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Abstract—We discuss group orbits codes in homogeneous permutations and columnwise rotations. Finally, we ingese
spaces for the unitary group, known as flag manifolds. The Stiefel orbit codes arising from the linear representatdn
distances used to describe the codes arise from embedding thethe projective group considered. By doing so, one obtain

flag manifolds into Euclidean hyperspheres, providing a gener- : - L
alization of the spherical embedding of Grassmann manifolds expansions of the Grassmann orbit codes of [10] by finite

equipped with the so-called chordal distance. Flag orbits are unitary groups acting from the right.
constructed by acting with a unitary representation of a finite
group. In the construction, the center of the finite group has no Il. FLAG MANIFOLDS
effect, and thus it is sufficient to consider its inner automorphism A, Unitary Group and Stiefel Manifold

group. Accordingly, some explicit constructions from projective . . co .
unitary representations of finite groups in 2 and 4 dimensions 1 ne complex Stiefel manifold’,; , is defined as the space

are described. We conclude with examples of codes on the Stiefelof orthonormal rectangular matrices (With< n),
manifold constructed as orbits of the linear representation of c H
the projective groups, and thus expansion of the flag codes Viwp = {Y SR Ip}’ 1)

considered. isomorphic to the quotient spaég, /U,_,,. The special cases

= ields the unitary groug{,, = V¢ . We define the
Flag manifolds are quotient spaces of unitary groups [&], i.p ny y grou o

an element in a flag manifold can be interpreted as an equiidentity element ofV; by I, = (Ié’) where I, is the

lence class of unitary matrices. Flag codes are generalizat jgentity in U,.

of spherical codes with applications in the area of multiple

antenna transmission. This includes Grassmann codes3J2], - Grassmann Manifold

which are special examples of flag codes. Other types of flagThe complex Grassmann manifoﬂfm is the set of allp-

codes have also been used in the literature, although rleticabimensional subspaces Gf*. G, can be expressed as the

as such, see [4] and references therein. quotient space of the Stiefel manifold by the unitary group,
The construction of orbit codes follows two steps [5]: First C o

we need to choose a finite group with representation of the ap- Grip = Voup/Up- @

propriate degree. Secondly, we need to choose an appprigécordingly, a point[Y] € GS, is an equivalence class of

initial point which leads to a code with a given cardinality,l X P orthonormal matrices whose columns span the same

and minimal distance. Orbits have been used to constrggibspace, i.e. givelr e VS,,, Y] = {YU | Uecl,}.

codes on specific flag manifolds, including spheres [5], [@}/e define the identity element @1‘5,3 by [I,,.,).
and Grassmann manifolds [7]-[10] ) ) ’ '
Grassmann manifolds, equipped with a so-called chordal Generalized Flag Manifolds
distance, have isometric spherical embeddings [7]. In thisA flag in C" is a sequence of nested subspaces
paper, we generalize this embedding and the correspondingc --- C V, c C* with 1 < r < n [11], [12]. To ev-
Grassmann chordal distance to more general flag manifolésy flag (V1,---,V;) we can associate a subspace decom-
Consequently, flag codes with the considered distanceitnhgosition (W1, --- ,W,.) satisfying V; = @3:1 W;. Given
spherical coding bounds. (p1,....pr) € N', we definé the flag manifold 71y,
Given a linear representation of a group, its center dogs the set of allV; & - - - & W, in C™ such thatdim W; = p;.
not change the equivalence class of an orbit element and thuget p = >, pi. We represent a point Oﬁlg;pl,.“.p, by
has no effect for orbit construction in flag manifolds. Thusy n-by-p Stiefel matrixW, i.e. WHW = I,. Under this rep-
to generate flag orbit codes, groups having projective Dnitaesentation, two matriced/;, W, are equivalent in the sense
representations are of specific interest. that they represent the same flag if matri¢es, ..., U,) €
In this paper, the projective finite groups and initial peintz,{p1 X -+ x U, exist such that¥, = Wy diag(Uy, ..., U,).
employed in [10] to construct Grassmann orbit codes amge flag manifold can thus be expressed as the quotient space
reconsidered to construct other type of flag orbit codes in 2 Ve
and 4D. The examples focus on codes where elements are Fi¢ o~ n,p

