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Abstract—We compute the volume of the Stiefel manifold were derived in [8], showing local (resp. global) equivaken
induced by the canonical embedding of the manifold as a of these two metrics for the Stiefel (resp. Grassmann) man-
surface in a Euclidean hypersphere and taking the corresponding ifold. The volume of balls under the geodesic distance is

Euclidean/chordal distance. Exploiting a power series expansion th vzed Ivi " ical luati d
of the volume element, the volume of a small metric ball under én analyzed, relying partly on numerical evajuation, an

the chordal distance is evaluated. Evaluating the volume of a the results are finally applied for the chordal distance gisin
metric ball is critical to derive Hamming-type bounds. Using a those inequalities. In [10], a closed-form expression am th

spherical embedding argument, we provide results generalizing volume of a small ball in Grassmannians under the chordal
previously known bounds on codes in the Grassmann manifold yistance was derived. Finally, a power series expansioheof t
and the unitary group. . - .
(unnormalized) volume of small ball valid for any Riemann
. INTRODUCTION manifold is leveraged in [11], [12]. This provides a powérfu
Rol—in order to obtain a normalized volume expansion, it
ffices to divide by the overall volume of the manifold.
However, it appears that in most of the literature, the

Unitary, Stiefel and Grassmann codes find application I
space-time coding [1] and channel-aware precoding [2], [§]J

for multi-input multi-output (MIMO) communications. The I fh ifolds d i ditoth tural met
complex Stiefel manifoldv;ﬁp is the space of(n x p)- volumes ot the manilolds do not correspond to the naturai me

rectangular unitary matrices. The unitary groldp = VC rics induced by the rectangular or unitary group embeddings
and hyperspherg2n-1 — V‘C' are specific cases of it”*.’i‘_helndeed, the volume element is unique up to a non-vanishing
1 ) sgaling factor which is often dismissed. This is typicaliyne

Grassmann manifoldC  is the space of eigenspaces spann . : .
: .o Tp . . X or example when computing the Haar measure as this scaling
by the Stiefel matrices. In coding theory, the typical dists : e
. ) . . . factor can be absorbed in the overall normalization. Her, w
considered arise by treating those manifolds as Riemannian . : . .
. . : . re interested in bounds on codes in these manifolds, and the
manifolds embedded in a Euclidean space and taking the o . . . !
i . . s accurate normalization is of prime interest. A discussiod a
natural Euclidean/chordal distance. To this extrinsicligean e ; : o
X . T . clarification of different conventional normalizations tife
distance corresponds an equivalent intrinsic Riemannieti mvolume of the unitary group is provided in [14]. In [12] the
ric. For the case of the Stiefel manifold, two non-equivalent y group 1s p

. : : : . volume of the complex Stiefel manifold is computed for the
Riemannian metrics are often considered [5], one realimad f o : . :
; : nx geodesic distance induced by the quotient geometry. In this
the space of rectangular unitary matriags, c C"** and the

other as a quotient space of the unitary group embedded in paper. we addre_ss the problem when con&dermg the typ_|cal
space of square unitary matrice§. 2 U, /Uy, on? chordal distance induced by the rectangular matrix emioegdi
P 'oP /e ‘ V\{hiCh leads to another expression of the volume than the ones
In the last decade, several works have been devoted

0 . . .
derive basic coding-theoretic results such as the G”beptr_ewqusly derl\'/edlln [12] or [8]. . . -

. . A direct application of this volume estimate is to revisidan
Varshamov and Hamming bounds in these spaces [6]-[13
The bounds estimate the relationship between the cartyinaﬁ

ineralize the Hamming-type bounds of [8], [9]. As the dis-
and the minimum distance of the code. The main difficulty i ance we are working with is extrinsic and thus does notfyatis
deriving such bounds is to evaluate the (normalized) volume

