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Abstract—We compute the volume of the Stiefel manifold
induced by the canonical embedding of the manifold as a
surface in a Euclidean hypersphere and taking the corresponding
Euclidean/chordal distance. Exploiting a power series expansion
of the volume element, the volume of a small metric ball under
the chordal distance is evaluated. Evaluating the volume of a
metric ball is critical to derive Hamming-type bounds. Using a
spherical embedding argument, we provide results generalizing
previously known bounds on codes in the Grassmann manifold
and the unitary group.

I. I NTRODUCTION

Unitary, Stiefel and Grassmann codes find application in
space-time coding [1] and channel-aware precoding [2], [3]
for multi-input multi-output (MIMO) communications. The
complex Stiefel manifoldVC

n,p is the space of(n × p)-
rectangular unitary matrices. The unitary groupUn = VC

n,n

and hypersphereS2n−1 = VC
n,1 are specific cases of it. The

Grassmann manifoldGC
n,p is the space of eigenspaces spanned

by the Stiefel matrices. In coding theory, the typical distances
considered arise by treating those manifolds as Riemannian
manifolds embedded in a Euclidean space and taking the
natural Euclidean/chordal distance. To this extrinsic Euclidean
distance corresponds an equivalent intrinsic Riemannian met-
ric1. For the case of the Stiefel manifold, two non-equivalent
Riemannian metrics are often considered [5], one realized from
the space of rectangular unitary matricesVC

n,p ⊂ C
n×p and the

other as a quotient space of the unitary group embedded in the
space of square unitary matricesVC

n,p
∼= Un/Un−p ⊂ C

n2

.
In the last decade, several works have been devoted to

derive basic coding-theoretic results such as the Gilbert-
Varshamov and Hamming bounds in these spaces [6]–[13].
The bounds estimate the relationship between the cardinality
and the minimum distance of the code. The main difficulty in
deriving such bounds is to evaluate the (normalized) volume
of a small ball on the manifold. Asymptotic bounds (n → ∞)
on the rate/cardinality of Grassmannian codes were obtained
in [6] employing an asymptotic evaluation of the volume
of balls. In the unitary group, Hamming-type bounds on
the minimal distance of the code were derived in [9] based
on a simplification of the volume element that has to be
integrated then relying on numerical evaluation. To derive
further bounds on the minimal distance, inequalities between
the geodesic distance induced by the quotient space structure
and the chordal distance induced by the rectangular embedding

1From the Nash embedding theorem, every Riemannian metric can be seen
as induced by an appropriate Euclidean embedding [4].

were derived in [8], showing local (resp. global) equivalence
of these two metrics for the Stiefel (resp. Grassmann) man-
ifold. The volume of balls under the geodesic distance is
then analyzed, relying partly on numerical evaluation, and
the results are finally applied for the chordal distance using
those inequalities. In [10], a closed-form expression on the
volume of a small ball in Grassmannians under the chordal
distance was derived. Finally, a power series expansion of the
(unnormalized) volume of small ball valid for any Riemann
manifold is leveraged in [11], [12]. This provides a powerful
tool—in order to obtain a normalized volume expansion, it
suffices to divide by the overall volume of the manifold.

However, it appears that in most of the literature, the
volumes of the manifolds do not correspond to the natural met-
rics induced by the rectangular or unitary group embeddings.
Indeed, the volume element is unique up to a non-vanishing
scaling factor which is often dismissed. This is typically done
for example when computing the Haar measure as this scaling
factor can be absorbed in the overall normalization. Here, we
are interested in bounds on codes in these manifolds, and the
accurate normalization is of prime interest. A discussion and
clarification of different conventional normalizations ofthe
volume of the unitary group is provided in [14]. In [12] the
volume of the complex Stiefel manifold is computed for the
geodesic distance induced by the quotient geometry. In this
paper, we address the problem when considering the typical
chordal distance induced by the rectangular matrix embedding,
which leads to another expression of the volume than the ones
previously derived in [12] or [8].