. . . niP1;---,Pr
equivalence classes of square unitary matrices modulargolu ! Up, X - XUy,

I. INTRODUCTION

This work has been supported in part by the Academy of Finlamd, 1This is isomorphic to the definition WherElS;d """" a,. s the set of all
Tekes — the Finnish Funding Agency for Technology and Intioma flags (Vi,---,V,)in C* with V1 C --- C V. C C" and dimV; = d;.



Uy,
Up, X oo XUy, X Up—py’

I

(3) C. Spherical Embedding of Flag Manifolds
In [7], spherical embeddings of Grassmann manifolds are

where p = >7_ p. We note thatFiC, = described. Indeed, all flag manifolds can be understood as
flg_pl___.m n_p- FOr = 1 andp; = p, one recovers the submanifolds of the same sphere. Roughly speaking, for
Grassmann manifoldiC. = gC . a given n, it is remarkable that an* — 2)-dimensional

P P hypersphere can be decomposed so that except for a zero-
D. Simple Flag Manifolds and Permutation-Invariance measure set, it consists of a “fibration” of flag manifojﬂgn

Motivated by application in MIMO coding, the case wher?Ve" @ (1 — 2)-dimensional hypersphere with some singular
pi = ... = p. = 1is of special interest [4]. We use thesgbman!fplds removed. 'The remaining ofCthe spherg being
notation singularities corresponding to other flags,,., .., Wwhich
includes the Grassmann manifol@§ , as special cases.
V(C u . . ’
FC & pC ~ Unp A n 4) To see this, consider the hypersphere constructed as a set
n,p — n;l 1 — -

’ o (Uh)P o (U)X Uy of Hermitian matrices

p

2
STl {X e | X = X, |X|F =1}
so that for the casp = n, we have]-‘ﬁn = U, /(U )™. { | 1X1F }
We also consider an additional equivalence relatiorj’?ﬁm Define the hyperplane,
by considering that two representativélé, W, € Vi, are x| H
equivalent under columns permutation, i.e. if there exists P={XeC""[X" =X Tr[X] =0}
[W1] = [Ws]. The permutation corresponds to an orientation;2 _ 9)_dimensional unit hypersphe®®’—2 = S»*~1 P,

invariance of the elements. We denote the correspondingespa consider the set of diagonal real matricesSit —! N P:

by
FC, 2 FE /S, (G) D={diag(dy,...,d,) ER™"| Y d? =1, d; =0},
where S,, is the symmetric group whose elements are all thge haveD =~ 8",
permutations of the symbols. Conjugation in the unitary group of a fixe,
— n— 7L2—
[1l. SPHERICAL EMBEDDINGS AND CHORDAL DISTANCES Eily xS - SV (8)
H
To investigate coding problems on the manifolds of interest (U,D) — UDUY,

we need to define a notion of distance. Flag codes ar€j&fines an equivalence class of unitary matrices such that
subclass of spherical codes as flag manifolds can be embedg?cg Us if and only if Z[(Uy, D)] = E[(Us, D)]. For almost

into a hypersphere. We focus on distances that correspond,fi0cjements ofD dy # -+ # dn, we haveZ[(U,, D)] =

taking the natural Euclidean/chordal distance in the antbierc o, special cases where some valuesDofire equal

space. A(N,¢%)-code thus is a finite subset &f points in \ye"get a related lower-dimensional flag manifold. For ex-
the manifold with minimum squared distanéé among the ample, settingd; = dy # dpyy = -+ = dy

elements.

we have Z[(U,, D)] = GF . Reciprocally, by eigenvalue
A. Stiefel Chordal Distance decomposition, evenX ¢ S8"°~2 can be decomposed into
an element irD and an equivalence class of unitary matrices,

