In Section 3, we introduce the proposed caching
methods. Analytical cost estimates are derived in Section 4,
while simulation results are presented and compared with
the analytical results in Section 5. Finally, conclusions are
drawn in Section 6.

2 SYSTEM MODEL

We begin by introducing the system model assumed
throughout this work. We model a cluster of mobile termi-
nals with data storage capabilities. Throughout this paper,
a cluster is defined as a geographically constrained area
consisting of a time-varying number of users, or nodes.
The instantaneous number of nodes in the cluster follows
the Poisson distribution. The expected total number of
nodes present in the cluster is denoted by m. All nodes
are assumed to be uniformly distributed inside the cluster
according to a uniform Binomial Point Process (BPP) as in,
e.g., [22].

A single base station is located outside of the cluster.
The base station can be contacted if the desired data file is
not cached on the users. The base station also keeps track
of what is stored and where. We assume that keeping track
of this information yields a negligible cost compared to the
considered data transmission costs. A graphical representa-
tion of the model is displayed in Figure 1. The nodes inside
the cluster form a D2D caching community. New nodes
arriving in the cluster do not have useful content cached
upon arrival, which implies that our results are a lower
bound on the achievable caching gains. We assume that each
node knows about the content stored in every other node,
and any two nodes can communicate data.

Comparing intra-cluster transmissions to cellular down-
link transmissions, the protocols may be less reliable, mean-
ing that for a given path loss between the nodes, more
resources (energy, time, frequency) have to be used for
reliable communication of an information bit. Also, more
signaling overhead may be required for D2D caching than
for conventional downlink transmissions. In contrast, due

BS

B

r

v

Fig. 1: D2D caching cluster system model example when
the cluster is a disk of radius r. Instead of always having to
contact a remote base station (BS), users in the cluster are
able to communicate with each other through direct links.
The cost of using the traditional downlink is B. The distance
between the BS and the center of the cluster is v.

to the limited size of the clusters, interference from intra-
cluster transmissions may spread less interference than cel-
lular transmissions. These effects may lead to the overall
consumption of radio resources to be a different function of
path loss in the D2D community than in cellular downlink.
We model this with an overall multiplicative factor Θ.

The time dynamics of the system are modeled as follows.
We assume that the time that an arbitrary node remains
active in the cluster follows an exponential distribution
with expected value T . We define a failure as the event
when a node becomes inactive by leaving the system and
denote the node failure rate, or churn rate, by λ = 1/T . We
further assume that the nodes arrive in the cluster at random
time instances according to a Poisson arrival process, which
implies that the inter-arrival time of the nodes follows the
exponential distribution. We assume that the expected value
of this distribution is 1/(mλ), so the arrival rate is mλ.

Now by Little’s law [35], the expected number of nodes
in the cluster is mλT = m, as we desire. With these
parameters, we can model the instantaneous state of the
system via an M/M/∞Markov model (cf. Figure 2), which
has been widely used to model wireless cellular systems
with exponential1 dwell times [36], [37], [38]. In this work,
we only consider the steady state of the chain with m nodes
in the cluster on average. In the parlance of queueing theory,
here the arrival rate is mλ and the service rate is λ. Hence,
the probability that the system is in state j, i.e., that there are
j nodes in the cluster, can be written as [39]

π(j)=

(
mλ
λ

)j
j!

e−(mλλ) =
mj

j!
e−m. (1)

We henceforth consider a single data file of unit size
without loss of generality. Each user in the cluster can re-
quest the file anytime. The request interval of a user follows

1. Note that the results derived throughout this work are valid for
the more general M/G/∞ queue where the service time need not be
exponential. This is due to the fact that we only consider expected
values.

3

m− 1 m m+ 1· · · · · ·

mλ

(m− 1)λ

mλ

mλ

mλ

(m+ 1)λ

mλ

(m+ 2)λ

Fig. 2: M/M/∞ Markov chain. The state refers to the
number of users in the cluster.

an exponential distribution with expected value 1/ω, where
we call ω the request rate or, by a slight abuse of terminology,
the file popularity. We concentrate on the case ω < λ as we
assume that the vast majority of the users request the file
only once during their visit to the cluster.

Throughout this paper, we assume instant repair after
failures in order to avoid simultaneous node failures. In
a practical caching system this would mean that cluster
membership is soft in the sense that users moving into the
border region are considered to be candidates for failing.
With instant repair, no matter which coding method is used,
there are always n caching nodes in the cluster as long as the
Markov chain in Figure 2 never goes to a state lower than n,
which we deem a valid assumption as we only investigate
the case n � m, and thus the probability of finding the
chain in states with a small number of members is extremely
small2.

3 CACHING METHODS

We consider four different caching methods.

3.1 Simple caching (SC)
A single node stores a full copy of the file. The file is not
protected against storage node failures since no redundancy
is enabled. As soon as the caching node leaves the system,
the data file is lost from the caching community and the next
requesting node needs to download the entire file from the
base station. This node then automatically becomes the new
caching node and, as long as it remains in the cluster, all file
requests from other nodes are served by this node through
D2D communications. Note that in this scheme, when a new
user downloads the file, it caches the file only if nobody else
is caching the file at the moment.

The simple caching scheme can be modeled with a
Markov chain as depicted in Figure 3.

By performing a simple cut-based analysis of the chain,
the steady state probabilities of the upper chain can be
shown to become πj − ζj and the lower chain ζj , where
πj are the M/M/∞ probabilities from (1), and ζj fulfil the
recursion

ζj+1 =

(
m

j
+
ω

λ
+ 1

)
ζj −

m

j
ζj−1 −

ω

λ
πj ,

with ζ0 = 0. For the purposes of this article we do not need
to find these steady state probabilities. Instead, in Section
4.2, we derive an approximation of the related performance
metric. We use the chain of Figure 3 only to model the

2. For example, if m = 100 and n = 6, values which we will later
use in our simulations, the probability that the number of nodes in the
cluster drops to n or below is approximately 5.5× 10−35.

(0, 0)

(1, 0)

(0, 1)

(1, 1)

(0, 2)

(1, 2)

(0, 3) · · ·

· · ·

mλ

mλ

λ

mλ

λ
ω

mλ

λ

λ

mλ

2λ

2ω

mλ

2λ

λ

3λ

3ω

mλ

4λ

3λ

λ

Fig. 3: Simple caching Markov chain state diagram. State
(x, y) refers to having x ∈ {0, 1} caching nodes and y =
0, 1, 2, 3, ... empty nodes in the cluster.

behavior of the system with computer simulations in order
to empirically measure the performance of simple caching.
This will be done later in Section 5.