A direct application of this volume estimate is to revisit and
generalize the Hamming-type bounds of [8], [9]. As the dis-
tance we are working with is extrinsic and thus does not satisfy
the triangle inequality with equality, there is some room for
improvement of the standard Hamming bound following the
same geometric argument used in [6], [9] for the Grassmann
manifold and unitary group. We provide the corresponding
result for the Stiefel manifold.

II. PRELIMINARITIES

A. Spaces

We consider the following Riemannian manifolds equipped
with a chordal distance induced by their canonical embedding
in a hypersphere.

• The (d− 1)-sphere of radiusr in R
d:

Sd−1(r) =
{

x ∈ R
d | ||x|| = r

}

.



For r = 1, we simply writeSd−1. The (d − 1)- and
d-dimensional volume ofSd−1(r) are respectively

Ad(r) =
2πd/2

Γ
(

d
2

)rd−1, Vd(r) =
πd/2

Γ
(

d
2 + 1

)rd. (1)

• The unitary group:

Un =
{

U ∈ C
n×n | UHU = In

}

.

We have dimUn = n2. The canonical embedding of
Un in the Euclidean space(Cn×n, 〈·, ·〉) where the inner
product is typically defined as〈X,Y 〉 = TrXHY gives
an isometric embedding inS2n2−1(

√
n). The standard

Euclidean/chordal distance considered is thus

dc(U, V ) = ‖U − V ‖F =
(

4
∑

sin2 θi/2
)1/2

(2)

where {eiθi} are the eigenvalues ofUHV . Induced by
this embedding, the tangent space at identity of the
unitary group,u(n), consists of skew-Hermitiann-by-n
matrices. Without loss of generality assume thatU = I
andV = exp(X) ∈ Un whereX ∈ u(n). The geodesic
distance, the length between two points measured with
the Riemannian metric, is given by

dg(U, V ) = ‖X‖F =
(

∑

θ2i

)1/2

. (3)

• The complexStiefel manifold, the space of orthonormal
non-square matrices:

VC

n,p =
{

Y ∈ C
n×p | Y HY = Ip

}

.

We have dimVC
n,p = (2np − p2). The canonical em-

bedding ofVC
n,p in the Euclidean space(Cn×p, 〈·, ·〉),

where〈X,Y 〉 = TrXHY gives an isometric embedding
in S2np−1(

√
p) leading to the standard Euclidean/chordal

distance
dc(U, V ) = ‖U − V ‖F . (4)

Induced by this embedding, the corresponding tangent

direction at the identityIn,p ,

(

Ip
0

)

is of the form

X =

(

A
B

)

whereA ∈ u(p), andB ∈ C
(n−p)×p. The

corresponding geodesic distance givenU = In,p and
V = exp(X) is then [5]

dg(U, V ) = ‖X‖F =
(

‖A‖2F + ‖B‖2F
)1/2

. (5)

Alternatively, the Stiefel manifold can also be treated
as the quotient spaceVC

n,p
∼= Un

Un−p
, where a point

in VC
n,p is an equivalent class of unitary matrices. The

Stiefel manifold inherits the geometry ofUn embedded
in (Cn×n, 〈·, ·〉), and tangents at identity ofVC

n,p are of

the form X2 =

(

A −BH

B 0

)

where A ∈ u(p), and

B ∈ C
(n−p)×p. With this non-equivalent geometry, the

geodesic distance betweenU = In,n andV = exp(X) is

dg2(U, V ) = ‖X2‖F =
(

‖A‖2F + 2‖B‖2F
)1/2

. The met-
ric induced by this embedding, discussed in [12], is not
considered in this paper.

• The complexGrassmann manifold GC
n,p, with p ≤ n/2, is

the quotient space ofVC
n,p overUp: GC

n,p
∼= VC

n,p

Up
⊂ C

n×p,

which can also be expressed asGC
n,p

∼= Un

UpUn−p
⊂ C

n2

.
We have dimGC

n,p = 2p(n − p). The tangents ofGC
n,p

at the identity are of the formX1 =

(

0
B

)

⊂ C
n×p

or X2 =

(

0 −BH

B 0

)

⊂ C
n2

for the first and second

quotient representation, respectively, withB ∈ C
(n−p)×p.