. e o .
_ The Stiefel mgmfold}/% has a canonical isometric sphery,e yecomposition being unique with ordered-eigenvalues.
ical embedding intas?"?~!(,/p) with the distance

D. Generalized Chordal Distance for Flag Manifolds

ds(U7 V) = ||U - V”Fa (6) . C
Given two flags [W1],[W2] € Fl,.,, ., represented
where|| - | 7 is the Frobenius norm. by Wy, Wy € V;‘f,p, they can be decomposed &B, =

_ (W1, Wi2, ..., W), such thatW,; € VS, . The notion
B. Grassmann Chordal Distance of Grassmannian chordal distance can be generalized to flag
Let [Y], [Z] € g;‘;p be two subspaces df”, whereY, manifolds by
Z € VC  are representatives of their respective equivalence

n,p r
classes. The chordal distance is defined as [7
1 17l (Wi Wa)) =[S @ Wa) . (@)
dy(Y,Z) = —= YY" — 22| p. @) =
V2 This distance naturally arises from the canonical embegddin

The representation of the elements of the Grassmann mais — GC x ... x g;CM,T and taking the chordal

T;P1;--5Pr n,p

ifold QS)p by their projection matrices associated with thelistance on this spéce.

chordal distance gives an isometric embedding in a sphereéProposition 1: The flag manifold ]-“lg;ph___w equipped

of radius/2z2=2 in RP with D = n? — 1 [7]. with the chordal distance defined in (9) gives an isometric



embedding into am-product of (n? — 2)-spheres, which can under multiplication by a constant phase. If a group can
be embedded into aspherem‘i(”Q—” with radius,/pn;%p?; be homomorphically mapped t®u,,, it is said to have
A a projective unitary representation. Such can be naturally
(J-"ZC d) o ﬁsnz_Q ( [pi(n —pi)> understood in terms of a linear representatiod/pfacting on
nip1seprt OF J omn projection matrices by conjugation. For orbits under prtje
=t — representation we have the following result.
oy Srin?-n-1 ( =i Pi) Proposition 2: Given a groupG having a faithful irre-
2n ducible representation itf,, its inner automorphism group
Inn(G) has a representation i®U,,. Flag orbits of the
) ) o ~action of G are orbits of the action of Ini): for any

The embedding above applies to the permutation-invariggt) ¢ r;° , we haveG[Y] = Inn(G)[Y].
flag manifold 77, as well. Two matrices that differ only by ¢ follows that to construct flag orbit codes, we are primeril
permutation maximize the distandg to ,/p. A point on]—"ﬁp interested by groups having a representatiof®i, .
corresponds to g-simplex inscribed in the embedding sphere. .

Accordingly, given two element§Vy], [W2] € L, we define B. Initial Points
. The cardinality of the orbit code depends on the size of the
dp([W1], [Wa]) = 3&%; dy (Wil [W2P). (10) stabilizer subgroup of the initial point i&v.

] o ) o Initial points with trivial stabilizer leads to orbit codes
With this distance function, to &N, 52).—codes iNFy, CO  the same cardinality as the group. This holds for almostyever
responds &p!N, §%)-code in Z'—S,p- Coding bounds fOKFE,p point in the manifold, except when the group has permutation
would be rather loose fotFf ,, in the same manner aselements then there is no point AL , with trivial stabilizer.
spherical bounds are loose for antipodal spherical codes.  |nitial points leading to orbit codes of size less than the

Inspired by the literature in quantum information sciencgroup size have by definition a stabilizer which is a non-
on mutually unbiased bases (MUB) [13], we consider afivial subgroup ofG. Those are singularities and there is

E. Permuation-invariance and MUness

alternative distance o<, defined by only a finite number of such codes. Such initial points in
]—‘lf;pl,_“’pr are concatenations of invariant subspaces of

dimension{ps,...,p,} of some non-trivial subgroup of.
In this case, appropriate initial points can be found from
eigenspaces of the matrix representation of the group.

