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Joint Grassmann-Stiefel Quantization
for MIMO Product Codebooks

Renaud-Alexandre Pitaval and Olav Tirkkonen

Abstract—We consider product codebook strategy where a
single small codebook is implemented at the receiver to quantize
larger multi-input multi-output (MIMO) channels, e.g. aggregate
channels of cooperative MIMO base stations. The present work
focuses on the codebook design, codebook construction, and
codeword selection under this scenario, for single- or multistream
MIMO transmission. Designing point-to-point unitary precoding
codebook is related to a discretization problem on the Grassmann
manifold, where a Grassmannian codeword is an equivalence
class of rectangular-unitary/Stiefel matrices. For practical needs,
one has to choose the rectangular unitary matrix to represent
each Grassmann codeword. In this paper, we choose appropriate
representatives so that product codebook quantization becomes
competitive with global Grassmannian quantization. For this,
we propose a novel joint Grassmann-Stiefel codebook design
aiming at good quantization/discretization of Grassmann and
Stiefel manifolds with a single codebook. To find low-distortion
codebooks, we present a vector quantizer generating a Stiefel
codebook conditioned on a fixed Grassmann codebook. For this
purpose, we provide an exact solution for computing centroids
in the Stiefel manifold with chordal distance. Furthermore,
concrete examples of analytical joint Grassmann-Stiefel packings
are given. Finally, we discuss low-complexity codeword selection
methods.

Index Terms—Grassmann manifold, Stiefel manifold, quanti-
zation, MIMO, base station cooperation.

I. I NTRODUCTION

Multi-Input Multi-Output (MIMO) techniques are key tech-
nologies to enhance spectrum efficiency of wireless systems.
Performance heavily depends on the channel state informa-
tion available at the transmitter. In frequency-division duplex
systems, the only way to acquire channel state information
(CSI) is through a limited feedback channel. A widely applied
method is to use codebook-based precoding in which the
receiver selects a precoding codeword from a predefined
codebook and feeds back the index to the transmitter. Since
it is often more important to feed back the channel direction
than the channel beam gain [1], [2], the quantization of the
eigendirections of the channel is often done with a rectangular
unitary code.

In point-to-point communications with maximum likelihood
receiver, the performance of a unitary precoding codebook is
related to its interpretation as a discretization of the Grassmann
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manifold [3]–[5], for both single- and multistream transmis-
sion. Codewords are rectangular unitary matrices, elements in
a Stiefel manifold. However, points in the Grassmann man-
ifold are equivalence classes of rectangular unitary matrices,
where two matrices are equivalent if their columns span the
same subspace. Accordingly, when creating a Grassmannian
codebook, by necessity, for each codeword we must select one
of the infinite number of different Stiefel representativesthat
generates the Grassmannian codeword. In this case, the choice
of Stiefel matrices does not impact performance.

Network-level performance enhancements are expected by
extending MIMO techniques to multi-point transmission [6].
To overcome the specific features of the MIMO cooperative
channel, a per-cell product codebook strategy was proposed
in [7]. A per-cell codebook has been advocated to be desirable
in a cooperative system for flexibility and compatibility [8],
[9], requiring only implementation of a single codebook for
any number of cooperative BSs and user positions. With a
product codebook structure, the receiver quantizes the aggre-
gate channel matrix by concatenating online codewords from
a single per-cell codebook designed offline.

Product codebook-based precoding could also naturally be
used in point-to-point scenarios to construct codebooks for
large antenna configurations. This flexible method that reuses
point-to-point codebooks has many advantages. Only a single
per-cell codebook needs to be stored for a fixed transmission
rank, reducing design problems to smaller spaces which are
typically easier to discretize. Large product codebooks would
naturally inherit some properties of interest such as main-
taining a small input alphabet or an equal-power constraint
per-antenna. For example, the current LTE-A 8Tx codebook
is constructed by concatenating 4Tx DFT codewords [10].
Recently, a related quantization structure was also considered
for the context of interference alignment [11], where reduction
of codeword selection complexity is of interest.

Since matrix concatenation is employed in the product
codebook, it is not enough for the per-cell codebook to provide
a good discretization of the Grassmann manifold. Instead,
quantizing the full space of unitary precoders, the Stiefel
manifold, has to be considered. The single implemented per-
cell codebook thus needs to provide both a good Grassmann
and Stiefel quantization. In this paper, we show that the
representatives of a Grassmannian codebook can be chosen ap-
propriately to provide good Stiefel quantization. This leads to
a new codebook design problem, where first one has to design
a Grassmannian codebook, then one chooses the representative
of every codeword to efficiently quantize the Stiefel manifold.
The resulting product codebooks show similar performance as
global joint-cell Grassmannian codebooks.
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We investigate several criteria to design a uniform codebook
over the Stiefel manifold conditioned on a Grassmann code-
book: maximizing the minimum distance, or maximizing the
mean distance, or minimizing an average distortion. Lloyd’s
algorithm is a standard method to generate low-distortion
codebooks. This algorithm requires finding centroids of clus-
ters. We derive a closed-form centroid in the Stiefel manifold
equipped with the commonly used Euclidean distance. This
is obtained by leveraging a theorem from [12] on centroid
computation on closed surfaces embedded into Euclidean
space. While applied here for the Stiefel manifold, this result
can naturally be extended to other manifolds equipped with an
extrinsic Euclidean/chordal metric. Next, we provide an algo-
rithm to generate low-distortion Stiefel codebooks conditioned
on predefined Grassmannian codebooks. The proposed algo-
rithm is of Lloyd type, with some non-trivial modifications.In
addition, we consider maximizing the minimum distance or the
mean distance by Monte Carlo simulations. We give explicit
examples of analytical codebooks having low implementation
complexity: a Stiefel-improved version of the 2 transmit (Tx)
antenna WCDMA Mode 1 codebook with QPSK alphabet,
and the optimum2 × 1 Stiefel packing conditioned on the
optimum Grassmann packing of cardinality 4. The codebooks
can be used in product codebooks for any even number of
transmit antennas.