It follows that the geodesic distances induced by the
two embeddings differ only by a factor of 2. Usually
the geodesic distance is defined, givenU = I and
V = exp(X), as

dg(U, V ) = ‖X1‖F =
1√
2
‖X2‖F =

(

∑

θ2i

)1/2

, (6)

where{θi} are the singular values ofB. The Grassmann
manifold also affords an isometric spherical embedding
in Sn2−2(

√
p(n−p)

2n
) with the associated chordal distance:

dc(U, V ) =
1√
2
‖UUH − V V H‖F =

(

∑

sin2 θi

)1/2

.

(7)
In the following, M stands forUn, VC

n,p, or GC
n,p embedded

in SD−1(R) whereD = 2n2, 2np or n2 − 1, andR =
√
n,√

p or
√

p(n−p)
2n

, respectively.

B. Code, Ball and Kissing Radius

A (N, δ)-code,C = {C1, . . . , CN} ⊂ M is a finite subset
of N points inM with minimum distanceδ.

We denote byBCi
(γ) the metric ball of radiusγ with center

at Ci, defined as

BCi
(γ) = {P ∈ M : dc(P,Ci) ≤ γ} . (8)

The normalized volume of a ball isµ(B(γ)) = vol B(γ)
vol M , such

that µ(M) = 1.
The kissing radius of the codeC is defined as the maximum

radius of non-overlapping metric balls centered around the
codewords:

̺ = sup
BCl

(γ)∩BCk
(γ)=∅

∀(k,l) k 6=l

γ. (9)

III. V OLUME OF BALL

A. Small Ball Approximation

There exists a power series expansion for the volume of
small geodesic ball for any Riemannian manifoldM of dimen-
sion d [15]. This was recently leveraged by Krishnamachari
and Varanasi [12] to derive volume of small ball in the
Stiefel manifold with the geodesic distance associated with
the quotient representation.

Limiting this expansion to a single term leads to

vol B(r) = Vd(r)(1 +O(r2)). (10)



This can be intuitively understood as follows: in a small
neighborhood the manifold looks alike a Euclidean space and
can be approximated by its tangent space. It follows that the
volume of a small ball in the manifold can be approximated
by the volume of a ball of same radius in the tangent space:

vol B(r) = vol {exp(X)|X ∈ TM, ‖X‖ ≤ r} (11)

≈ vol {X|X ∈ TM, ‖X‖ ≤ r} (12)

As dg = dc+O(d3c) [16], [17], this result is also valid for the
chordal distance arising from an isometric embedding inR

D.
We have

Proposition 1: The volume of metric balls in thed-
dimensional Stiefel manifoldVC

n,p with rectangular matrix
induced metricsdg or dc is

µ(B(r)) =
Vd(r)

vol VC
n,p

(1 +O(r2)), (13)

where the overall volume of the Stiefel manifold is given by

vol VC

n,p =
2

p(p+1)
2 πnp

Γp(n)
, (14)

the complex multivariate gamma function is

Γp(n) = π
p(p−1)

2

p
∏

i=1

Γ(n− i+ 1), (15)

andVd(r) is given in (1).
A detailed volume computation is provided in the Appendix.

Remark 1: While for the general casen 6= p the result
above is different from the one in [12], the two results
coincide for n = p as expected. Other coefficients of the
series expansion, addressed in [12], require computation of
the curvature of the Stiefel manifold.

Remark 2: Applying the same approach to the Grassmann
manifold, the result matches [10]: The volume of metric balls
in the d-dimensional Grasmannian(GC

n,p, dc) or (GC
n,p, dg) is

µ(B(r)) =
Vd(r)

vol GC
n,p

(1 +O(r2)) (16)

where

vol GC

n,p = πd/2

p
∏

i=1

Γ(p− i+ 1)

Γ(n− i+ 1)
(17)

Proof: This follows directly from the quotient geometry:

vol GC
n,p =

vol VC

n,p

vol Up
; or alternatively and indirectly from

vol Un

vol Upvol Un−p
and then multiplying by2−

d
2 due to the2

1
2 in

the definition of the geodesic distance.
Note that comparing to the Grassmannian case in [12], there

is a difference by a factor of22p−
n−p

2 (n−p+1). Due to local
equivalence, the result is identical for the chordal and geodesic
distances using the first order of the power expansion.