3.2 Multicaching (MC)

This caching scheme is otherwise similar to simple caching,
but here each user requesting the data file also caches it
and thus provides additional redundancy. In other words,
if there is one node already caching the file when another
node requests the file, then the requesting node downloads
the file from the single caching node in D2D mode and
becomes a second caching node. If there are more than
one user caching the file when a request takes place, then
the requesting node contacts the nearest caching node and
downloads the file from this node in D2D mode and be-
comes an additional caching node itself. Note that while this
method increases the density of caching users, the drawback
is the increased cumulative storage space consumption.

Due to the complex nature of analyzing this caching
scheme, we do not provide mathematical analysis for this
method, but only plot its simulated3 performance. Never-
theless, the performance of this method is intuitively vese
to that of simple caching when file popularity is low. On
the contrary, when file popularity is high, the cluster starts
to fill up with replicas and the performance of multicaching
improves compared to simple caching. Indeed, we see that
multicaching can outperform all the other methods when
file popularity is very high as will be shown later in Sec-
tion 5.

3.3 Replication (REP)

The most elementary way of adding redundancy to the
system is simply to store multiple copies of the entire file
on separate nodes. We refer to this strategy as n-replication,
also known as repetition coding, where n � m nodes store
a replica of the file. When the system operates under this
method, the file can be retrieved, or a lost node repaired, by
contacting simply one of the storage nodes.

3. A Markov chain similar to that of Figure 3 can be constructed
for the multicaching scheme. The multicaching Markov chain has
an infinite number of states in both the horizontal and the vertical
direction. The simulation program, the results of which are shown in
Section 5, is based on this chain.

4

The obvious downside of replication is that it consumes
more storage space than coded storage. Furthermore, the
repair bandwidth, that is, the amount of data traffic that
replacing a lost storage node incurs, is equal to the size
of the entire file. Hence, the repair bandwidth is equal to
the reconstruction bandwidth, which we define as the amount
of data traffic incurred when a user downloads and recon-
structs the data file.

3.4 Regenerating Codes (MBR and MSR)

We interpret the considered system as a Distributed Storage
System (DSS) which is composed of n � m storage nodes4.
The original data file is encoded into n coded fragments
of size α each. Storage nodes are assigned one of the coded
fragments, and the entire file can be recovered by contacting
any k < n storage nodes, a feature also referred to as the
Maximum Distance Separability (MDS) property of a code.
This property is what allows the system to be resistant
against arbitrary failure sequences.

To maintain redundancy, whenever a storage node fails,
it is instantly replaced with a newcomer node that is ran-
domly chosen from the empty nodes present in the cluster.
This newcomer node contacts any d ≤ n− 1 storage nodes,
downloads β units of data from each and stores α units of
data. Note that the new content in the newcomer node does
not need to be exactly the data that were lost in the failed
node. Hence, we consider functional repair, which ensures
that both the MDS property and the regeneration property
hold after an arbitrary failure.

A DSS is determined by the tuple (n, k, d, α, γ), whereof
the triple (n, k, d) consists of the storage degree, reconstruction
degree and repair degree, respectively. In other words, recon-
structing the data file requires contacting k out of total n
storage nodes, while repairing the contents of a lost node
requires contacting d nodes. In addition, the parameter pair
(α, γ) consists of the fragment size α stored in each of the
n storage nodes, and the repair bandwidth γ that is the total
number of units of data that a newcomer needs to download
for repairing a lost node. Note that when repairing, each
storage node involved in the repair process transmits β units
of data to the newcomer node, so that γ = dβ.

A given tuple of parameters (n, k, d, α, γ) is feasible if a
code with such α and γ exists. For a result on the existence
of feasible parameter tuples, we refer to [40, Thm. 1]. More
importantly, there is a natural tradeoff between α and γ
given by a piecewise linear function. Codes lying on this
tradeoff curve are called regenerating codes. Hence, regener-
ating codes offer an optimal tradeoff between storage space
consumption and repair bandwidth, while maintaining the
MDS property. Furthermore, any d nodes can be contacted
to resurrect a lost node while maintaining these properties
after repairs. Hence, regenerating codes are an attractive
choice for our scenario.

In this work, we consider two types of regenerating
codes: codes attaining one of the two extremal points, i.e.,
the points where either the storage space consumption or

4. With a slight abuse of notation, we denote by n the number of
nodes storing a replica in case of n-replication, and the length of an
(n, k, d) MDS code used for the DSS. The meaning of n will always be
clear from the context or clarified otherwise.

repair bandwidth is minimized. These codes are known
as minimum storage regenerating (MSR) codes and minimum
bandwidth regenerating (MBR) codes, respectively. For a file
of unit size, these points are achieved by the pairs [40]

(αMSR, γMSR) =

(
1

k
,

d

k(d− k + 1)

)
, (2)

(αMBR, γMBR) =

(
2d

k(2d− k + 1)
,

2d

k(2d− k + 1)

)
. (3)

It has been shown that, in the typical case k ≤ d ≤ n − 1
which we assume throughout this work, code constructions
exists for both the MSR and the MBR point, see, e.g., [41].
Note that the reason we do not consider traditional MDS
erasure codes, such as Reed-Solomon codes, is that, for the
purpose of this work, they are merely a special case of MSR
codes with k = d.

4 COST ESTIMATES

The task of an entity managing the D2D storage community
is to decide which files to store locally, and which caching
method to use for each file. The objective is to reduce
wireless traffic by exploiting available memory. By address-
ing the optimization of the use of radio resources for a
population of files, we find that it is sufficient to understand
the cost generated by an individual file, subject to both radio
resource and storage costs. These can be directly calculated
for the different caching methods.

4.1 Cost for Population of Files
First, we formulate an optimization problem in a setting
where the network management decides the caching prin-
ciple for a whole population of files, represented by a
probability density function f(ω) of file popularities. For
simplicity, all files are assumed to have the same size. This
is achieved, e.g., by segmenting larger files to a smallest
size. The task is thus to find the caching method g(ω) as
a function of file popularity ω, which minimizes the usage
of radio resources

Ctot[g] =

∫
f(ω)C

(
g(ω), ω

)
dω (4)

for the file population, for a given available storage space.
The caching selection function g takes values in the set of
of caching methods discussed in Section 3, expanded with
the BS only method. Note that Ctot is a functional of the
categorical function g.