Finally, we consider codeword selection methods. As code-
book size scales with the number of transmit antennas, the
complexity of exhaustive search employed at the receiver
scales exponentially [13]. To decrease codeword selection
complexity, it was suggested in [14] that the receiver quantizes
independently each per-cell channel. While this decreases
complexity and gives more flexibility for the network, it
induces a loss in performance. This loss is a consequence
of dismissing the phase ambiguity between per-cell channels,
as recognized in the context of single-stream beamforming
in [14]–[16]. To solve this problem it was suggested that the
receiver feeds back additional bits related to the phase am-
biguity [14], [15], or to use a phase-sensitive algorithm [16].
We describe several selection methods for multistream multi-
cell transmission without additional information to feed back,
including a novel independent codeword selection method
employing Grassmann and Stiefel distances.

This paper is organized as follows. Section II defines the
pertinent mathematical spaces for the codebook design, along
with useful mathematical results. In Section III, the system
model with product codebook based-precoding of [7] are
presented. Section IV discusses the codebook design problem.
In Section V, we investigate joint Grassmann-Stiefel codebook
constructions, describing Lloyd’s algorithms and explicit ex-
amples of analytical codebooks. In Section VI are presented
different codeword selection principles. Section VII presents
simulation results, and finally Section VIII concludes.

II. PRELIMINARIES

A. Spaces of Interest

The primary codebooks we considered are designed for
transmission ofns-streams from ant-antenna base station

with nt ≥ ns. Pertinent spaces for the codebook design are as
follows.

Unitary Group: The codewords addressed have orthonor-
mal columns, and consist thus of a number of columns from
a unitary matrix. The space of allnt-dimensional unitary
matrices is denoted by the unitary group:

Unt
=

{

U ∈ C
nt×nt | UHU = Int

}

. (1)

Stiefel manifold:The complex Stiefel manifoldVC
nt,ns

is defined as the space of orthonormal rectangular matrices
(with ns ≤ nt):

VC

nt,ns
=

{

Y ∈ C
nt×ns | YHY = Ins

}

. (2)

Whenns = 1, the Stiefel manifold is the set of unit vectors
in C

nt which can be identified as a hypersphere inR2nt .
Otherwise, for general values ofns, the Stiefel manifold is
a subspace of a hypersphere inR

2ntns . The standard distance
considered on the Stiefel manifold is thus

ds(X,Y) = ‖X−Y‖F (3)

=
√

2ns − 2R(Tr[XHY]). (4)

Grassmann manifold:The complex Grassmann manifold
GCnt,ns

is the set of allns-dimensional subspaces ofCnt .
GCnt,ns

can be expressed as the quotient space of the Stiefel
manifold and the unitary group:GCnt,ns

∼= VC
nt,ns

/Uns
. A

point in the Grassmann manifold can thus be represented as
the equivalence class ofnt × ns orthonormal matrices whose
columns span the same space:

[Y] = {YU | U ∈ Uns
} , (5)

where the Stiefel-matrixY is annt×ns matrix with orthonor-
mal columns. Each column inY determines a line inCnt , so
that eachY determines anns-dimensional subspace inCnt .
The equivalence class[Y] thus represents a set of matrices
Y determining the same subspace. Taking two Grassmannian
points [X], [Y] ∈ GCnt,ns

, the representativesX, Y ∈ VC
nt,ns

determine two subspaces ofC
nt . The chordal distance between

these is defined as [17]

dg([X], [Y]) =
1√
2
‖XXH −YYH‖F (6)

=
√

ns − ‖XHY‖2F . (7)

This distance does not depend on the representative in[X] and
[Y] chosen, and is thus well-defined on Grassmann manifolds.

Stiefel and Grassmannian codebook:A code or a code-
book is a finite subset of points in the considered space. Since a
Grassmannian codebook is a set of equivalence classes, it may
be represented by a suitable representative in each equivalence
class. The obtained set of rectangular unitary matrices is inher-
ently both a Grassmannian code and a Stiefel code. Namely,
a given Stiefel codebookC = {C1, . . . ,Cncb

} ⊂ VC
nt,ns

can
be independently treated as a discretization of the Grassmann
manifold [C] = {[C1], . . . , [Cncb

]} ⊂ GCnt,ns
. The distance

properties of the codebook in these two interpretations depend
on the design principle. With a slight abuse of notation, we
denote the minimum Grassmannian and Stiefel distances ofC
by δg(C) andδs(C), respectively.
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B. Polar decomposition and Procrustes Problem

Before stating the Procrustes problem, we first recall thethin
singular value decomposition (SVD) of a complex matrix, and
then define the polar decomposition [18]. We recall that it is
assumed thatns ≤ nt. Analogous decompositions, form× n
matrices withm < n are obtained through their Hermitian
conjugate.

Thin SVD: For A ∈ C
nt×ns , there existL ∈ VC

nt,ns
,

R ∈ Uns
and a real diagonal matrixΣ = diag(σ1, . . . , σns

) ∈
R

ns×ns with σ1 ≥ . . . ≥ σns
≥ 0 such thatA = LΣRH .

Polar decomposition:For A ∈ C
nt×ns , there existU ∈

VC
nt,ns

and a unique Hermitian positive semi-definite matrix
P ∈ C

ns×ns , such thatA = UP.
The polar decomposition is unique ifA is full rank and

can be easily computed from the thin SVD: given the SVD
A = LΣRH = LRHRΣRH , we haveA = UP with U =
LRH ∈ VC

nt,ns
and P = RΣRH Hermitian positive semi-

definite.
The Procrustes problem is to find the unitary rotation that

maps a matrix to be as close as possible to another one.
Procrustes Problem:GivenA, B ∈ C

nt×ns , find

UA,B = arg min
U∈Uns

‖A−BU‖F . (8)

The solutions of (8) is given by the polar decomposition of
BHA = UA,BPA,B [18], [19].

