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Abstract—We discuss group orbits to construct codes in the of an orbit element. Thus, to generate Grassmann orbit codes
complex Grassmann manifold. Finite subgroup_s of the_ unitary - groups having projective unitary representations are etigip
group act naturally on the Grassmann manifold. Given an nierest. In this paper, we consider some finite groups lgavin

irreducible representation of the group of the appropriate degree, . . . . S
its center has no effect in orbit construction. Thus, to generate appropriate representations and find appropriate initiatp

Grassmann orbit codes, projective unitary representations of heuristically. We consider a number of groups with projecti
finite groups are of specific interest. Following this principle, 2D representations, and their orbits, finding that the cededd

we derive basic properties and describe explicit constructions group is the largest symmetry group of many low-cardinality
ggn?égg%n‘gb'ts leading to some optimum packings in 2 and 4 4ntimum packings in 2D. Generalizing this to 4D, we consider
' orbits of the Clifford group. Selecting appropriate inlif@ints

we recover some codes from [15], and give new constructions

with up to 2150 elements and squared chordal distancé.df
Grassmannian codes are a generalization of spherical codes

with applications in the area of multiple-antenna transmis

sion [1]-[3]. When a code is designed in order to maximiz8. Grassmann Manifold

the minimum distance it is sometimes referregpasking The The complex Grassmann manif@fp, with p < n, is the
lowest-dimensional complex Grassmann manifold is isoimetiset of p-dimensional subspaces in thedimensional complex

to a real sphere, and Grassmannian line packingiis vector space™. It can be expressed as a homogeneous space

equivalent to sphere packing [4]. Solutions of sphere prtg:kiof the unitary groupid,: QS,Z, ~ % where Vf,p is the

problems are often vertices of polyhedra with a high degr% mplex Stiefel manifold, the space of orthonormal nonasgu
of symmetry [5]. Spherical codes thus often have a natural . . '

interpretation as collections of orbits of a symmetry grfbip
[6]. When codes consist of a single orbit, they are cadjexlip Vf,p = {Y cecvr | YHy = Ip} . (1)
codes[7], group orbits[8] or orbit codes[9].

For higher-dimensional Grassmannians, there exists a n
bijective isometric spherical embedding equipped withgbe
called chordal distance [8]. Therefore, the Grassmanmniagri
its spherical bounds, which are known to be achievable iresom
special cases [10], [11]. For Grassmann codes, few works hayereY < V;(;p is a representative of
been addressing group orbit constructions. Real Grassarann
packings were first addressed in [8], where it was argued YI={YUy | Upclhy}. 3)
that in the 3-dimensional case, Grassmann codes correspondye define the identity element oS, by [I,,] where
to antipodal spherical codes, and the corresponding group I ] ) ’ . o
structures are discussed. The optimum codes in [10]-[%2] dr.» = 6)) We simply write[I] when there is no ambiguity.

recognized to be orbits of a large Clifford-type group. I8l1  For eachY] € S, we associate the orthogonal projection

group orbits are used to construct Grassmann simplices, f@m " to [Y]: IIy = YYH. This projection is unique for

codes with one single distance in its distance distributiogyery element ofgC  and independent of the equivalence
. n,p

More recently, the concept of group orbits have been usgfiss representative. LéY], [Z] € S, be two subspaces of

in [14] to recover codes in the Grassmann variety over a fini@b, whereY, Z € VEP are representative of their respective

field. equivalence classes. The chordal distance is defined as [8]
The construction of orbit codes follows two steps: First we 1

need to choose a finite group having a unitary representation d(Y,Z) = — YY" - 2Z%|p. 4)

of the appropriate degree. Secondly, we need to choose an 2

appropriate initial point which leads to a code with a given The representation of the elements of the Grassmann man-

cardinality and minimal distance. Given a linear represgon  ifold g;gp by their projection matrices associated with the

of a group, the center has no effect in orbit construction, abordal distance gives an isometric embedding in a sphere
the center does not change the Grassmannian equivalesse déradius/22-2 in R? with D = n? — 1 [8]. We have thus

I. INTRODUCTION

Il. PRELIMINARITIES

5“ point in the Grassmann manifold is thus an equivalence
Ahss ofn x p unitary matrices whose columns span the same

Gop=1lY] | Y eV} )



the following Rankin bounds [16]: For a packing &f points C. Basics of Representation Theory

in G, equipped with the chordal distance, the minimum A jinear representatiorof a groupG is a homomorphism
distance among the elements of the packing is bounded by; . ¢ —, GL(V'). When there is no ambiguity we simply write

1) The simplex bound: G for p(G). The dimension ofl/ is called thedegreeof p.
If p is injective it is said to bdaithful. Two representations
52 < p(n —p) N (5) M and p, are said to bexquivalentif there exist an invertible
-oon N-1 matrix M such thatp, (g) = Mp(g)M~" for all g € G.