The underlying assumption is that f(ω) remains con-
stant over a time which is long as compared to average
node life time T . Accordingly, the caching decision is done
for an ensemble of D2D caching nodes, not for an instance
with certain individual nodes. Both the actual usage of radio
resources, and the available amount of storage may vary
according to the instance of storing nodes, but decisions
have to be made on the statistical characteristics of the usage
of radio resources and available storage in the ensemble.

The cost of radio resources C
(
g(ω), ω

)
will be called

transmission cost for short. It depends, in addition to the
file popularity and caching method, which determine the
frequency and type of transmission, on the channel statis-
tics, and the radio resource management principle used in

5

the cellular network and the D2D community. Statistical
characteristics of user multiplexing, multiuser scheduling,
multiantenna techniques, energy efficiency, and interference
management have a role. We use ensemble averages to
describe the statistics of costs. For transmissions within the
D2D community, the cost of transmitting a unit of informa-
tion to an arbitrary non-caching node in the cluster from its
ith nearest caching node when there are n caching nodes in
total in the cluster is denoted by C(i, n). The expected cost
of retrieving it from the base station is B.

For simplicity, we formulate a caching optimization
based on average memory consumption, and assume an
upper limit S of reliable ensemble memory available in
the community. With S

(
g(ω), ω

)
the average memory con-

sumed by a file of popularity ω cached with method g, we
have a storage constraint

h[g] =

∫
f(ω) S

(
g(ω), ω

)
dω − S ≤ 0 . (5)

The optimization problem to be solved is thus

minimize Ctot[g] (6)
subject to h[g] ≤ 0

and it is solved over all possible caching method selec-
tion functions g(ω). With a finite population of files, this
problem can be formulated as a linear integer program,
with assignment-type constraints binding the categorical
variables g, and the complicating constraint h[g] combining
the optimizations of the files with different ω. Lagrangian
relaxation can be applied to the complicating constraint [42],
yielding the Lagrangian function

χtot[g] = Ctot[g] + σh[g] , (7)

where σ is the Lagrange multiplier. Inserting Ctot[g] from (4)
and h[g] from (5), the Lagrangian can be rewritten as

χtot[g] =

∫
f(ω)χ(g, ω)dω − σS , (8)

in terms of a cost function

χ(g, ω) = C(g, ω) + σS(g, ω) (9)

for a fixed file popularity ω and a caching method g(ω)
selected for a file of this popularity. These file-specific costs
will be computed in Section 4.2.

A tractable way to approach the optimization problem
(7) is then to use Lagrangian duality. For this, we first find
the dual function

X (σ) = min
g
χtot[g] , (10)

and then find the price

σ∗ = arg max
σ≥0
X (σ) (11)

that maximizes the dual function. According to weak dual-
ity, the primal optimum Ctot[g

∗], which is the smallest over-
all radio resource cost, achieved with the optimal caching
policy g∗, is lower bounded by X (σ∗). If Ctot[g

∗] > X (σ∗),
it indicates that with dual optimization, the constraint (5) is
not fulfilled with equality, meaning that some storage space
is left unused.

Applying duality considerably simplifies the overall cost
minimization. When constructing the dual function (10), the
discrete minimization over g can be separately performed
for each file,

min
g(ω)

∫
f(ω)χ(g(ω), ω) dω =

∫
f(ω) min

g
χ(g, ω) dω . (12)

Thus instead of jointly optimizing over the caching policy
g(ω) for all files with different popularity ω, it is sufficient
to find the smallest file-specific cost ming χ(g, ω) for each
file with fixed popularity ω separately.

This file-specific optimization is performed with cost
function (9), where the Lagrange multiplier σ appears as
a storage price that can be seen as the cost of storing one
unit of data for one unit of time. Accordingly, χ(g, ω) can
be seen as an effective cost combining transmission and
storage cost for a single file. Joint optimization over the
contributions of multiple files would then be performed in
the dual maximization step (11). The role of the storage price
σ is thus to couple the contributions of the different files
in the overall optimization (7). Below, we concentrate on
computing these file-specific costs, as functions of σ and ω.

4.2 Effective Cost for a File

The essential task for caching optimization is thus to find the
expected cost for a file with popularity ω for the different
storage methods, as a function of the storage price σ. We
directly use the expected numbers of nodes to perform
calculations. We later verify the validity of this approach
with computer simulations in Section 5.

4.2.1 Simple Caching

The dynamics of the system under simple caching are
modeled according to the Markov chain in Figure 3. Instead
of a full steady state analysis of the chain, for the sake of
simplicity, we derive an approximation for the expected
cost.

When the file is cached, there is one node caching the
entire file with no redundancy, so the cost of repair van-
ishes. There are, on average, m − 1 nodes in the cluster
generating requests as the single caching node does not
need to download the file itself. Thus, the expected num-
ber of requests during the lifetime of the caching node is
(m − 1)ωT = (m − 1)ωλ . Once the caching node leaves
the cluster, the next file request will be directed to the
base station. The expected time in which this happens is
approximately5 1

mω , and an expected number of (m−1)ωλ+1
requests, including the local file retrievals in the cluster and
the remote retrieval from the base station, are generated in
time T + 1

mω = 1
λ + 1

mω .

5. Strictly speaking, when the caching node has left the cluster, we
should take the transient period in which the system returns back to
steady state into account to find the exact expected value of the cost of
simple caching. Since λ < ω and m is large, though, this approximation
is accurate enough for our purposes as will be demonstrated later by
the numerical results.

6

Using the approximation6 E
(
X
Y

)
≈ E

(
E(X)
E(Y)

)
, where

X,Y are two random variables and E(·) denotes expecta-
tion, the cost of simple caching can be approximated as

χ(Simple Caching) ≈ (m− 1)ωT · C(1, 1) + B + σ

T + 1
mω

. (13)

The accuracy of this approximation, in the special cases
considered in this work, is verified by numerical results
in Section 5. Note that there is nothing to optimize in this
caching method.

4.2.2 Replication

When replication is used, we assume n nodes storing an
entire replica of the file. On average, there are m− n empty
nodes each generating file requests at rate ω. For recon-
structing the file, the requesting node contacts the nearest
storage node, so that the reconstruction cost is C(1, n). Thus,
the reconstruction cost becomes

χ1 = (m−n)ωC(1, n).