Ao (W], [W2]) = | P — Z ‘wfiw2,j‘4' (11)

i,7=1

wherew; ; is the j-th columns of ;. For the case = n,

this corresponds to the “MUness”, a measure of mutually
unbiasedness. Due to lack of space, we refer to [13] forln this section, examples of flag orbit codes in 2 and 4D
details. We just note this metric corresponds to embeddiage given. Projective representation of the groups coresitle
f;‘f’p into the real Grassman@f;%71.1771 and taking the and initial points can be found in [10]. Their cardinalitydan
corresponding chordal distance, which is itself assodiatéh squared minimum flag distances are given in Table I, where

a spherical embedding of dimensic(ﬁ;) — 2 and squared ¢, andd,,, being the minimum distance according to (10) and

radius 2=2"_=P) [7]. Comparing tal,, the advantage af,,, (11), respectively.

V. EXAMPLES OF FLAG ORBIT CODES

1
n
is that metric calculations do not suffer from a combinatori 5. The Specific Cases G, and 7S,

explosion. The lowest dimensional flag manifolds (= 2) are very

IV. FLAG ORBITS CODES specific cases. We havé, =~ F7, = GF, which further

We now consider a finite grougi < i, acting onv<, and reduces to the real unit sphes, = 5% It follows that
thus on quotient spaces of it. Given a groGpand a initial d€signing codes iy, is equivalent to designing spherical

point (or generatory in the manifold of interest, the orbit of c0des [10], [14]. In addition, each columm oRa< 2 unitary

Y under the action of: is the subset matrix generating a point itFy, can be seen as two ordered
antipodal points. It follows thaﬂ%?z is the set of spherical
GY ={gY | geG}. (12) antipodal points, or equivalently the set of lines in 3D,oals

. . . . . i ~ FC i
The observation in [10] that group with projective repreaen kﬂCOW” as the real Grassmannigif, = _]:2,2 [7]. Codes in
tion are of specific interest to construct Grassmann orlileso 2.2 ¢an thus be constructed by leveraging results from known

is generalized in this section to flag orbit codes. antipodal spherical codes [15]. Some optimal orbit codes in
) o ) F5, can be obtained by pairing antipodals of orbit codes
A. Orbits from Projective Representation in GS,. Examples of optimal orbit codes are simplices of
The center of the unitary grougd/, is Z(U,) = -cardinality 3 and 4, orbits of the octahedral gradpforming a
{e®I, | 6¢cR}=U,. Theprojective unitary grouds the octahedron and a cube on the sphere. The maximum simplicial

quotient of the unitary group by its cent®if,, = U,,/U;. An  configuration, i.e. of cardinality 6, forms an icosahedron,
element inPU,, is an equivalence class of unitary matricean orbit of the tetrahedral group. As expected, the MUness



TABLE |

SOME (N, 62)-FLAG ORBIT CODES Grassmannian (or flag) code and a unitary code. Indeed, the
7€, obtained codes are more than jus_t a centr_al extension of the

FSs N | 55 | 52 Grassmann code. To see this consider a unitary géoapls,

N | & | &, 15 2 2 and an initial pointly € V. Assume thafVy] € GF, has a

3 1 1 90 1 1 non-trivial stabilizerS = {s,...,s,} in G. By definition, for

4 | 066 | 0.88 180 | 0.59 | 1 ; .

6 | 055 | 08 360 | 1.25 | 1.75 any s; € S there exists; € U,, such thats;Vy = Vyr;. Define

15 | 0.19 | 0.35 960 | 0.5 | 0.75 R € U, to be the set of all these right unitary rotations. Then

1440 | 0.22 | 040 Lemma 1:The setR € U, is a group.

distances from Table |, match the result 7], meeting the Proof: Given s; € Sandry, € R satisfyings; Vo = Vors,

) ) ) L X is a direct verification thas’V, = Vorf!. Thus the inverse
Rankm. bound. Asubopumal packing (_)f sizé is also given /. is in R. Given alsos; € S andr € R satisfying
as orbit of the icosahedral groug5, inner automorphism s.Vo — Vorr we haves:s.Vo — Virire. and ass.s. € S a
group of the binary icosahdral gro@g. The obtained squared ™" ° — "%." 2370 = YOl ks v