This is related to a more general problem which is to find
the nearest Stiefel matrix to a complex matrix.

Nearest Stiefel Matrix:GivenA ∈ C
nt×ns find

VA = arg min
V∈VC

nt,ns

‖A−V‖F . (9)

The solutions of (9) is given by the polar decomposition of
A = VAPA [18], [19]. The two problems can be seen as
equivalent when considering square matrices (ns = nt).

III. SYSTEM MODEL

We define a(nbs × nt) × ns MIMO system asnbs base
stations (BSs) each equipped withnt antennas transmitting
cooperativelyns-data streams. It is assumed that the BSs are
able to instantaneously share the feedback information, e.g.
via high speed backhauls.

A. Channel Model

When the BSs transmit to a user, the received signal is

y = HlsWlsx+ n, (10)

wherey ∈ C
nr×1 is the received vector;Wls is annbsnt×ns

aggregate precoding matrix,ns being the number of streams;
x is an ns × 1 vector of information symbols satisfying
E
[

xxH
]

= 1
ns

Ins
; n ∈ C

nr×1 denote the white Gaussian
noise withE

[

nnH
]

= σ2Inr
; and

Hls = [α1H1, . . . , αnbs
Hnbs

] = HssG (11)

is the large-scale aggregate channel matrix, concatenation
of independent channels{αiHi} from the BSs to the re-
ceiver. The aggregate small-scale channel matrixHss =

A A
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Fig. 1. Illustration of product codebook principle fornbs = 1, 2 and3.

[H1, . . . ,Hnbs
] accounts for small-scale flat Rayleigh fading.

Its entries are assumed to be independent and identically (i.i.d.)
Gaussian with unit variance. Large-scale path gains are in the
matrix G = diag(α1Int

, . . . , αnbs
Int

) whereαi incorporates
distance-dependent path loss and shadowing from theith BS
to the receiver. Forα1 = · · · = αnbs

, the model reduces to a
classicalnbsnt × ns i.i.d. point-to-point MIMO system.

We denote byVls and Vss ∈ VC
nbsnt,ns

the left singular
vectors associated with thens-largest singular values ofHH

ls

and HH
ss , respectively. The channel coefficients are assumed

to be perfectly known at the receiver and unknown at the
transmitters. We assume that the BSs have access to CSI
only through an error-free, zero delay, and limited feedback
channel.

B. Quantization with Product Codebook at the Receiver

We follow the product codebook principle of [7] for feeding
back CSI. This was proposed for flexibility and compatibility
in order to accommodate to the possible dynamic number of
cooperating BSs and to deal with heterogeneous path loss
effects. A per-cell codebookC = {C1, . . . ,Cncb

} of (nt×ns)-
Stiefel matrices is shared between the transmitters and the
receiver. This codebook is independent of the number of
cooperating BSs, and large-scale path loss effects. The receiver
quantizesVss with a product codebookCpr. The product
codebook is a Cartesian product of the per-cell codebook:
Cpr = 1√

nbs
C ⊗ · · · ⊗ C, i.e. a codeword inCpr is a normalized

concatenation ofnbs per-cell codewords as illustrated in Fig. 1.
In [7], it was shown thatVss satisfies almost surely the
structure of a product codeword fornt → ∞. Finally, the
receiver feeds back the set of indexes of the codewords ofC
that form the selected product codeword.

C. Precoding at the Transmitter

The BSs reconstruct the small-scale precoding matrix
Wss = Q(Vss) ∈ Cpr according to the feedback bits received
and corresponding to the quantization mapQ used at the
receiver. As in [7], it is assumed that the BSs know the large
scale path gains of the channels contained inG. Accord-
ingly, the precoding matrix applied isWls =

√
ntnbs

‖G‖ GWss

following the principle of adaptive precoding for correlated
MIMO [20], [21]. The power is allocated in proportion to
the large scale path gains which intuitively corresponds to
the principle of a maximum ratio transmission type. The
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normalization guarantees thatWls belongs toVC
nbsnt,ns

and
so that the total transmit power is one.

The precoder, which is a function of received feedback
bits, is used for channel adaptation in order to increase the
information rate of the transmission. With Gaussian input and
maximum-likelihood receiver, the average information rate of
the system is given by

C = E
[

log2 det
(

I+ ρWH
ls H

H
ls HlsWls

)]

, (12)

where ρ is the SNR per stream, andWls is constructed
as described above for each channel realization and thus
dependent of the random channelHls.

IV. PER-CELL CODEBOOK DESIGN FORPRODUCT

CODEBOOKS

Considering the global(nbs × nt)× ns-system, the perfor-
mance of the product codebook is related to its interpretation
as a discretization of the Grassmann manifold [2]–[5]. Op-
timally, the receiver would quantize the small scale channel
as Wss,opt = Vss. This optimum precoder is not unique in
the sense that any codeword that is achieved by multiplying
it with an ns × ns unitary matrix from the right leads to the
same information rate. The set of such optimum precoders can
thus be seen as a point in the Grassmann manifoldGCnbsnt,ns

.
Several criteria have been investigated in the literature to

design good Grassmann precoding codebooks. For an i.i.d
Rayleigh fading channelHss, the right singular vectorsVss

are uniformly distributed over the Stiefel manifold according
to the Haar measure [22], and the space spanned byVss is uni-
formly distributed on the Grassmann manifold [5]. The main
idea is thus to target uniform codebooks over the manifold.
Designing codebooks to directly maximize (12) is untractable.
Instead, good design criteria based on extremization of average
distortion metrics, i.e. average squared quantization errors,
have been considered [2], [21], [23]–[25]. The informationrate
can be approximated as a function of the distortionDg(Cpr) =
EVss