For the chordal distance, the result of [10] is stronger as it
gives a strict equality forr < 1.

B. Special Case: VC
n,1

Remark 3: The volume of metric balls in(VC
n,1

∼= Sd, dc)
with d = 2n− 1 is exactly

µ(B(r)) =







1
2Ir2

(

1− r2

4

)

(

d
2 ,

1
2

)

for r ≤
√
2

1− 1
2I(4−r2)(1− 4−r2

4 )

(

d
2 ,

1
2

)

for r ≥
√
2

,

(18)
whereIx(a, b) is the regularized incomplete beta function.

Proof: This follows directly from the area of a hyper-
spherical cap, evaluated in [18].

C. Simulations

The approximated volumes (13) for the unitary group (with
p = n) are compared with simulation in Fig. 1. For the Stiefel
manifold (with p 6= n), the exact volume (18) forp = 1 and
the approximated volume (13) forp > 1 are compared with
simulation in Fig 2.
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Fig. 1. Volume approximation of balls in the unitary groupUn compared
to simulation.

IV. K ISSING RADIUS AND HAMMING -TYPE BOUNDS

For any(N, δ)-code, the standard Hamming bound reads

Nµ(B(δ/2)) ≤ 1. (19)

The distances considered here are inherited from Euclidean
embeddings. As the chordal distances are extrinsic to the con-
sidered curved spaces, they never satisfy the triangle inequality
with equality. Obviously, it is possible to extend the radius δ

2
so that the Hamming bound is still valid: for any(N, δ)-code,

Nµ(B(̺)) ≤ 1 (20)

where̺ is the kissing radius of the code.
The difficulty in exploiting this bound is to find a relation-

ship between the kissing radius and the minimum distance of
the code. This is the object of this section.
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A. Kissing Radius for Spherical Codes

Given an(N, δ)-spherical code onSD−1(R), the midpoint
on a geodesic of lengthδ is at distance̺ s from the extremities:

̺2s = 2R2

(

1−
√

1− δ2

4R2

)

(21)

which can be inverted as

δ2 = 4̺2s −
̺4s
R2

. (22)

B. Simple Bounds on Kissing Radius

As we consider a manifold isometrically embedded in a
Euclidean sphereSD−1(R), a (N, δ)-code inM is a (N, δ)-
spherical code. Since balls of radius̺s are non-overlapping on
SD−1(R), their inverse image onM are also non-overlapping,
from which we can deduce that̺s ≤ ̺.

Furthermore, assume thatrN fulfills:

µ(B(rN )) =
1

N
(23)

Then we know that for every non-overlapping ball of radius
r, we haver ≤ rN . Combining these facts gives

Lemma 1: Given a(N, δ)-code inM, isometrically embed-
ded inSD−1(R), the kissing radius̺ is bounded by

̺s ≤ ̺ ≤ rN , (24)

where̺s is given in (21) andrN satisfies (23).

C. Hamming Bound

According to Lemma 1, we have the following Hamming
bound:

Corollary 1: For any(N, δ)-code inM isometrically em-
bedded inSD−1(R), given̺s defined in (21),

Nµ(B(̺s)) ≤ 1. (25)

The geometric argument is similar to the one used in [6] to
derive asymptotic bounds on Grassmannian codes and in [9]
for the unitary group. A tighter bound for the Grassmannian
case is provided in [13].

D. Hamming-type Bound on Minimal Distance

Combining (22) and Lemma 1, we have a Hamming-type
bound for the minimum distance:

Proposition 2: Given a (N, δ)-code in M, isometrically
embedded inSD−1(R), and arN satisfying (23), we have

δ2 ≤ 4r2N − r4N
R2

. (26)

Applying this result to the unitary group leads to the
bound [9, Theorem 2.4]. A tighter bound is provided for a
small range of large distances by [9, Corollary 2.9]. While
in [9] rN is evaluated numerically, hererN can be evaluated
using Prop. 1. For the Grassmann manifold, a tighter bound
for any distance can be found in [13]. For the Stiefel manifold,
the result is new.