. . . . r € R exists such that,, = r;ry. [ |
mutu_al unbla_sedness distance (35, for comparision the The code obtained is an extension of the Grassmannian code
putatively optimum code ha&,, ~ 0.38.

by the groupR and the center of5. Non-trivial stabilizers
B. Codes infj& fom Clifford Group are only possible if some non-trivial group elements have

In this space, code elements atex 4 unitary matrices e|genve}lue 1. OtherW|s§, the size of the code is of the size
of the linear group considered.

modulo column permutations and columnwise rotations. HereIn the following, we give examples of Stiefel codes arising
we described some codes obtained from the Clifford growa '

known to lead to good codes in the Grassmann manifold. om the Qrassmann codes Of. [10]'. Their cardinality and
Consider minimum distance are summarized in Table I, whéeYg

_ and ¢, stand for the cardinality and minimum distance in
_ v (11 _ o ux (10 the Grassmann manifold, wheredg and §, stand for the
H P=e E (13) e o : . ; .
v\l -1 0 cardinality and minimum distance in the Stiefel manifold.

and define the octahedral group , or first-order Clifford grou Their Stiefel squared minimum distances are evaluated in
by percentage of the Hamming-type bound from [18].

C, = <H,P>/ZQ C PlUs.

14 A Examples in/;,

Clifford groupsC,, of cardinality|C,,| = gn’+2n H?:1(4j— The Stiefel manifoldnﬂg1 is isomorphic to theg-sphere, and
1) with representation ifPl{,, are defined in [16] (an alterna-these two spaces can be easily mapped to each other. Codes
tive definition can be found in [17]). The Clifford group in 4Ddescribed below are thus not new and are only interesting as
is obtained by tensor multiplication of the elements’hf and tutorial examples.
an additional element’ NOT which is essentially a column-  From the Klein groupVy, inner automorphism group of
permutation. It follows that th€’ NOT operator is irrelevant the Dihedral groupDs, we obtained Grassmann digon and
for constructing codes itF{,, so that we can only considertetrahedron codes in [10]. The initial poifk, ;] € Gs, had
the subgroup of’; defined by an order 2 stabilizer ifty, its Stiefel representative, ; € VQCJ
~ has also an order 2 stabilizer iPg leading to a(4,2)-
Co=({H®L,,®H,P® I, [ ® P)/Zs CPUy (15) code, worse than the optimum simplex configura(ltion). The
From the eigenvectors of the group elements, we fourGtrassmann digon can also be generated from the orbit of
some initial points with non-trivial stabilizers of diffent (1 4)”/1/2 in Vj, this initial point has a trivial stabilizer in
orders. The resulting codes with cardinality and minimumg leading to an optimal(8, 2)-orthoplex code. The orbit of
distance are presented in Table |. From the table, one a#e tetrahedron codebook i) leads to &8, 2-2/v3)- Stiefel
notice than the two considered distance functions behaite qwode.
similarly except for the code of size30. The generator of the  The orbit of the identityl/; ; by the symmetric grougs;
15-points codes is the identity matrix, i.e. the code corresiso leads to a6, 2)-Stiefel code. The orbit of1 1)”/v/2 by S,
to taking the finite group directly as a code itself. This caxle leading to an optimum triangle in the Grassmannian, leads
a collection of 3 maximal sets of MUBs. The other generatingso to an optimum triangle in the Stiefel manifold. This is
points are given in the Appendix. Recall that to(&,d2)- a remarkable example of optimum joint Grassmann-Stiefel
codes inf&, shown in Table |, correspondg 24V, 6?,)—code packing [19]. The Grassmann octahedron generatedsbig
in 7§, a (6,2-v2)- Stiefel code.
The initial point of the square code in [10] has a non-trivial
VI. STIEFEL CODES FROMGRASSMANN ORBIT CODES  gtapjlizer of order 2 inDyg. This gives a(8,2—v2)- Stiefel
Here, we consider Stiefel orbit codes arising from theode. From the Grassmann square anteprism code, we obtain
linear representation of the projective group considenethé a Stiefel code of sizd6 and squared minimum distance of
previous section and in [10]. The codes are expansions 0f0.41, far from the best-known packing ef 1.22.
the Grassmann orbit codes of [10] as direct products of aOrbits from the binary tetrahedral gro2d’ give a(24,1)-