[

min
Wss∈Cpr

d2g(Vss,Wss)

]

where the Grassmann chordal

distance (6) is used as a quantization map [2], [25]. In [3], [4]
the beamforming codebook design problem was linked to an-
other approach, maximizing the minimum Grassmann distance
of the codebookδg(Cpr) = min

1≤i,j≤n
nbs
cb

dg(Cpr,i,Cpr,j) with

Cpr,i,Cpr,j ∈ Cpr. Maximizing average pairwise distance
has also been considered in [26]. From the point of view
of precoding, these criteria are almost optimal and roughly
equivalent. Extension to correlated channels through codebook
rotation has been discussed in [10], [20], [21].

A. Space of Quantization for Per-Cell Codebook

The optimum global precoder can be written without loss
of generality in terms of component codewords asWss,opt =
[WH

ss,opt,1, . . . ,W
H
ss,opt,nbs

]H where Wss,opt,i ∈ C
nt×ns

would be an optimum quantization of theith component of
Vss. While performance is invariant under joint right unitary
rotation of all components, the unitary invariance does not
hold for each component separately. This means that the first

componentWss,opt,1 may be anynt×ns matrix of norm less
than

√
ns, up to right unitary rotation. However, given the

first componentWss,opt,1, there is not longer a freedom to
rotate the subsequent componentWss,opt,i, i > 1. Meaning
that theWss,opt,i for i > 1 may be anynt × ns matrix of
norm less than

√
ns. For ns > 1 it should be noted that

the per-BS optimum precoderWss,opt,i do not necessarily
have orthogonal columns. The product codebook strategy
considered here, however, constrains the per-cell quantizations
to be unitary. The space of quantization is then the Grassmann
manifold GCnt,ns

for only one BS, and the Stiefel manifold
VC
nt,ns

for the other(nbs − 1)-BSs.

B. Probabilistic Characterization of Per-cell Components

The uniformly distributed Stiefel matrixVss ∈ VC
nbsnt,ns

is
characterised by the Haar measure giving a probability density
that satisfiesp(Vss) = p(ΦVss) for all Φ ∈ Unbsnt

[27]. The
definition is naturally extended to the distribution of equiv-
alence classes[Vss] in the Grassmann manifoldGCnbsnt,ns

.
Assuming the Haar distribution, it is possible to derive the
distribution of the Stiefel part from the polar decomposition
of a truncation ofVss.

Lemma 1. Let V ∈ VC
nt,ns

be Haar distributed, andAsub ∈
C

na×ns , a submatrix ofna ≥ ns consecutive rows ofV. Given
the polar decomposition,Asub = VsubPsub whereVsub ∈
VC
na,ns

, the Stiefel matrixVsub ∈ VC
na,ns

is Haar distributed.

Proof: Write V = [AH
1 , AH

sub,A
H
2 ]H with Ai ∈

C
ni×ns and consider the block diagonal matrixθ =

diag(In1
, θ, In2

) ∈ Unt
with θ ∈ Una

. As V is Haar
distributed, we havep(V) = p(θV), or equivalently in
terms of the joint probability density of the parts ofV,
p(Vsub,Psub,A1,A2) = p(θVsub,Psub,A1,A2). By inte-
grating the joint density, it is a direct verification that the
marginal density ofVsub satisfiesp(Vsub) = p(θVsub) for
any θ ∈ Una

.
The optimum Stiefel quantization of a component ofVss is

also Haar distributed according to Lemma 1. For the first BS,
C thus has to be a uniform Grassmannian codebook, whereas
for the remaining BSs,C also has to be a uniform Stiefel
codebook. Note that due to (5) there exists an infinity of Stiefel
codebooks that represent the same Grassmannian codebook.

C. Design Criteria and Chordal Distances

The Grassmann distances of the product codebooksCpr
depend on the Stiefel representatives chosen for the per-
cell codebookC. To construct uniform per-cell codebook,
we extend the standard Grassmann codebook criteria to the
Stiefel manifold with chordal distance. Several non-equivalent
distances on Grassmann and Stiefel manifold can be defined.
The following lemma relates the Grassmann chordal distance
of the product codebook to the Grassmann and Stiefel chordal
distance of the per-cell codebook.

Lemma 2. Assume the product codebook
Cpr = 1√

nbs
C ⊗ · · · ⊗ C in VC

nbsnt,ns
constructed from
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per-cell codebookC ⊂ VC
nt,ns

, with ns < nt. The minimum
Grassmann distance of the product codebook satisfies

δ2g(Cpr) ≥ min

{

δ2g(C),
δ2g(C) + (nbs − 1)δ2s(C)

n2
bs

}

(13)

whereδg(C) and δs(C) are the Grassmann and Stiefel mini-
mum distance of the per-cell codebook, respectively.