V. CONCLUSION

We have discussed the volume of metric balls and
Hamming-type bounds on Stiefel codes with chordal distance.
We compute the volume of the Stiefel manifold realized as
a submanifold of an appropriate Euclidean space. We provide
upper and lower bounds on kissing radius for packing of equal
spheres in the Stiefel manifold. As a direct consequence, this
result leads to a Hamming-type bound on the minimal distance
of the code generalizing results known for the Grassmann
manifold and the unitary group.

In the asymptotic regime, Hamming-type bounds on the
Grassmannian code rate/cardinality [6] have been significantly
improved by linear programming techniques [19]. Linear pro-
gramming bounds for the asymptotic rate of complex Stiefel
codes are also provided in [19]. In the non-asymptotic regime,
fewer results are available. Linear programming bounds are
provided for the real Grassmannian in [20] and for the unitary
group in [21].

VI. A PPENDIX: PROOF OFPROPOSITION1

Consider the Euclidean space ofm×m complex matrices
with its canonical inner product(Cm×m, 〈·, ·〉 = Tr·H ·). Given
anM ∈ C

m×m, we have an infinitesimal squared distance in
terms of the matrix differential,

ds2 = TrdMHdM =
m
∑

j,k=1

R(dMjk)
2 + I(dMjk)

2 (27)

Restricting the infinitesimal metric to the space of skew-
hermitian matrices, withA ∈ u(m), we get

ds2A = −TrdA2 =
m
∑

j=1

|dAjj |2 + 2
∑

j<k

|dAjk|2. (28)

Note that a factor of 2 appears for off-diagonal terms as the
matrix elements are coordinates ofu(m) in a non-normalized
basis ofu(m). The corresponding metric tensor is diagonal



with m ones andm(m−1) twos. After computing the Jacobian
determinant, the corresponding volume element is

dωA = 2
m(m−1)

2

m
∏

j=1

|dAjj |
m
∏

j<k

R(dAjk)I(dAjk). (29)

Given a unitary matrixU ∈ Un, by differentiatingUHU =
I, we obtain

UHdU + dUHU = 0. (30)

This shows that the differential one-formUHdU is skew-
Hermitian. Due to the unitary invariance of the infinitesimal
metric ds2, its restriction toUn can be expressed in terms of
this global form, which is known as the Maurer–Cartan form
of the unitary group. Then, the infinitesimal metric can be
expressed as

ds2U = −Tr(UHdU)2 =

n
∑

j=1

|(UHdU)jj |2+2
∑

j<k

|(UHdU)jk|2

(31)
and the volume form can be expressed as

dωU = 2
n(n−1)

2 dνU (32)

where

dνU =

n
∏

j=1

|(UHdU)jj |
n
∏

j<k

R((UHdU)jk)I((U
HdU)jk).

(33)
The integration ofdωU , leading to the volume of the unitary
group with the metric considered, was performed in [22] using
Cayley’s parametrization, with the result

vol Un =
2

n(n+1)
2 πn2

Γn(n)
. (34)

Now let Y ∈ VC
n,p andU ∈ Un such thatUHY = In,p, i.e.

the firstp columns ofU =
(

Y Y ⊥
)

are the columns ofY .
The differential formUHdY is “rectangular skew-hermitian”,

i.e. UHdY =

(

Y HdY
Y ⊥HdY

)

where Y HdY is p-by-p skew-

Hermitian. As above, due to unitary invariance of the metric,
the volume element for the Stiefel manifold can be expressed
in terms of the global formUHdY and is given as

dωY = 2
p(p−1)

2 dνY (35)

where

dνY =

p
∏

i=1

|(UHdY )ii|
p
∏

k=1

n
∏

j=k+1

R((UHdY )jk)I((U
HdY )jk).

(36)
The volume elementdνY in (36) is the Haar measure nor-
malized so that

∫

VC
n,p

dνY = 2pπnp

Γp(n)
, see e.g. [23] for the

complex Stiefel manifold providing a generalization of real
Stiefel result in [24] which employs the QR decomposition of
Gaussian distributed matrices. Finally,

vol VC

n,p =
2

p(p+1)
2 πnp

Γp(n)
. (37)
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