TABLE Il
SOME OF (N, §2)-STIEFEL ORBIT CODES

EXPANSION OF (N, 65)-GRASSMANN ORBIT CODES

Dim | Group | Order || Ny | 42 || Ns | 62 | %HB
2 T Z 2 62
Ds 8 2 1 8 2 86
4 | 066 8 | o085| 37
2 T 5 2 75
o1 || S8 6 3 | 075 3 3 84
6 | 05 6 | 059 | 22
7105 8 1050 [ 25
Dis 16 8 0.37 16 041 | 26
2T 27 71066 24 i 81
20 78 6 | 05 28 050 | 73
60 | 05 || 480 | 059 | 32
6
Ax 1l 20 | 2%68 1 4e0 | 019 || 3840 | 023 | 21
30 1 5760 | 1.17 | 4L
320 | 0.44 || 15360 | 1.17 | 47
66!
4x2 ) 202 | 2260 a5 | o5 || 23040| 1 | 43
1440 | 0.2 || 46080 | 0.4 | 19

packing, vertices of the 24-cell. This is a well-known poly-[3]
hedron in 4D with well-understood symmetry, and known to

lead to an optimal packing [20].
Orbits from the binary octahedral groupO lead to a
codebook of 48 points with squared minimum dista2ce

V2 ~ 0.59, a combination of the 24-cell and its dual which ©®
is also a 24-cell. For comparison, the best known packing gé]

this size has a squared minimum distance~d.62 [20].

B. Examples inV{, and V{,

In [10], the projective representation in 4D of the Clifford [8]
groupC, of order2%6! was constructed as the inner automor-
phism group of a group with linear representation of order

266!, We denote this central extension 6% by 4C, since
CQ = 402/24

The orbit of[4 1] by the Clifford group leads to &0, 0.5)-
Grassmann code. The elemefif; has also a non-trivial
stabilizer in4C5 leading to a(480,2-+v2)- Stiefel code. The

orbit of [(1 1 1 i)T/2] by the Clifford group leads to aqy
)- Grassmann code, its generator has also a non-trivial

(480, 2
stabilizer in4C; leading to a(3840, 2—;3;)- Stiefel code.
The optimum Grassmann orthoplex orbit [df, o] by Cs

generates an extension to(&760, 4—2v2)- Stiefel code. The
orbit of Y390 by 4C5 leads to a(15360, 4+—2v2)- Stiefel code.
The orbit of Y69 by 4C5 leads to a(23040, 1)- Stiefel code.
Finally, Y1440 has a trivial stabilizer inlC5 resulting to a code
of maximal carinality, i.e6!25 = 46080 and square minimum

distance0.40.

VIl. CONCLUSION

We discussed flag orbit codes arising from projective uylita[18]
group representations. We described a spherical embedéling
flag manifolds and use their corresponding chordal distan

We gave few examples of codes where elements2are2

columnwise rotations. We also describédk 2 Stiefel orbit

o)

and4 x 4 unitary matrices modulo column permutations and

APPENDIX

In successive order: the 90-, 180, 360-, 960-, and 1440tpoin

generators of Table I:

10 0 10 0 0
010 O\ (00,80,
00 7 % 00 ?'L 21l
00 i vE 007
i o 1FH + 10 0 0 -v2 1_ o U
2 ) 2 0L —3i—v3 3i—V3 V3 23 2
PoE L T i ) | [NV S
o 1 1 i oLt L = I S |
2 2 V2 3 V3 V3 V6 2v3 V2 2
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