Proof: There are two cases to consider. First, assume that
the minimum distance is achieved with product codewords
that are concatenations of single per-cell codewords. In other
words, letV, W ∈ Cpr with V = 1√

nbs
[VH

1 ,VH
1 , . . . ,VH

1 ]H

andW = 1√
nbs

[WH
1 ,WH

1 , . . . ,WH
1 ]H , such thatδg(Cpr) =

dg(V, W). Then it follows that

δ2g(Cpr) = ns − ‖VHW‖2 = ns − ‖VH
1 W1‖2 (14)

= d2g(V1, W1) ≥ δ2g(C). (15)

Now assume that the two closest product codewords are
concatenations of different per-cell codewords. Then the min-
imum possible distance is satisfied for two product code-
words that only differ by a single per-cell codeword, i.e. let
V, W ∈ Cpr with V = 1√

nbs
[VH

1 , . . . ,VH
nbs

]H and W =
1√
nbs

[WH
1 ,VH

2 , . . . ,VH
nbs

]H such thatδg(Cpr) = dg(V, W).
The minimum distance can be simplified and bounded as

δ2g(Cpr) = ns −
1

n2
bs

‖(nbs − 1)Ins
+VH

1 WH
1 ‖2 (16)

=
1

n2
bs

(

d2g(V1, W1) + (nbs − 1)d2s(V1, W1)
)

≥ 1

n2
bs

(

δ2g(C) + (nbs − 1)δ2s(C)
)

. (17)

Combining the two cases leads to (13).
Intuitively from Lemma 2 one sees that the importance of

the Stiefel distance increases with the number of cooperative
BSs.

D. Product Codebook Performance

Using a product codebook strategy results in two sub-
optimalities.
i) A per-cell codebook designed to quantize the Grassmann
manifold GCnt,ns

does not necessarily result in a good quanti-
zation of the Stiefel manifoldVC

nt,ns
.

ii) A residual loss would be also expected compared to a global
codebook quantizing the larger GrassmannianGCnbsnt,ns

, cor-
responding to the signal eigenspace of the receiver.

To make the performance of product codebook quantization
close to optimal, we propose a novel joint Grassmann-Stiefel
design of the per-cell codebookC. An example of the achieved
performance of such a design is illustrated in Fig. 2 and Fig.3.
In Fig. 2, the information rate is shown for systems with
nbsnt = 2, 4, 6, 8 transmitter antennas and a single receiver
antenna, and the information rate of systems with 4, 8, 12, 16
transmitter antennas and two receiver antennas. There is one
feedback bit per transmit antenna. In Fig. 3, the information
rate is shown fornbs = 2 base stations, and 1- to 5-bit per-cell
codebooks for systems withnt = 2 andns = 1, andnt = 4
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Fig. 2. Comparison of product codebooks with joint Grassmann-Stiefel
design and global Grassmannian codebooks. The curves show the information
rates at 10 dB SNR for 2x1, 4x1, 6x1, and 8x1 MIMO systems, as well as
for 4x2, 8x2, 12x2, and 16x2 MIMO systems. Codebooks with one feedback
bit per transmit antenna.
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Fig. 3. Comparison of product codebooks with joint Grassmann-Stiefel
design and global Grassmannian codebooks. The curves show the information
rates at 10 dB SNR for 4x1 and 8x2 with 1- to 5-bit 2x1 and 4x2 per-cell
codebook, respectively.

andns = 2. This corresponds to a 4x1 global system with 0.5
to 2.5 feedback bits per transmit antenna, and a 8x2 global
system with 0.25 to 1.25 feedback bits per transmit antenna,
respectively.

Except when the per-cell codebook size is equal to one bit,
the average performance of the proposed design is close to that
of a global Grassmannian codebook minimizing the average
distortion Dg (constructed here via Lloyd’s algorithm). The
gain of the proposed design is illustrated by comparison with
a product codebook based on the same per-cell Grassmannian
codebook but with (putatively) worst choice of Stiefel repre-
sentatives. The mean performance of the Grassmann codebook
averaged over all possible Stiefel representatives is alsoshown.
The gap between the best and worst product codebook increase
with increasing number of BSs, while relatively constant with
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increasing feedback bits. When the codebook size grows,
product codebook performance averaged over Stiefel repre-
sentatives is asymptotically reaching the performance of global
codebook.

V. JOINT GRASSMANN-STIEFEL CODEBOOKS

In order to have good per-cell codebooks that can be used
in product codebooks as discussed above, we propose that a
codebook is constructed by first designing a Grassmannian
codebook according to standard criteria such as maximizing
the minimum distance or minimizing the average distortion.
Then, the representative in each Grassmannian plane in the
codebook is chosen to optimize a metric on the Stiefel
manifold. This means that we select a good Stiefel codebook
conditioned on the codebook being simultaneously a good
Grassmannian codebook.

A. Problem Statement

Let us assume that the Stiefel codebookC =
{C1, . . . ,Cncb

} ⊂ VC
nt,ns

generates the desired Grassmannian
codebook[C] = {[C1], . . . , [Cncb

]} ⊂ GCnt,ns
. There exists

an infinite number of possible Stiefel codebooks that gen-
erate the same Grassmann codebook; for any set of unitary
rotationsΩ = (U1, . . . ,Uncb

) ⊂ Uns
, the Stiefel codebook

CΩ = {C1U1, . . . ,Cncb
Uncb

} ⊂ VC
nt,ns

generates the same
Grassmannian codebook asC, i.e. [CΩ] = [C]. The problem
is to find the best Stiefel representative of[C], or equivalently
finding the Ω = (U1, . . . ,Uncb

) ⊂ Uns
that extremizes a

given criterion. Without loss of generality, the first codeword
can be fixed such thatU1 = I.