To repair a failed node, a newcomer node contacts the
nearest caching node out of the surviving n − 1 storage
nodes. The cost for a repair is hence given by C(1, n−1).
There are n storage nodes each failing at rate λ, so the total
repair cost becomes

χ2 = nλC(1, n−1).

The storage cost in this scenario is simply

χ3 = nσ ,

so the cost of replication is

χ(Replication) = χ1 + χ2 + χ3 . (14)

The only parameter to be optimized for replication is the
number of replicas n. Increasing n decreases the expected
distances between the nodes and the number of empty
nodes that request the file, but increases the total failure
rate, and consequently the total repair cost, and the total
storage cost. Note that similar observations have been made
before for similar distance-dependent cost functions, see,
e.g., [11] and the references therein. To minimize the cost
of replication it is crucial to find a suitable value of n, as
will be demonstrated later in this work.

4.2.3 Regenerating Codes

In a system operating under this scheme, there are both
storage nodes storing a fragment of the data file and empty
nodes present in the cluster. We hence need to consider two
types of requests. When one of the n storage nodes requests
the file, it contacts k − 1 out of the remaining n− 1 storage

6. This follows from the Taylor series expansion of f(x, y) = x
y

centered at the point (E(X), E(Y)) when y has support on [0,∞).
This expansion can be truncated to E (X/Y) ≈ E(X)/E(Y) −
Cov(X,Y)/E(Y)2+Var(Y)E(X)/E(Y)3 [43]. In the interest of space,
instead of providing a full analysis of the error term, we will demon-
strate the predictive ability of our estimate through numerical simula-
tions, see the figures in Section 5.

nodes and downloads α units of data from each. The cost of
this yields

χ4 = nωα
k−1∑
i=1

C(i, n−1).

When one of the empty nodes requests the file, k out of the
n storage nodes need to be contacted. The cost of this is

χ5 = (m−n)ωα
k∑
i=1

C(i, n)

since the expected number of empty nodes in the cluster is
m− n.

When a storage node is lost, one of the empty nodes
acts as the newcomer, contacts d of the remaining n − 1
surviving nodes, and downloads β units of data from each,
thus generating a total repair bandwidth of γ = dβ. Thereby,
the repair cost becomes

χ6 = nλβ
d∑
i=1

C(1, n−1).

Since the storage cost using regenerating codes is simply

χ7 = nσα,

the total cost of using regenerating codes amounts to

χ(Regenerating) = χ4 + χ5 + χ6 + χ7 . (15)

Here, α and β are functions of (k, d) given by (2) for MSR
codes and (3) for MBR codes.

We immediately see that the same observations about
varying the storage degree n that we made for replication
apply to (15) as well. For regenerating codes we also need
to choose between the MSR and MBR points, and find the
optimal values of k and d, to minimize the cost. Maximizing
the repair degree d minimizes both α and β for MBR and
β for MSR, and maximizing the reconstruction degree k
minimizes the amount of redundancy for MSR. However,
high values of k and d imply that distant nodes need to be
contacted. Therefore, we conclude that naively ignoring the
distance-dependency and only optimizing the system with
regard to the amount of data traffic does not necessarily
imply the lowest cost.

4.3 Transmission costs in a disk-shaped cluster
To get a quantitative handle on the transmission cost,
a model taking into account distances between nodes is
needed. Instead of detailed analysis of system performance
with scheduling, user multiplexing, power control, link
adaptation, retransmissions and interference management,
averaged over an ensemble of D2D storing nodes and con-
ventional cellular usage, we consider average path loss as
a catch-all measure indicating the radio resources needed
for a transmission. When path loss is large, one either
needs to increase transmit power, which consumes energy,
and spreads interference to a larger domain, or to use
more time/frequency domain resources. At low signal-to-
noise ratio, transmit power can be directly exchanged for
time/frequency resources.

We consider a special case of the system model in Fig-
ure 1. There is a cluster of nodes uniformly distributed in

7

a disk of radius r � v, and a base station located at a
distance v from the center of the caching cluster. The path
loss between two nodes is assumed to be

l = xΓ,

where x is the distance between the nodes and Γ is the
path loss exponent. We consider two different pathloss
exponents; for the downlink from the base station to the
nodes in the cluster we use ΓBS, for communications in D2D
mode we use ΓD2D.

We assume that there are n uniformly distributed storage
nodes present in the disk of radius r. The transmission cost
for cellular communication is given by the expected path
loss between the base station and a node in the cluster.

This is found by integrating the complementary cumu-
lative distribution function of the distance [47], [48]:

B = ΓBS

v+r∫
0

xΓBS−1

(
1− A(x, r, v)

πr2

)
dx. (16)

Within the storage community, we are interested in the
path loss between an arbitrary node in the disk and its
ith nearest caching node. To calculate it, we shall need the
following geometric results.

Consider two circles of radii R and r ≤ R with centers
separated by distance v. The chord connecting the cusps of
the lens has length [44]

µ := µ(R, r, v) :=

1

v

√
(r +R− v)(r −R+ v)(−r +R+ v)(r +R+ v)

and the area of the circular segment of a circle with radius
x and chord length µ is [45]

η(x, µ) := x2 sin−1
(µ

2x

)
− µ

2

√
x2 − µ2

4
,

where we have used equations (13) and (15) in [45] as well
as the well-known identities sin(2x) = 2 sin(x) cos(x) and
sin2(x) + cos2(x) = 1. Figure 4 illustrates the overlapping
circles.

μ

R

η

r

,μ
)

η
(R
,μ
)

r

Fig. 4: Intersecting circles with radii R and r < R. The chord
length is µ and the areas of the circular segments are η(r, µ)
and η(R,µ).

If the smaller circle with radius r is completely inside
the larger circle, the intersection area of the two circles is
πr2. If the smaller circle is mostly inside the larger one, the
circular segments of the circles are overlapping and we need
to subtract the area of the circular segment of the smaller
circle from the total area of the smaller circle and then add
the circular segment of the larger circle to find the total
intersection area of the two circles. If only a small part of the
small circles is inside the large circle, the overlapping area
is simply the sum of the circular segments of the circles. If
the circles are separated by a distance larger than the sum
of their radii, they do not intersect.

The intersection area A(R, r, v) of the two circles can
thus be written as

A(R, r, v) =
πr2 if v ≤ R− r
πr2 − η(r, µ) + η(R,µ) if R− r < v ≤

√
R2 − r2

η(r, µ) + η(R,µ) if
√
R2 − r2 < v ≤ r +R

0 if v > r +R.