A representation is callegducibleif there exist an invariant
subspac# ¢ V ¢ C” such that for ally € G, p(G)V C V,
otherwise it is calledrreducible

which is achievable only itV < D + 1 = n?,
2) The orthoplex bound: foN > n?

(n —p) Schur's lemmastates that given a groug with irreducible
52 < P\ P) (6) :
= n representatiom, the only elements of7 (V") that commute
o ) . ) with all ¢ € p(G) are the scalar matrices. A corollary of
which is achievable only itV < 2D =2(n” —1). Schur's lemma is that any element in the center of a irredeicib

matrix group is a scalar matrix.

B. Basic Definitions fom Group Theory 1. GRASSMANNIAN ORBITS CODES

Given a groupG defined by an abstragresentation we We now consider a finite grou < i, acting onVS_p and

define some basic group—theoretic.: tgrms be|_0W-' _ G< - We first described basic properties of orbit codes, most
Order: The order of a group is its cardinality, i.e., thesf them have their counterpart for Grassmann variety in [14]

number of elements . and we refer to [14] for proofs.
Subgroup and generating sef < G (resp.H < G) means

that H is a (resp. proper) subgroup 6, i.e. H C G (resp. A. Basi.c Properties
H ¢ G) and H is a group. Given a subsétC G, H = (S) 1) Given X,Y € Vf, and for anyg € U,, the

denotes the subgroup generated%yi.e. every element off chordal distance is left-invariant under unitary transfor
can be expressed as a finite combination of elemens of de(9X,9Y) = de(X,Y).

Center: The center of a grougs, denotedZ(G), is the  2) If X,Y € V7 generate the same Grassmannian plane,
subgroup ofG consisting of elements that commute with every ~ i-e. X € [Y] € 67 andd.(X,Y) = 0, we havegX e
element ofG: [gY] andd.(9X, gY) = 0.

3) Unitary lef-action on[Y] € G¢ implies conjugation

n,p
Z(G)={2€G|Vg€qG,zg=gz} @) action on the corresponding projecfids-. For anyg €

U, we havell,y = gIlyg”.

A group is said to beenterlessf Z(G) is trivial, i.e. consists  4) For any[Y] € gglﬂ we have
only of the identity element. ’«: N
Inner automorphism groupWe define the inner automor- Gn.p = Un/StAR[Y]). (11)

phism group of a groug- by the quotient of the group by its Specifically by takingy” = I,, ,,

center . U 0
Inn(G) = G/Z(G) (8) gn,p = un/ ( Op Zf{n—P) . (12)

5) Orbit-stabilizer theorem: Le€C' = G[Y,] be an orbit

Stabilizer: Given a groupG acting from the left on a e . _ -
grotip g code. The cardinality of the code is (orbit-stabilizer

set/space), the subgroup

theorem) G
Sta;(YV)={ge G | ¢gY =Y} 9) Cl=—"1 13
1= TSta (o)) (13)
is called the stabilizer oY € ) in G. and the minimum distance of the code is
Orbit: The subset ofy 5.(C) = min d.(Yo, gYo). (14)

g€G\Staly ([Yo])

6) Every orbit codeC = G[Yp] has an isometric orbit
code C' = G[I] for some equivalent representation of
the groupG, G = UGU® with U € U,.

7) The minimum distance of any orbit of the identity=
G|I] is given by

GY ={g9Y | g€G} (10)

is the orbit of Y under the action of5.

p-group:A finite group is ap-group if and only if its order
is a power ofp, wherep is a prime number. Every element in
a p-group has order a power of

Extraspecial group:Given a primep, a p-group P is said §2(C)=p—
to be extraspecial if its centeZ(P) is cyclic and if Inr(P)
is elementary abelian [17, Ch. 8]. For each order, there are Whereg[1,p] = I,7 gI,, ,, is the upper left-square-by-p
exactly two extra special groups up to isomorphism. submatrix ofg.

max 1, p]||? 15
gEG\Statb([Yo])llg[ Pl (19)