'The triangle inequality with equality, there is some room fo

X , improvement of the standard Hamming bound following the
of a small ball on th_e manifold. Asymptotlc bounds £ oc) . same geometric argument used in [6], [9] for the Grassmann
on the rate/cardinality of Grassmannian codes were Omamr%anifold and unitary group. We provide the corresponding
in [6] employing an asymptotic evaluation of the volum(?esult for the Stiefel manifola
of balls. In the unitary group, Hamming-type bounds on '
the minimal distance of the code were derived in [9] based [l. PRELIMINARITIES
on a simplification of the volume element that has to b/g. Saces
integrated then relying on numerical evaluation. To derive

further bounds on the minimal distance, inequalities betwe e consider the following Riemannian manifolds equipped
the geodesic distance induced by the quotient space geuctyith a chordal distance induced by their canonical embegidin

and the chordal distance induced by the rectangular embgddf @ nypersphere.
o The (d — 1)-sphere of radiusr in R%:
1From the Nash embedding theorem, every Riemannian metric cagebe s
as induced by an appropriate Euclidean embedding [4]. Sd_l(r) = {x € R4 [|z]] = r} .



For r = 1, we simply write S¢=1. The (d — 1)- and
d-dimensional volume of?~!(r) are respectively
d/2

rd=l V() = LI

2mrd/2
rZ+1)"

Aqg(r) = —<

T (%)

The unitary group:
U, ={UecC™ | U"U=1I,}.

1)

We have dim4,, = n? The canonical embedding of
U,, in the Euclidean spacgC"*", (-,-)) where the inner
product is typically defined aéX,Y) = Tr XY gives
an isometric embedding 82" ~1(,/n). The standard
Euclidean/chordal distance considered is thus
1/2

LUV = U=V = (1 sn?0,/2) " @
where {¢?%} are the eigenvalues df“V. Induced by
this embedding, the tangent space at identity of the
unitary group,u(n), consists of skew-Hermitian-by-n
matrices. Without loss of generality assume that 1
andV = exp(X) € U,, where X € u(n). The geodesic
distance, the length between two points measured with
the Riemannian metric, is given by

L) =Xl = (). @

The complexSiiefel manifold, the space of orthonormal In the following, M stands fort4,, VS,
in SP~1(R) where D = 2n?, 2np or n? — 1, and R = /n,

/P Or /221, respectively.
B. Code, Ball and Kissing Radius

non-square matrices:
Vi, ={vecw | vy =1},

We have dimyS =
bedding of VS,

(2np — p?). The canonical em-
in the Euclidean spacéC"*?, (-, -)),

(U, V) = | X2l = (JIAIZ + 2|B|2)"*. The met-
ric induced by this embedding, discussed in [12], is not
considered in this paper.

The complexGrassmann manifold GF ,, with p < n/2, is

the quotient space af;; , overls,: G, , = %” c crxp,
which can also be expressed @%m =x sz_ ccv.
We have dimG;; , = 2p(n — p). The tangents ofj{ ,

0 nxXp
MNee

> c €™’ for the first and second

at the identity are of the fornX; =

0 —-Bf
or Xp = ( B 0
quotient representation, respectively, withe C(»—»)x»,
It follows that the geodesic distances induced by the
two embeddings differ only by a factor of 2. Usually
the geodesic distance is defined, giveh = I and
V =exp(X), as
1 9 1/2

LOV) =Xl = £l = (320) . ©

where{6;} are the singular values d. The Grassmann

manifzold also affords an isometric spherical embedding
in 8" ~2(,/===) with the associated chordal distance:

1 1/2
A:(U.V) = |00 =V = (Z sin? ei) .
(7)

or GS , embedded

(N, §)-code,C = {C4,...,Cn} C M is a finite subset

of N points in M with minimum distance’.

where(X,Y) = TrX"Y gives an isometric embedding e denote byBc (v) the metric ball of radius with center
in $?"7~1(,/p) leading to the standard Euclidean/chordalt ¢, defined as

distance

Induced by this embedding, the corresponding tangef€ normalized volume of a ball is(5(v)) =
that (M) = 1.