Note that A(R, r, v) is the probability that the distance
between the base station and a node in the cluster is smaller
than R.

Now consider a node in the cluster at distance t from the
origin of the disk. Using the computed area of intersection,
we can find the probabilities needed for our calculations. Of
interest for our purposes is the expected distance between
the node at distance t and its qth nearest caching node when
there are n caching nodes inside the disk in total.

The probability that the distance between the node and
its qth nearest neighbor is larger than x is [46, Eqn (1)]

I(n, q, r, t, x) =

q−1∑
i=0

(
n

i

)(
A(r, x, t)

πr2

)i(
1− A(r, x, t)

πr2

)n−i
if 0 ≤ x ≤ r, and

I(n, q, x, t, r) =

q−1∑
i=0

(
n

i

)(
A(x, r, t)

πr2

)i(
1− A(x, r, t)

πr2

)n−i
if x > r. These results follow from the fact that when

any i-subset, with i ∈ [0, q − 1], of the n nodes is inside
a circle with radius x with its center a distance t away
from the center of the disk, the qth nearest neighbor of the
node is at least distance x away from the node. Thus, the
above equations represent the complementary cumulative
distribution function of the distance. The results in [47], [48]
can be used to find the expected value of the distance by
integrating this function as

E(n, q, r, t) =

r∫
0

I(n, q, r, t, x)dx+

r+t∫
r

I(n, q, x, t, r)dx

and the results in [47], [48] can again be used to find the Γth

power of the distance as

EΓ(n, q, r, t) =

Γ

 r∫
0

xΓ−1I(n, q, r, t, x)dx+

r+t∫
r

xΓ−1I(n, q, x, t, r)dx

 .

8

The probability distribution function of the distance be-
tween the center of the disk and the node is FT (t) = πt2

πr2

as the radius of the disk is r. The corresponding probability
density function is thus fT (t) = 2t

r2 . The expected intra-
cluster transmission cost is then given by

C(q, n) =
2Θ

r2

r∫
0

tEΓD2D (n, q, r, t)dt, (17)

where we have added an overall factor Θ to reflect the
possibly different value of radio resources in the base sta-
tion, and the D2D cluster. There may, e.g., be multiple D2D
clusters in a macro cell, reusing the same time/frequency
resources, while downlink users in a macro cell may be
orthogonally scheduled. This would lead to Θ < 1, re-
flecting increased spatial reuse of resources. On the other
hand, managing a caching cluster may require considerable
signaling overhead, as compared to straight forward down-
link transmission. Also, link adaptation and other radio
resource management protocols may be less effective in D2D
than in cellular transmission, leading to increasing need for
retransmission. Taking this into account may render Θ > 1.

5 NUMERICAL RESULTS

In this section, we illustrate the performance of the five
considered caching methods with respect to the derived
performance metric with the help of numerical results. The
parameter of replication n and the parameters of regener-
ating codes (n, k, d) are chosen so that the cost function
is minimized. Further, we study the potential benefits of
caching from an operator’s point of view.

For all the cases in this section, we fix m = 100, r = 1,
v = 20, ΓBS = 3.76 [49] and ΓD2D = 4 [49], while σ
is varied. The user arrival rate λ = 1, if not otherwise
stated. We choose n ∈ [2, 6] for replication, and n ∈ [3, 6]
for regenerating codes, so that the cost is minimized for a
given ω. When Θ = 1, radio resources consumed in the
D2D cluster are considered as valuable as cellular resources.
When Θ < 1, radio resources in the D2D cluster are
considered less valuable than in cellular downlink; the D2D
resources may be reused in multiple clusters inside the cell,
while with Θ > 1, signaling overhead makes storage-related
transmissions in the cluster more expensive than cellular
transmissions. The storage price is given by σ.

All the costs of the considered caching methods are
compared to the method of retrieving data through the
cellular downlink, called BS only. The cost function χ is
given by (13) for simple caching, by (14) for replication,
and by (15) for regenerating codes. In these, the expected
intra-cluster transmission cost is given by (17), and the cost
between the base station and a node in the cluster is (16). We
choose (n, k, d) such that the values of χ for the respective
caching methods are minimized.

The theoretical curves (solid lines) in Figures 5, 6, 7,
8, 9, and 10 are numerical values using the derived cost
functions. In the figures, we plot the relative cost C = χ/B
compared to BS only, as a function of file popularity ω. Plots
are double-logarithmic, with both C and ω expressed in dB-
scale. Thus, the smaller C , the better the caching method
performs compared to the benchmark BS only.

The simulated values (dots) are obtained by computing
steady state averages of long event-based Monte Carlo
simulations for the Markov chains depicted in Figure 3 for
simple caching and Figure 2 for regenerating codes and
replication, to verify the theoretical calculations. The initial
number of nodes in the cluster is m = 30 or m = 100 and
the file is cached when the simulation starts. In addition,
multicaching is simulated.

The theoretical curves (solid lines) in the figures are
numerical values using the cost functions. The simulation
results (dots) are obtained by computing steady state aver-
ages of long event-based Monte Carlo simulations for the
Markov chains in Figure 3 for simple caching and Figure 2
for regenerating codes and replication.

Figure 5 illustrates the costs of the caching methods
when storage cost is relatively high. For low file popu-
larities, caching is not useful and the traditional down-
link ought to be used. Simple caching is preferred for a
small interval in the figure around popularity ω ≈ 101.80.
Furthermore, when storage cost is high, MSR is preferred,
and provides drastic cost savings especially for high file
popularities. Recall that MSR minimizes the storage space
requirements while providing redundancy in the system
with a relatively low repair bandwidth.

-30 -25 -20 -15 -10 -5 0

10log
10

 p

-20

-15

-10

-5

0

5

10

15

1
0
lo

g
1

0
 C

m = 100, = 1, = 1, = 100000

MBR theory

MSR theory

REP theory

SC theory

MC simulation

MBR simulation

MSR simulation

REP simulation

SC simulation

Fig. 5: Total costs when the storage price σ is high.

In Figure 6, the storage price is much lower. When the file
popularity is low, replication yields the best results, while
for popular files, multicaching is optimal. When the storage
cost is low, transmission costs dominate the total cost and it
is important to minimize the expected transmission costs.
When replication is used, only the nearest caching node
needs to be contacted, as is the case for multicaching.
The additional benefit of multicaching is that, for high
file popularities, the cluster fills up with replicas and the
expected transmission distance can become lower than that
of replication. Thus, for high file popularities, multicaching
is preferred.