B. Orbits from Projective Representation we cannot realize any rotation in the Euclidean space with th

Following Schur's lemma, the center of the unitary grouBrojective representation. In 2D, we give explicit constians
U, is Z(U,) = {®I, | 6 € R} = U. The projective of group orbits recovering the optimum packings of [4]. For
unitary groupis the quotient of the unitary group by its centefigher dimension, we can then look for groups that have a
PU, = U, /U, . An element ifPl,, is an equivalence class offelatively simple action on the basis. It is natural to cdesi
unitary matrices under multiplication by a constant phage. the Clifford group, employed in quantum theory, that persut
note thatPl,, is isomorphic to the projective special unitaryh€ basis of the considered space up to sign changes. We

group PSU,,. For orbits under projective representation wéescribed several constructions arising from the Clifigmoup
have the following result. in 4D recovering some codes from [15]. The results are

Proposition 1: Given a groupG having a faithful irre- Summarized in Ta_lble_! ar!d IIl. Some coc_ies meet the bounds
ducible representation itv,, its inner automorphism group (5) or (6). Other justifications of optimality fog5, can be
Inn(G) has a representation iRl,,. Grassmannian orbits of found in [4].
the action ofG are orbits of the action of Ifdr): for any A. Codes ingg’1
Y€ gSvP’ we haveG[Y] . Inn(G)[Y]. , In 2D, it is straightforward to find a number of small groups

Proof_: This fqllows directly frqm Schur_s lemma. An with projective representations [18].
element in Z(G) is a scalar matrix, thus iy € Z(G), 1) Klein 4-groupV;,: This is an abelian group of order 4.
Ilgy = Ily. The center of the group thus has no effect® o rgjective representation of the Klein 4-group can be

From Proposition 1, to construct orbit codes in the Grasgpnstrycted from a linear representation of the dihedraligr
mann manifoldG® , we are primarily interested by groupsp,

. n7p, . . - .
having a representation iRif,. If a group is centerless its |, 2D, the dihedral groups can be represented as
linear representation iy, is also a projective representation

in PU,. Dg=<<_01 é)((l) _01)>. (16)

C. Initial Points Its center isZ(Ds) = (—1I) = Z, and we get the projective
As a consequence of the orbit stabilizer theorem, giV¢@presentation oVy = Dg/Z(Ds).
a groupG of order Ny, an initial point has a stabilizer of A point in Q§C,1 has a stabilizer i/, of order of 2 or 1.
order Ny which is a divisor of N,, and the code obtainedThe Grassmannian line generated By, has a stabilizer of
has cardinalityN = N,/N,. There is two different cases toorder 2 inV,, and the codé/,[I, ] forms a digon of distance
consider: 1. This is the optimum codebook fa¥ = 2.
— Non trivial stabilizer (v, > 1): Initial points leading to  After optimization over a parametrizable family, we find
orbit codes of N < N, have a stabilizer which is a non-that the line generated by
trivial subgroup ofGG. Such initial points are clearly invariant T T
subspaces of their stabilizer subgroup. We have, Yiewa= | V2 + 33
Proposition 2: Given [Y] € g;‘f’ and a projective group e [1-51-
representation Irt7) < Ply,, the orbit code InfG)[Y] has has a stabilizer of order 1 iti;, and the codé/;[Yierrs forms

cardinality V' < |Inn(_G_)| if and only if [Y'] is an invariant a tetrahedron, which is an optimum codebook for= 4.
suﬁpacfe oft:;non_-trlvu?l su?rqtllp< S ; InngG). h cod 2) Symmetric groupSs: This group of order 6 has a
eretore thére 1S only a hinité number of such codes, ars,lgandard representation of degree 2. As the group is cesserl

appropriate initial points can be heuristically found frahe this linear representation is a projective representatowell
eigenspaces of the matrix representation of the groups. '

— Trivial stabilizer N, = 1: Initial points leading to orbit g — 0 1 e’ 0
codes of the cardinality of the groupy = N, have a 3 <(1 0>’ 0 e )
stabilizer of order 1. This holds for almost every point in
the Grassmannian, except the singularities describedeabov The Grassmannian line generatedly has a stabilizer of
In this case, there is a continuum of parametrizable orloits aorder 3 inSs, and the codes[I2 ;] forms a digon of distance
accordingly an infinity of codes with cardinalit/ = N,. 1, optimum forN = 2. The Grassmannian line generated by
Using an appropriate parametrization, it may be possible Yaian = (1 1)7/v/2 has a stabilizer of order 2 if3, and its
optimize the minimum distance of the code. orbit S3[Yiian] is a(3, @)-code, which is optimum folV = 3.
After optimization over a parametrizable family, we find
that the line generated by