The kissing radius of the codgis defined as the maximum

Be,(v) ={PeM : d.(P,C;) <~}. 8)
| B
v?/ol ./E;IY)’ such

radius of non-overlapping metric balls centered around the

direction at the identityl,, , = Ié’ is of the form

B
corresponding geodesic distance given= I, , and

V = exp(X) is then [5]
1/2
d,(U,V) = |X]r = (1413 +1BI3)"*. ()
A

Alternatively, the Stiefel manifold can also be treated”
as the quotient spac®® = unp, where a point

n,p Up—
in Vﬁp is an equivalent class of unitary matrices. Th
Stiefel manifold inherits the geometry of, embedded
in (C™" (.,-)), and tangents at identity af<  are of
A —BH
B 0
B e C(»—P)xr_With this non-equivalent geometry, the
geodesic distance betweéh= I,, , andV = exp(X) is

the form X, =

0= sup : )
Be, (v)NBg,, (v)=0

V(K1) kAl
I1l. VOLUME OF BALL

Small Ball Approximation

There exists a power series expansion for the volume of
gmall geodesic ball for any Riemannian manifdld of dimen-
sion d [15]. This was recently leveraged by Krishnamachari
and Varanasi [12] to derive volume of small ball in the
Stiefel manifold with the geodesic distance associatedh wit
where A € u(p), and the quotient representation.

Limiting this expansion to a single term leads to

vol B(r) = Vy(r)(1 + O(r?)). (10)



This can be intuitively understood as follows: in a smaB. Special Case: Vﬁ{l
neighborhood the manifold looks alike a Euclidean space a”dRemrk 3: The volume of metric balls ifVC, = 87, d.)
can be approximated by its tangent space. It follows that tW?t ' i e

: . ) h d=2n—1is exactly
volume of a small ball in the manifold can be approximated

by the volume of a ball of same radius in the tangent space: i1 2(1-22) (4, 1) for r <v/2
w(B(r)) = T :

vol B(r) = vol {exp(X)|X € TM, | X|| <r} (11) L= 31 oy a2y (5:3) forr>v2
~ vol {X|X € TM,| X[ <r} (12) (18)

wherel,(a,b) is the regularized incomplete beta function.
As d, = d.+O(d?) [16], [17], this result is also valid for the Proof: This follows directly from the area of a hyper-
chordal distance arising from an isometric embeddin@&{h spherical cap, evaluated in [18]. u
We have _
Proposition 1: The volume of metric balls in thed- C. Smulations
dimensional Stiefel manifoldv;ﬁp with rectangular matrix  The approximated volumes (13) for the unitary group (with

induced metrics/, or d. is p = n) are compared with simulation in Fig. 1. For the Stiefel
Va(r) manifold (with p # n), the exact volume (18) fop = 1 and
w(B(r)) = d 1+ O(r?)), (13) the approximated volume (13) fgr > 1 are compared with
vol Vi, simulation in Fig 2.

where the overall volume of the Stiefel manifold is given by Uit y
nitary group U |

p(p;rl)ﬂnp lOO
vol VE == —— (14)
? L'p(n)
-2
the complex multivariate gamma function is 10
p(p=1) P -4
Tp(n)=x"7 [[T(n—i+1), (15) glo
=1 =}
o E
and Vy(r) is given in (1). 10°
A detailed volume computation is provided in the Appendix
Remark 1: While for the general case # p the result R
above is different from the one in [12], the two result 10 ~o- Simulation
coincide forn = p as expected. Other coefficients of the —— Theory
series expansion, addressed in [12], require computation ;4L ]

the curvature of the Stiefel manifold. 10°
Remark 2: Applying the same approach to the Grassmar... chordal distance
manifold, the result matches [10]: The volume of metric all

in the d-dimensional Grasmannie(rggip7 d.) or (ggw dg) is Fig. 1. Volume approximation of balls in the unitary grol#y compared

to simulation.
Va(r
HB()) = -1+ 0() (16)
P IV. KISSING RADIUS AND HAMMING -TYPE BOUNDS
where . For any(XV, 6)-code, the standard Hamming bound reads
F'p—i+1)
Cc _ _d/2
vol G, = 1;[1 Fn it (7) Nu(B(6/2)) < 1. (19)