Compared to the setting of Figure 5, the D2D trans-
mission cost Θ is much lower in the setting of Figure 7.
This reflects radio resource management where the same
D2D resources are used in multiple clusters in a cell, and
signaling overhead due to D2D caching is low. We see how

9

-30 -25 -20 -15 -10 -5 0

10log
10

 p

-90

-80

-70

-60

-50

-40

-30

-20

-10

0
1
0
lo

g
1

0
 C

m = 100, = 1, = 1, = 0.01

MBR theory

MSR theory

REP theory

SC theory

MC simulation

MBR simulation

MBR simulation

REP simulation

SC simulation

Fig. 6: Total costs for a low storage price σ.

simple caching and multicaching yield large cost savings
even for very low file popularities. For higher popularities,
MSR is optimal, and can offer even more than 60 dB of cost
savings.

-50 -40 -30 -20 -10 0

10log
10

 p

-70

-60

-50

-40

-30

-20

-10

1
0
lo

g
1

0
 C

m = 100, = 1, = 0.01, = 1

MBR theory

MSR theory

REP theory

SC theory

MC simulation

MBR simulation

MSR simulation

REP simulation

SC simulation

Fig. 7: Total costs for a moderate storage price σ when the
relative D2D transmission cost Θ is low.

Compared to the setting of Figure 5, the node arrival rate
λ is much lower in the setting of Figure 8. This corresponds
to a case where the churn is much lower. We see that,
for high file popularities, simple caching is the preferred
method and not MSR as in the setting of Figure 5. We note
that when churn is high, it is important to protect data
against node failures with redundancy, while for low churn,
simple caching suffices.

In Figure 9, the churn rate is even higher than in the
setting of Figure 5. Now the improvement in cost achieved
by MSR coding, especially compared to the performance of
simple caching, is even more pronounced.

In Figure 10, we plot a case where the expected number
of nodes in the cluster is low, that is, m = 30. The results are
otherwise very similar to those of Figure 5 but we see that
the performance of multicaching is less impressive than for

-40 -35 -30 -25 -20 -15 -10 -5 0

10log
10

 p

-20

-15

-10

-5

0

5

10

15

20

25

1
0
lo

g
1

0
 C

m = 100, = 0.1, = 1, = 100000

MBR theory

MSR theory

REP theory

SC theory

MC simulation

MBR simulation

MSR simulation

REP simulation

SC simulation

Fig. 8: Totals costs for a low churn rate λ.

the higher expected number of nodes m = 100.

-20 -15 -10 -5 0

10log
10

 p

-20

-15

-10

-5

0

5

1
0
lo

g
1

0
 C

m = 100, = 10, = 1, = 100000

MBR theory

MSR theory

REP theory

SC theory

MC simulation

MBR simulation

MSR simulation

REP simulation

SC simulation

Fig. 9: Total costs for a high churn rate λ.

-30 -25 -20 -15 -10 -5 0

10log
10

 p

-70

-60

-50

-40

-30

-20

-10

0

10

1
0
lo

g
1

0
 C

m = 30, = 1, = 1, = 0.01

MBR theory

MSR theory

REP theory

SC theory

MC simulation

MBR simulation

MSR simulation

REP simulation

SC simulation

Fig. 10: Total costs for a low expected number of nodes in
the cluster m.

10

Θ = 1

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1 1

file popularity p

1000

100

10

1

0.1

0.01

0.001

s
to

ra
g
e
 c

o
s
t
σ

MBR

BS

REP MC

MSR

a) Moderate relative D2D cost, Θ = 1.
Θ = 10

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1 1

file popularity p

1000

100

10

1

0.1

0.01

0.001

s
to

ra
g
e
 c

o
s
t
σ

MSR

MBR

REP

BS

MC

b) High relative D2D cost, Θ = 10.

Fig. 11: Schematic view of the caching methods that mini-
mize the total cost of transmission and storage for a given
file-popularity/storage-price pair (ω, σ). Each of the meth-
ods Minimum storage regenerating (MSR) code, minimum
bandwidth regenerating (MBR) code, replication (REP) and
multicaching (MC), is useful for certain parameter values.
When none of these methods is useful, the base station (BS)
should be directly contacted.

Figure 11 present the optimal caching methods for trans-
mission costs Θ = 1 and Θ = 10 with λ = 1. The latter
represents a conservative estimate, where signaling and
other protocol overhead is considered to make transmis-
sions within the D2D cluster 10 times more expensive than
cellular downlink transmissions for the same requirement
of radio resources. For very low file popularities, caching is
not useful at all. When the file popularity exceeds a certain
threshold, caching with redundancy can be exploited. This
threshold is a function of the transmission cost Θ and the
storage price σ. Naturally, increasing the D2D transmission
cost Θ increases this threshold.

Increasing the transmission cost Θ is equivalent to de-
creasing the storage price σ, except for simple caching.
Therefore, for instance, multicaching outperforms MSR and
replication already for σ = 1 in Figure 11 b), which does not

occur in Figure 11 a).
When the storage cost is high, MSR is optimal. For mod-

erate storage costs also MBR can be the most suitable option.
When storage is not expensive, replication is preferred.

Note that in practice, caching is most useful for scenarios
where file popularity is high and storage is inexpensive.
In the figures we see that under such circumstances mul-
ticaching yields the lowest cost.

Finally, in Figure 12 the optimal MSR code parameters
(n, k, d) are plotted for transmission cost Θ = 10 and
storage price σ = 100 with churn rate λ = 1 for the
values for which MSR is the optimal caching method. This
corresponds to the second horizontal line in Figure 11 b).
The number of cached fragments is increased when the
file popularity increases. This allows for shorted expected
transmission distances at reconstruction and repair at the
expense of a higher storage space consumption.

10
-8

10
-6

10
-4

10
-2 1

file popularity p

0

1

2

3

4

5

6

7

o
p

ti
m

a
l
p

a
ra

m
e

te
r

v
a

lu
e

MSR, = 10, = 100

Optimal n

Optimal k

Optimal d

Fig. 12: Optimal MSR code parameters for (Θ, σ) =
(10, 100) and λ = 1.