17)

(18)

IV. EXAMPLES

The Grassmann manifold;‘f’p equipped with the chordal 1
distance is isometrically embedded on a sphere in a Eudidea 3—3
space of dimensiom? — 1. Any finite group inPU, acts Yoot = € (9)
on the basis of this Euclidean space and is a subgroup of V3+V3

the orthogonal grousO(n? — 1). Except forn = 2, where that has a stabilizer of order 1 iy leads to an octahedron,
SO(3) = PU(2), SO(n* — 1) is larger thanPl,, and thus which is optimum forN = 6.



TABLE |
ORBIT CODES |Ng§1 OF CARDINALITY N AND MINIMUM SQUARED DISTANCE 52

Group Order | Initial point | N 52 Comment
Vi 2 Inn(Dg) 4 Iz 1 2 1 Digon (optimum)
Yietra 4 2 Tetrahedron (optimum)
S3 6 Iz 2 1 Digon (optimum)
Yirian 3 3 Triangle (optimum)
Yoct 6 i Octahedron (optimum)
Ds =1nn(D1¢) 8 Yaq 4 1 Square
Ysqanti 8 1-¥2 | Square antiprism (optimum)
T 2= Ay =1Inn(27) 12 Yietra2 4 2 Tetrahedron (optimum)
Yicosa 12 ¢25—51 Icosahedron (optimum)
O = S; 21Inn(20) 24 Is1 6 B Octahedron (optimum)
Yeube 8 L Cube
Ysnub 24 | =0.1385 Snub cube (optimum)

3) Dihedral group Ds: This is an extraspecial group of With this representation, we get a tetrahedron codebook as
order 23. A projective representation dbg can be obtained an orbit of the line generated by

from the linear representation of the dihedral grbup.
The dihedral groupD.¢ has order 16, and centef,. Yietraz = Vﬂ€(3“/§) (24)
lts subgroups aréZ,, Z4, Zs, the Klein 4-groupV;, and —e7,/1(3+V3)

Ds = D1/Z2, which is also its inner automorphism group, vi h as order 3 irt"
A representation in terms of real orthogonal matrices igmiv |, Grassmanniaﬁ line generated by, has a stabilizer

by: of order 2 inT, and the codel'[I;;] forms an octahedron
Dig = <(1 0 ) 7L (1 _1)>. (20) codebook, which is optimum faN = 6.
0 -1)7v2\1l 1 Among the Grassmannian lines with a stabilizer of order 1
in T, we find

The Grassmannian line generated by
2+, /2+ %
- (25)

1 1 Yicosa:
Y = —— 21 — =
= 2(2+v2) (—1 - \/§> (1) 2oV

has a stabilizer of order 2 iP5, and the codeDg|Ys,] forms that generate the icosahedron cdd&cosd which is optimum

a s?[uare corresponding to the Mode 1 codebook [19]. for N = 12. .
Atter optimization over all the possible points with order- 5) Octahedral groupO: The symmetry group of chiral
stabilizer, the following gives the largest minimum distan octahedral symmetry is a group of orde¥3! = 24. It is
L 3 63 isomorphic to symmetric groufsy. This group is centerless
Voo = ( cos + arccos 1(7 - Tg ovs ) ) (22) and has subgroup&,, Zs, Z4, Z¢, the Klein 4-group,Ss,
(317 +iy/1-J5) sin 1 arccos (7 - T) Dihedral groupDsg, and the Tetrahedral group.

The corresponding orbit forms a square antiprism, which isA prolec'qve represe_ntatlon is obtained frc_)m the Il_near
optimum N = 8. representation of the binary octahedral gr@dp isomorphic

] . t0 S(2,3). It is a 48-order group with centé,. Subgroups
4) Tetrahedral groupT: The symmetry group of chiral are Zo, Zs, Za, Zs, Zs, the quaternion groum), dicyclic

tetrahedral symmetry is a group of order 12. It is isomofr- ; : .
phic to A, the alternating group of degree 4, and also {group 12, the generalized quaternion group, and the binary
the projective special linear group of degree two over tﬁgtrahedral grougeT. Its_ inner autom_orphlsm group 15 the
field of three element®SL(2,3). It has also the following octahedral group. A faithful unitary linear representatiof
egree 2 is given by
T d 2 b

subgroups: cyclic group®,, Zs, and as normal subgroup the
Klein 4-group. This group is centerless but does not have an, , <1 (—1 -3 —1- z) 1 (1 +i 0 )> (26)
irreducible representation itd.. A projective representation 2\ 1—-7 —1+4)7/2\ 0 1—14
can however be obtained from the linear representation of

. . ) The Grassmannian line generated by, has a order 4
the binary tetrahedral groupI’ of order 24, isomorphic to Stabilizer in O, and the codeO[l>.] gives an octahedron.