Proof: This follows directly from the quotient geometry: The distances considered h_ere are inherited_fro_m Euclidean
T vl Ve . o ‘embeddings. As the chordal distances are extrinsic to the co
vol Gp, = gz or alternatively and indirectly from sigered curved spaces, they never satisfy the triangleisiieg
vollt,__ and then multiplying by2—% due to the22 in  with equality. Obviously, it is possible to extend the ramliu

vol U,vol U,

the definition of the geodesic distance. m so that the Hamming bound is still valid: for ayV, §)-code,
Note that comparing to the Grassmannian case in [12], there
is a difference by a factor a2~ “z"(»~r+1)_ Due to local Nu(B(e) <1 (20)

equivalence, the result is identical for the chordal andige® \vhere is the kissing radius of the code.

distances using the first order of the power expansion. _ The difficulty in exploiting this bound is to find a relation-
_For the chordal distance, the result of [10] is stronger asghip between the kissing radius and the minimum distance of

gives a strict equality for < 1. the code. This is the object of this section.



Stiefel manifold V.
np

The geometric argument is similar to the one used in [6] to

derive asymptotic bounds on Grassmannian codes and in [9]
for the unitary group. A tighter bound for the Grassmannian

case is provided in [13].

D. Hamming-type Bound on Minimal Distance

Combining (22) and Lemma 1, we have a Hamming-type
bound for the minimum distance:

Proposition 2: Given a (N, §)-code in M, isometrically
embedded irSP~1(R), and ary satisfying (23), we have

-4|

10

volume

-6

10

4
N
—0- - Simulation 5 < 47"?\/ TRz (26)
, Applying this result to the unitary group leads to the
5 bound [9, Theorem 2.4]. A tighter bound is provided for a
chordal distance small range of large distances by [9, Corollary 2.9]. While
in [9] rn is evaluated numerically, herey can be evaluated
Fig. 2. Volume approximation of balls in the Stiefel manifovf’p and using Prf)p' 1. For the Grassmann manifold, a tighter t_)ound
exact volume of balls in’C , compared to simulation. for any distance can be found in [13]. For the Stiefel manifol
’ the result is new.

—+— Theory

V. CONCLUSION

A K.ISSII’IQ Radius for Spherlcaj Codes o We have discussed the volume of metric balls and
Given an(N, §)-spherical code 0" ~'(R), the midpoint Hamming-type bounds on Stiefel codes with chordal distance
on a geodesic of lengthis at distance, from the extremities: we compute the volume of the Stiefel manifold realized as
5 a submanifold of an appropriate Euclidean space. We provide

0? = 2R? (1 —4/1— ) (21) upper and lower bounds on kissing radius for packing of equal

4R spheres in the Stiefel manifold. As a direct consequendg, th
which can be inverted as result leads to a Hamming-type bound on the minimal distance
4 of the code generalizing results known for the Grassmann
62 = 40° — ‘9—82. (22) manifold and the unitary group.
R In the asymptotic regime, Hamming-type bounds on the
B. Simple Bounds on Kissing Radius Grassmannian code rate/cardinality [6] have been significa

As we consider a manifold isometrically embedded in #nproved by linear programming techniques [19]. Linear-pro
Euclidean spher&é”~1(R), a (N, d)-code inM is a(N,§)- gramming bounds for the asymptotic rate of complex Stiefel
spherical code. Since balls of radinsare non-overlapping on codes are also provided in [19]. In the non-asymptotic regim
SP~1(R), their inverse image oM are also non-overlapping, fewer results are available. Linear programming bounds are

from which we can deduce that < o. provided for the real Grassmannian in [20] and for the upitar
Furthermore, assume thay; fulfills: group in [21].
w(B(ry)) = % (23) VI. APPENDIX: PROOF OFPROPOSITION1