6 CONCLUSIONS

We have studied the prospective benefits of distributed stor-
age coding in a D2D caching cluster, where communication
cost grows with distance due to increasing pathloss. Our
main objective has been optimizing the overall resource
usage of the network. Sharing a limited storage size between
multiple files yields a price for storage. For a given file,
this has to be balanced against the saving of radio resources
from using intra-cluster transmissions, to select the optimal
caching method for a file. We have found that distributed
storage coding can yield large savings in the usage of radio
resources, e.g., transmission energy, as compared to tradi-
tional downlink data transmission. Differences in spatial
distribution of interference and related reuse of resources
as well as in signaling overhead and protocol efficiency
between D2D and cellular transmission have been taken into
account by an overall cost multiplier.

We have derived an analytical method for choosing the
optimal caching method in an environment that can be
characterized by power-law transmission cost.

11

D2D caching is not beneficial when either file popularity
is low or storage cost is high. On the contrary, when file pop-
ularity is high and storage cost is low, each user requesting
a file should cache and distribute it. Actively maintaining
redundancy with repetition coding or regenerating codes
can also offer significant cost savings for most combinations
of file popularity and storage cost. The file-specific optimiza-
tion derived here can be directly used in multi-file storage
optimization.

ACKNOWLEDGMENTS

The authors would like to thank Majid Gerami, Ejder
Baştuğ, Toni Ernvall, Pasi Lassila, and Lasse Leskelä for
fruitful discussions.

REFERENCES

[1] J. Pääkkönen, C. Hollanti, and O. Tirkkonen, “Device-to-Device
Data Storage for Mobile Cellular Systems,” in Proc. IEEE Global
Communications Conference (GLOBECOM), pp. 671–676, December
2013.

[2] J. Pääkkönen, C. Hollanti, and O. Tirkkonen, “Device-to-Device
Data Storage with Regenerating Codes,” in Proc. 8th International
Workshop on Multiple Access Communications (MACOM), pp. 57–69,
September 2015.

[3] Cisco, “Cisco Visual Networking Index: Global Mobile Data Traffic
Forecast Update, 2015–2020,” White Paper, http://goo.gl/l77HAJ,
2014.

[4] P. Jänis, C.-H. Yu, K. Doppler, C. Ribeiro, C. Wijting, K. Hugl, O.
Tirkkonen, and V. Koivunen, “Device-to-Device Communication
Underlaying Cellular Communications Systems,” International Jour-
nal of Communication, vol. 2, no. 3, pp. 169–178, June 2009.

[5] K. Doppler, M. P. Rinne, P. Janis, C. Ribeiro, and K. Hugl,
“Device-to-Device Communications; Functional Prospects for LTE-
advanced Networks,” in Proc. IEEE International Conference on Com-
munications Workshops, 2009, pp. 1–6, June 2009.

[6] N. Reider and G. Fodor, “A Distributed Power Control and Mode
Selection Algorithm for D2D Communications,” EURASIP Journal
on Wireless Communications and Networking, pp. 1–25, August 2012.

[7] C.-H. Yu, O. Tirkkonen, K. Doppler, and C. Ribeiro, “On the
Performance of Device-to-Device Underlay Communication with
Simple Power Control,” Proc. IEEE Information Theory Workshop
(ITW), pp. 1–5, September 2013.

[8] A. Asadi, Q. Wang, and V. Mancuso, “A Survey on Device-to-
Device Communication in Cellular Networks,” IEEE Communica-
tions Surveys & Tutorials, vol. 16, no. 4, pp. 1801–1819, Fourthquarter
2014.

[9] S. Gitzenis, G. S. Paschos, and L. Tassiulas, “Asymptotic Laws for
Joint Content Replication and Delivery in Wireless Networks,” IEEE
Transactions on Information Theory, vol. 59, no. 5, pp. 2760–2776, May
2013.

[10] M. A. Maddah-Ali and U. Niesen, “Fundamental Limits of
Caching,” IEEE Transactions on Information Theory, vol. 60, no. 5,
pp. 2856–2867, May 2014.

[11] E. Altman, K. Avrachenkov, and J. Goseling, “Distributed Storage
in the Plane,” in Proc. International Federation for Information Process-
ing (IFIP) Networking Conference, pp. 1–9, June 2014.

[12] N. Golrezaei, P. Mansourifard, A. F. Molisch, and A. G. Dimakis,
“Base Station Assisted Device-to-Device Communications for High-
Throughput Wireless Video Networks,” IEEE Transactions on Wire-
less Communications, vol. 13, no. 7, pp. 3665–3676, July 2014.

[13] E. Baştuğ, M. Bennis, and M. Debbah, “Living on the Edge:
The Role of Proactive Caching in 5G Wireless Networks,” IEEE
Communications Magazine, vol. 52, no. 8, pp. 82–89, August 2014.

[14] S-W. Jeon, S-N. Hong, M. Ji, and G. Caire, “Caching in Wireless
Multihop Device-to-Device Networks,” in Proc. IEEE International
Conference on Communications (ICC), pp. 6732–6737, April 2015.

[15] M. Gerami, X. Ming, and M. Skoglund, “Partial Repair for Wire-
less Caching Networks With Broadcast Channels,” IEEE Wireless
Communications Letters, vol. 4, no. 2, pp. 145–148, April 2015.

[16] B. Blaszczyszyn and A. Giovanidis, “Optimal Geographic Caching
in Cellular Networks,” in Proc. IEEE International Conference on
Communications (ICC), June 2015.

[17] C. Yang, Y. Yao, Z. Chen, and B. Xia, “Analysis on Cache-enabled
Wireless Heterogeneous Networks”, IEEE Transactions on Wireless
Communications, vol. 15, no. 1, pp. 131–145, January 2016.

[18] Y. Guo, L. Duan, and R. Zhang, “Cooperative Local Caching and
File Sharing under Heterogeneous File Preferences,” in Proc. IEEE
International Conference on Communications (ICC), pp. 1–6, May 2016.

[19] J. Rao, H. Feng, C. Yang, Z. Chen, and B. Xia, “Optimal Caching
Placement for D2D Assisted Wireless Caching Networks,” in Proc.
IEEE International Conference on Communications (ICC), May 2016.

[20] M. Ji, “Fundamental Limits of Caching Networks: Turning Mem-
ory into Bandwidth,” Doctoral dissertation, Faculty of the USC
Graduate School, University of Southern California, 2015.