B. A Simple Example

To illustrate the joint Grassmann-Stiefel codebook design
problem, we consider the toy scenario of building a real
codebook of four codewords for a transmission from 3 an-
tennas. This leads to a rare example where visualization of
the proposed approach is possible. The real Grassmannian
GR3,1 that needs to be discretized is the set of lines through
the origin in the 3D Euclidean space. It can be understood
as the set of antipodal points on the real unit sphere. The
corresponding Stiefel manifold is the space of all 3D unit-
norm vectors, and can be understood as the full sphere. A
Grassmannian code is then a set of antipodal points, and
choosing a representative for every Grassmannian codeword
means simply choosing one of the two antipodal points on
the sphere. A Stiefel-codebook, in turn, is a spherical code.
The best four-codeword Grassmannian packing is found by
taking the vertices of a cube – the eight vertices of the cube
consist of four pairs of antipodal points, i.e. four Grassmannian
lines. From this cube, there is four possible non-equivalent
four-codeword spherical codes: for example by taking only
points in the upper hemisphere we get a square, or by taking
two points in both upper and lower hemispheres we get
a tetrahedron as depicted on Fig 4. Those two alternative
Stiefel codebooks generating the same Grassmannian code are
given in Appendix A. The best Grassmann-Stiefel codebook

is obtained by taking the vertices of the cube that form a
tetrahedron. It turns out that the vertices of the tetrahedron
gives actually the optimal 4-point spherical (Stiefel) codes
under several criteria [26]. In this simple example, it is thus
possible to have a codebook that is simultaneously an optimal
Grassmannian and Stiefel packing.

Fig. 4. Joint Grassmannian-Stiefel codebook design in toy scenario of real
codebook for 3 transmit antennas. On the upper graph the optimum 2-bit
Grassmannian packing inGR

3,1, a set of 4 antipodal points forming a cube. A
Grassmannian codeword may be represented by any of the two points of same
color, lying on a line through the origin. On the lower part, two alternatives
of 2-bit Stiefel codebooks generating the above Grassmannian codebook: a
square and a tetrahedron.

C. Codebook Design Criteria

Given a codebookC = {C1, . . . ,Cncb
} ⊂ VC

nt,ns
, de-

pending on the distance considered, the codebook can be
treated either as a discretization of the Grassmann or the
Stiefel manifold. In the following, we write the manifold
of consideration byM associated with distanced, we have
d = ds and d = dg for M = VC

n,p andM = GCnt,ns

respectively.
As discussed at the beginning of Section IV, several criteria

have been investigated in the literature to design good Grass-
mann precoding codebook. Those criteria, defining a notion
of uniformity, naturally extend for codebook design on Stiefel
manifolds. In this section, we discuss the following criteria.

• Minimizing the average distortion:

DM(C) = EV ∈M

[

min
C∈C

d2(V,C)

]

.

• Maximizing the minimum distance:

δM(C) = min
1≤i6=j≤ncb

d(Ci,Cj),

often referred to as packing or Tammes problem.
• Maximizing thep-mean distance:

Mp(C) =





2

ncb(ncb − 1)

∑

1≤j<k≤ncb

dp(Cj ,Ck)





1/p

.
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This is known as Thomson problem, see references
in [26]. Typical values of interest arep = −1, corre-
sponding to the harmonic mean, and−2.

These are also mathematical problems of independent inter-
est. In the following, we discuss Lloyd’s algorithms generating
minimum-distortion codebooks, and describe two examples of
closed-form codebooks that could be conjectured (as compared
to Monte Carlo simulations) to be optimum packings and
Thomson configurations.

D. Low-Distortion Codebooks

1) Lloyd’s Algorithm: For anyV ∈ M, define the quanti-
zation map

q(V) = arg min
1≤i≤ncb

d(V,Ci). (18)

Given a random sourceV onM, the average distortion of
the codebookC onM is

DM(C) = E
[

d2(V,Cq(V ))
]

(19)

Lloyd’s algorithm aims to construct a codebook with mini-
mum average distortion. It comprises two key steps:

Nearest Neighbor rule (NN):Partitioning of the man-
ifold according to the codebook inncb Voronoi cells
{R1, . . . ,Rncb

} defined by

Rk = {V ∈M| k = q(V)}. (20)

Centroid Computation (CC):Finding the centroids of each
Voronoi cellRk given by

Zk = arg min
Z∈M

E
[

d2(V,Z) | V ∈ Rk

]

. (21)

The algorithm consists of iterating these two steps where the
former codebook is replaced by the set of computed centroids.

2) Centroid Computation on Stiefel and Grassmann Man-
ifolds: The Grassmann and Stiefel manifolds are compact
manifolds without borders. Furthermore, the distancedg and
ds that we consider arise naturally by treating the manifolds
as surface embedded in an Euclidean space (more precisely a
subset of an Euclidean hypersphere) and taking the canonical
extrinsic distance. The exact centroid computation in the
Stiefel manifold equipped with the distanceds follows from
this observation and leveraging a recent result from Euclidean
geometry literature.

Lemma 3. Given a Voronoi regionRk ⊂ VC
nt,ns

, a random
sourceV on VC

nt,ns
⊂ C

nt×ns , and the polar decomposition
of the center of massE [V | V ∈ Rk] = UkPk, a centroid of
Rk is given by

Zk = arg min
Z∈VC

nt,ns

E
[

d2s(V,Z) | V ∈ Rk

]

(22)

= Uk (23)

Proof: As (VC
nt,ns

, ds) is a closed continuous surface in
an Euclidean space, according to [12] centroid of a Voronoi
region is obtained from the orthogonal projection onto the
manifold of its center of mass in the ambient space. Orthogo-
nal projection of any complex matrices to the Stiefel manifold

is given by the polar decomposition as recall in Section II-B.

A closed-form solution is already known for centroids in the
Grassmann manifold [28]. We remark that while the closed-
form Grassmannian centroid computation is usually proven
differently in the literature, it could also be derived fromthe
same argument, as the centroid corresponds to the closest
projection matrices of a given rank to the center of mass in
the ambient space of Hermitian matrices. We recall this result
below for consistency.