Consider the Euclidean spaceaf x m complex matrices
Then we know that for every non-overlapping ball of radiugith its canonical inner produ¢C™*™  (-,-) = Tr-.). Given

r, we haver < ry. Combining these facts gives an M € C™*™, we have an infinitesimal squared distance in
Lemma 1: Given a(N, d§)-code inM, isometrically embed- terms of the matrix differential,
ded inSP~1(R), the kissing radiug is bounded by m
ds® = TedM"dM = > R(dM;j)? + 3(dM;i)?  (27)
Gk=1
where; is given in (21) and-y satisfies (23). Restricting the infinitesimal metric to the space of skew-
hermitian matrices, witd € u(m), we get

0s <o<rN, (24)

C. Hamming Bound

According to Lemma 1, we have the following Hamming ds = —TrdA? — Z A2 + 22 A . 28)
j=1

bound: —
Corollary 1: For any (N, §)-code inM isometrically em- i<
bedded inSP~1(R), given o, defined in (21), Note that a factor of 2 appears for off-diagonal terms as the

matrix elements are coordinatesidin) in a non-normalized
Nu(B(os)) < 1. (25)  basis ofu(m). The corresponding metric tensor is diagonal



with m ones andn(m—1) twos. After computing the Jacobian
determinant, the corresponding volume element is

(m_1) m m
doa =27 []ldA;;| [] R(dA;1)3(dAz).  (29)
j=1 j<k
Given a unitary matrix/ € U,,, by differentiatingU”U = L
I, we obtain [1]

UHdU 4+ dU"U = 0. (30)

[2]
This shows that the differential one-foriidU is skew-

Hermitian. Due to the unitary invariance of the infinitesima
metric ds?, its restriction tol4,, can be expressed in terms of 31
this global form, which is known as the Maurer—Cartan form

of the unitary group. Then, the infinitesimal metric can bé4l
expressed as [5]

dst; = ~Te(U"dU)? = > |(UH D), +2 > (UHdU) i

; ‘ (6]
Jj=1 Jj<k
(31)
and the volume form can be expressed as [71
dwy = 2" dvy (32) @

where [l

dvy = ﬁ (U dU) 5 ﬁ R((UTAU) ;1) 3((UH dU) )

j<k

[10]
j=1
(33) [11]
The integration ofdwy, leading to the volume of the unitary
group with the metric considered, was performed in [22] gsin
Cayley’s parametrization, with the result [

n(n+1) 2
,n_’ﬂ

Tp(n)

Now letY € VS  andU € U, such thatU?Y =1, ,, i.e. [14]
the firstp columns ofU = (Y Y*) are the columns of’.
The differential formU ¥ dY is “rectangular skew-hermitian”, [15]
ie. Ufdy = Y dy
= YAy
Hermitian. As above, due to unitary invariance of the metric
the volume element for the Stiefel manifold can be expressge
in terms of the global forn/7dY and is given as

(23]

vol U, = (34)

where YHdY is p-by-p skew- [16]

p(p—1) [18]
dwy =2 dl/y (35) [19]
where
p p n [20]
dvy = [[I@"av)ul [ TIR@"ay)n)a(uHay);).
i=1 k=1 j=k+1
(36) [21]

The volume elementivy in (36) is the Haar measure nor-
malized so thatf,. dvy 2;:7;’ see e.g. [23] for the [22]
complex Stiefel mabnifold providing a generalization of Ireg,,
Stiefel result in [24] which employs the QR decomposition of

Gaussian distributed matrices. Finally, [24]

p(p+1)
2

2 =
L'p(n) .

7P

C
vol Vy, | = (37)
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