[21] M. Ji, G. Caire, and A. F. Molisch. “Wireless Device-to-Device
Caching Networks: Basic Principles and System Performance,”
IEEE Journal on Selected Areas in Communications, vol. 34, no. 1,
pp. 176–189, January 2016.

[22] M. Afshang and H. S. Dhillon, “Optimal Geographic Caching in
Finite Wireless Networks,” in Proc. IEEE International Workshop on
Signal Processing Advances in Wireless Communications (SPAWC), July
2016.

[23] D. Malak, M. Al-Shalash, and J. G. Andrews, “Spatially Correlated
Content Caching for Device-to-Device Communications,” in Proc.
IEEE International Symposium on Information Theory (ISIT), July 2016.

[24] Y. Pan, C. Pan, H. Zhu, Q. Z. Ahmed, M. Chen, and J. Wang,
“On Consideration of Content Preference and Sharing Willingness
in D2D Assisted Offloading,” arXiv:1702.00209, 2017.

[25] R. Wang, J. Zhang, S. H. Song, and K. B. Letaief, “Mobility
Increases the Data Offloading Ratio in D2D Caching Networks,”
arXiv:1702.05880, 2017.

[26] J. Zhang and P. Elia, “Fundamental Limits of Cache-Aided Wire-
less BC: Interplay of Coded-Caching and CSIT Feedback,” IEEE
Trans. Inf. Theory, vol. 63, no. 5, pp. 3142–3160, May 2017.

[27] J. Ott and M. Pitkänen, “DTN-based Content Storage and Re-
trieval,” in Proc. IEEE WoWMoM Workshop on Autonomic and Op-
portunistic Communications (AOC), pp. 1–7, June 2007.

[28] V. Lenders, G. Karlsson, and M. May, “Wireless Ad Hoc Pod-
casting,” in Proc. IEEE Conference on Sensor, Mesh, and Ad Hoc
Communications and Networks (SECON), pp. 273–283, June 2007.

[29] M. Ji, G. Caire and A. Molisch. “Fundamental Limits of Distributed
Caching in D2D Wireless Networks,” in Proc. IEEE Information
Theory Workshop (ITW), pp. 1–5, September 2013.

[30] B. Chen and C. Yang, “Energy costs for traffic offloading by cache-
enabled D2D communications”, in Proc. IEEE Wireless Communica-
tions and Networking Conference (WCNC), pp. 1–5, April 2016.

[31] M. Gregori, J. Gomez-Vilardebo, J. Matamoros, and D. Gündüz,
“Wireless Content Caching for Small Cell and D2D Networks,”
IEEE Journal on Selected Areas in Communications, vol. 34, no. 5,
pp. 1222–1234, May 2016.

[32] M. Afshang, H. S. Dhillon, and P. H. J. Chong, “Fundamentals
of Cluster-Centric Content Placement in Cache-Enabled Device-to-
Device Networks,” in Proc. IEEE Global Communications Conference
(GLOBECOM), pp. 1–6, December 2015.

[33] J. Pedersen, A. Graell i Amat, I. Andriyanova, and F. Brännström,
“Repair Scheduling in Wireless Distributed Storage with D2D Com-
munication,” in Proc. Information Theory Workshop (ITW), pp. 69–73,
October 2015.

[34] L. Wang, H. Wu, and Z. Han, “Wireless Distributed Storage in
Socially Enabled D2D Communications,” IEEE Access, March 2016,
DOI: 10.1109/ACCESS.2016.2546685.

[35] A. O. Allen, Probability, Statistics, and Queueing Theory: With Com-
puter Science Applications. Gulf Professional Publishing, p. 259, 1990.

[36] S. Tang and B. L. Mark, “Analysis of Opportunistic Spectrum
Sharing with Markovian Arrivals and Phase-Type Service,” IEEE
Transactions on Wireless Communications, vol. 8, no. 6, pp. 3142–3150,
June 2009.

[37] H.-N. Hung, P.-C. Lee, and Y.-B. Lin, “Random Number Gen-
eration for Excess Life of Mobile User Residence Time,” IEEE
Transactions on Vehicular Technology, vol. 55, no. 3, pp. 1045–1050,
May 2006.

[38] S. Thajchayapong, “Mobility Patterns in Microcellular Wireless
Networks,” IEEE Transactions on Mobile Computing, vol. 5, no. 1,
pp. 52–63, January 2006.

[39] P. Harrison and N. M. Patel, “Performance Modelling of Com-
munication Networks and Computer Architectures,” International
Computer Science Series, Addison-Wesley, 1992.

[40] A. G. Dimakis, P. B. Godfray, Y. Wu, M. J. Wainwright, and K.
Ramchandran, “Network Coding for Distributed Storage Systems,”

12

IEEE Transactions on Information Theory, vol. 56, no. 9, pp. 4539–4551,
September 2010.

[41] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal Exact-
Regenerating Codes for Distributed Storage at the MSR and MBR
Points via a Product-Matrix Construction,” IEEE Transactions on
Information Theory, vol. 57, no. 8, pp. 5227–5239, August 2011.

[42] L.A. Wolsey, “Integer Programming”, Wiley-Interscience, 1998.
[43] A. Stuart and K. Ord, Kendall’s Advanced Theory of Statistics, vol. 1,

pp. 351, Arnold, London, 1998.
[44] E. W. Weisstein, “Circle-Circle Intersection.” From MathWorld –

A Wolfram Web Resource. http://mathworld.wolfram.com/Circle-
CircleIntersection.html

[45] E. W. Weisstein, “Circular Segment.” From
MathWorld – A Wolfram Web Resource.
http://mathworld.wolfram.com/CircularSegment.html

[46] S. Srinivasa and M. Haenggi, “Distance Distributions in Finite
Uniformly Random Networks: Theory and Applications,” IEEE
Transactions on Vehicular Technology, vol. 59, no. 2, pp. 940–949,
February 2010.

[47] P. Muldowney, K. Ostaszewski, and W. Wojdowski, “The Darth
Vader Rule,” Tatra Mt. Math. Publ., no. 52, pp. 53–56, 2012.

[48] W. Feller, An Introduction to Probability Theory and its Applications,
vol. 2, John Wiley & Sons, Inc. New York, 1966.

[49] C. Vlachos, V. Friderikos, and M. Dohler, “Optimal Virtualized
Inter-Tenant Resource Sharing for Device-to-Device Communica-
tions in 5G Networks,” Mobile Networks and Applications, pp. 1–10,
2017.