Remark 1. Given a Voronoi regionRk ⊂ GCnt,ns
and a

random sourceV on GCnt,ns
= VC

nt,ns
/Uns

⊂ C
nt×ns . Under

the mapping[Y] → YYH , [Y] ∈ GCnt,ns
, corresponds toV

an equivalent random variableV V H in the sample space of
nt × nt Hermitian matrices. Given the eigenvalue decompo-
sition of the center of massE

[

V V H | V ∈ Rk

]

= UkΛkU
H
k

with Λk = diag(λ1, . . . , λnt
) such thatλ1 ≥ . . . ≥ λnt

, a
centroid ofRk is

Zk = arg min
Z∈GC

nt,ns

E
[

d2g(V,Z) | V ∈ Rk

]

(24)

= [UkInt,ns
] (25)

whereUkInt,ns
correspond to the firstns columns ofUk.

Note that the solution to the centroid problem may not be
unique [12]. Also in practice, the source is realized by a finite
training set generated according to the distribution of interest,
the expectation is then approximated by an arithmetic mean.

3) Lloyd-type Algorithm for Joint Grassmann-Stiefel code-
book: A Lloyd-type algorithm to generate a low-distortion
Stiefel codebook conditioned on a Grassmann codebook is
summarized in Algorithm 1. Non-trivial differences as com-
pared to the conventional Lloyd’s algorithm can be seen in
Step 4). In each Voronoi cellRk of the Stiefel manifold,
the original codewordCk is not replaced by the computed
centroidZk. Instead, the algorithm is looking for the closest
codewordCi to the the centroidZk using Grassmann distance
rather than Stiefel distance. As a result, for each Voronoi cell
Rk, the updated codewordCi is not necessarilyCk. Then
Ci is replaced by the Stiefel representative in[Ci] closest to
Zk. Indeed, during a single iteration some codewords can be
updated several times and some others not at all. This occursin
particular in the first iterations. This phenomenon is related to
the non-trivial embedding of the Grassmannian into the Stiefel
manifold, and is crucial for convergence.

Algorithm 1 is illustrated in Fig. 5 for a toy scenario
of choosing the Stiefel representative of a real Grassmann
codebook inGR2,1. The Stiefel manifold in this case is the unit
circle S1, and the Grassmannian is the set of lines through
the origin in 2D, or pairs of antipodal points on a circle. At
Step 1) , the Stiefel representatives of the three Grassmannian
lines have been given in the right half circle. In Steps 2) and
3), the algorithm generates a random source and partitions the
Stiefel manifold based on a nearest neighbor rule. The Stiefel
Voronoi cells corresponding to these codewords are depicted
in blue, red and orange. Non-trivial differences as compared
to the conventional Lloyd’s algorithm can be seen in Step
4) where the algorithm sequentially computes a centroid and
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Algorithm 1 Lloyd-type algorithm on Stiefel manifold condi-
tioned on a Grassmannian codebook.

1) Initialization: Take Stiefel codebook C =
{C1, . . . ,Cncb

} ⊂ VC
nt,ns

, a representative of the
desired Grassmannian codebook.

2) Source: Generate random sourceV in VC
nt,ns

.
3) NN: Partition VC

nt,ns
in Voronoi cells {R1, . . . ,Rncb

}
according to (18) and (20) with Stiefel distanceds.

4) For all k perform the following

a) Centroid: Compute Stiefel centroidZk according to
Lemma 3.

i) Center of mass: Mk = E [V | V ∈ Rk].
ii) Polar decomposition:Mk = ZkPk.

b) Find the Grassmannian plane fromC closest toZk:

i = arg min
1≤l≤ncb

dg(Cl,Zk). (26)

c) Procrutes problem: Find rotation between the cen-
troid and the Stiefel matrix generating the closest
Grassmannian planeCi:

R = arg min
U∈Uns

ds(Zk,CiU). (27)

A solution is given by the polar decomposition of
CH

i Zk as discussed in Section II-B.
d) Update: Replace codewordi

Ci ← CiR (28)

5) Loop back to Step 2) until convergence.

updates a codeword. The centroid of the orange Voronoi cell is
depicted in a). It happens to be closer to the red Grassmannian
line than to the orange one as depicted in b). Thus in c)-d)
we update the Stiefel representative of the red line to this
centroid, not the representative of the orange line. Next, if we
consider the centroid of the red Voronoi region, we update the
representative of the orange line, whereas the centroid of the
blue region leads to the representative of the blue line being
fixed. As a consequence, we have found the optimum three-
element Grassmann-Stiefel packing in 5).

In Algorithm 1, the respective computation steps on Grass-
mann and Stiefel manifolds are clearly delineated. Note
that computation of the centroidZk is unnecessary, and
comparison can be directly done w.r.t. the center of mass:
Equation (26) is equivalent toi = argmin1≤l≤ncb

‖ClC
H
l −

MkM
H
k ‖F , and Equation (27) toR = argminU∈Uns

‖Mk−
CiU‖. Alternatively, the two exhaustive searches of Equa-
tions (26) and (27) could be done jointly as[i,R] =
argminl,U ‖Mk −ClU‖.

Simulation results show that the proposed algorithm con-
verges well as shown in Fig. 6 wherein the random source is
taken uniformly distributed. In Fig. 7, we compare the average
Grassmann and Stiefel distortions of codebooks generated in
three ways. As benchmarks, we generate Grassmann code-
books and Stiefel codebooks with their respective standard
Lloyd’s algorithms. These are compared to codebooks gen-
erated by cascading two numerical searches — first Lloyd’s

1) 2)-3)

k = ’orange’

Centroid
i = ’red’

Closest Grass. line Update ’red’

R

Converge to

a) b) c)-d)

4)

4)
k=’red’

k=’blue’

5)

Fig. 5. Illustration of Algorithm 1 with a codebook in real Grassmannian
GR
2,1 and real Stiefel manifoldVR

2,1
∼= S1.