Nl =

SL(2,3). s
’ The Grassmannian line generated b

The binary tetrahedral groupl’ is a group of order 24, g y

isomorphic to the special linear groufiL(2, 3). Its center is Voo 1(3-v3) @7)
Zo; its other subgroups are the cyclic groups, Z,, Zs and cwbe ™ \ _e'T /1 (3+v3)

the quaternion groug). A faithful unitary linear representation

of degree 2 is given by has a stabilizer of order 3 i®, and the code®[Y.,,d forms

a cube.
1 < 1+4 1 —|—z’) 1 < 1—7 1 +i>> (23) There exists an initial point having a stabilizer of order

2\—14i 1—i)’2\=14+i 1+ 1 in O generating a snub cube, optimum faf = 24. The

2T =
< 2



TABLE I
CODES FROMCLIFFORD GROUP INQEQ OF CARDINALITY N AND
MINIMUM SQUARED DISTANCE 52

N 52 Comments
30 1 C>[Y3p], orthoplex (optimum)
120 0.75 Subset OfCQ [Yggo]
320 | 0.44 C2[Y320]
360 | 0.5 Ca2[Yas0]
390 0.5 C2[Y30] U C2[Y360)]
480 | 0.32 Subset ofC2[Y1440]
710 0.44 Co [Ygo] U Cs [Y320] U Cs [Ygeo]
1440 | 0.2 C2[Y1440]
2150 0.2 Co [Y50] U Cq [Ygzo} U Cy [Yg()o] @] CQ[Y144()}

corresponding generator has a complicated closed forrs,
approximately

30 and 360, we obtain a code of the same minimal distance
as [15].

V. CONCLUSION

We discussed Grassmann orbit codes arising from projective
unitary group representations. We gave basic propertids an
described few examples in 2D and 4D. Future work includes
systematic search for invariant subspaces of subgrougseof t
Clifford group and other classified groups.
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_— 0.962
sub™ {0,240 + 0.1315 )

B. Codes inGf,

From the examples irGS,, we see that the largest in- )
vestigated group, the octahedral group, includes most ef tH ]
smaller groups discussed as a subgroup. A generalization of
the octahedral group to higher dimensions is the Clifford?!
group C,, of cardinality |C;,| = 27" +2" T]"_, (4 — 1) with
representation ifPl,,. Here, we follow the definition of [20],
which slightly differs from the one in [12].

Consider
i (1 1 10

=504 (1)
We have normalized these so that they are special unitary:
using generators 4, we reduce the size of the generated
linear representation and its center. We recover the linedfl
representation of the binary octahedral grap = (H, P),
and the Clifford groupC; is the exactly the following inner [9]
automorphism group

Cy =0 = (H,P)/Zy C Pl (30)

The Clifford group in 4D is obtained by tensor multiplica-[n]
tion of the element of”; and an additional elemedtNOT"

Co=(H® I, H,P® I, I, ® P,OCNOT)/Zs C Py

(28)
[1]

(4]

(5]
(6]

3im

P=¢e1

(29)

(10]

(31) [12
where
1 0 0 O
o 1 0 o0 13
CNOT= {0 0o o 1 (32) [3
0 0 1 O

[14]
The following initial points:Yzg = I, o,

Lo 1 0 1 0 [19]

0 —= 0o L 0 0
Y320 = | f Yse0 = | f Yiao= (o L 16
¥ 3 0 2 [16]

0 I 0 0 7

17
have stabilizers of orde384, 36, 32, and8 respectively. The ElB}
characteristics of the corresponding orbit codes are ginen[19]
Table II. The orbit of cardinality30 is an optimum packing
meeting the orthoplex bound with maximal cardinality. By20]
combining orbits, we may obtain other codes with good dis-
tance, for example by combining the two orbits of cardiyalit
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