algorithm is used to generate a minimum distortion Grassman-
nian codebook, then Algorithm 1 is used to generate a Stiefel
codebook conditioned on the found Grassmannian codebook.
The codebooks generated by the cascade of algorithms have
thus been numerically optimized to have both low Grassmann
and low Stiefel distortions. Random sources were simulated
with 2 · 104 trials; convergence was assessed when distortion
was fluctuating below a5 · 10−4 precision threshold, or if a
maximum of 30 iterations was reached. As it can be seen from
Fig. 7, conditioning the Stiefel codebook on a Grassmannian
one leads only to a minor loss in the Stiefel distortion except
when the cardinality is two. On the other hand, with standard
Grassmann and Stiefel Lloyd’s algorithms, one does not have
control on the distortion in the other space. The distortion
in the other space takes random values so we have plotted
an average over several codebooks. The resulting average
distortions are worse than the one obtained from the cascade
of algorithms. In the special casencb = 2, the average Stiefel
distortion is not improved from Algorithm 1, the optimum
Grassmannian codebook is generated by orthogonal Stiefel
matrices, fixing the Stiefel distance. On the other hand, an
optimum 2-point Stiefel codebook corresponds to two antipo-
dal points belonging to the same Grassmannian plane.

E. Maximum Distances Codebooks by Monte-Carlo Method,
and Brute-Force Search on Restricted Alphabet

In the previous section, we optimized the properties of
codebooks as quantizations on the manifolds. Here, we look
at the distance properties of codebooks as point sets on the
respective manifolds. Pertinent measures to optimize would
be maximizing the minimum distance or the average distance.
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the Grassmannian codebooks. Comparison is done with average distortions of
Grassmann and Stiefel codebooks from standard Lloyd’s algorithm.

We consider Monte Carlo simulations for maximization of the
minimum and/or average Stiefel distance of a Grassmannian
codebook. The search is performed by right-multiplicationof
the Stiefel codeword by Haar-distributed unitary matrices.

Unlike Lloyd’s algorithm, the search can be easily restricted
to additional constraints of interest. For example to decrease
the implementation complexity and storage at the receiver,
codebooks with a small finite number of entries have been
considered [26], [29]–[32]. In [26], it was found that maxi-
mizing the average distance may be a slightly better approach
for precoding codebook than maximum minimum distance.
Here, with a finite alphabet constraint, several codebooks may
lead to the same maximum minimum distance; choosing the
one maximizing the average distance tends to have slightly

TABLE I
2-BIT Square CodebookFOR 2TX ANTENNA AND MODIFIED CODEBOOK

MAXIMIZING STIEFEL DISTANCES.

Square CB 1√
2

{[

1

1

] [

1

−1

] [

1

i

] [

1

−i

]}

Stiefel-improved CB 1√
2

{[

1

1

] [

1

−1

] [

−1

−i

] [

−1

i

]}

Squared Grass. dist.
Squared Stief. dist.

Square CB Stiefel-improved CB

1

1 � 2

1 � 2

1 � 2 1

1 � 2
2

1

1

1

2

1

2

3

3

3

2

3

better performance.
In Table I, we give a Stiefel-improved version of the 2-

bit Square Codebook[26], which is related to the Mode
1 codebook of WCDMA [33] and the LTE codebook for
2-transmit antennas [32]. The modified version is obtained
by only changing the sign of the third and last codeword.
The squared Stiefel distances between the codewords of the
proposed codebook are either2 or 3, while for the original
codebook they were either1 or 2. This codebook has been
found by brute-force search over a QPSK alphabet for the three
last codewords. Furthermore, this is putatively the best Stiefel
codebook conditioned the Square Codebook. Monte Carlo
simulations over all possible phases suggest that it maximizes
the p−mean Stiefel distance forp = 1, 2,−1 and−2.

In Appendix B, we give another example of codebook
having small number of different entries. This codebook is an
optimum Grassmann Thomson (p-mean distance) and packing
(minimum distance) configuration, theTetrahedron Codebook,
with putatively optimum Stiefel-conditioned representatives
for Thomson and packing problem.

VI. CODEWORDSELECTION

For maximizing the information rate, the optimal method for
codeword selection is clearly to maximize the quantity inside
the expectation of (12) over all possible product codewords.
For single-rank transmission, this is equivalent to minimizing
the Grassmannian distance between the product codeword and
the right eigenspace of the channel. For higher-rank transmis-
sion, minimizing the Grassmann distance provides in practice
almost optimal performance, and asymptotical optimality with
increasing codebook size [2].

Optimum quantization of thenbsnt×ns channel eigenspace
requires exhaustive search over the product codebook of
cardinality nnbs

cb . This leads to exponential complexity w.r.t
the number of BSsO (nnbs

cb ). Complexity can be reduced
from O (nnbs

cb ) to O (nbsncb) by selecting per-cell compo-
nents rather than selecting jointly the product codeword [7],
[14]. In [7], a lower-complexity selection algorithm trading
performance against complexity is proposed, based on two
successive exhaustive searches of sizenbsncb andknbs , where
k is the cardinality of preselected per-cell sub-codebooks.
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Independent and serial selection are proposed for single-stream
beamforming in [14], [16].

Here, we discuss five different codeword selection principles
for multi-stream product codebooks. Two joint selection meth-
ods of complexityO (nnbs

cb ) are considered, followed by three
selections of complexityO (nbsncb). For non-unitary matrices
the distancesds anddg are defined in (3), (6) respectively.

a) Joint Codeword Selection:In joint selection [7], the
product codebook codeword minimizing

Wss = Qjs(Vss) = arg min
Cpr∈Cpr

dg(Cpr,Vss) (29)

is selected.
b) Joint Codeword Selection with Transformed Code-

book: Joint selection can be improved in case of path loss
imbalance [14] by borrowing the idea of transformed codebook
for spatially correlated channel [20]:

Wss = Qjs/tr(Vls) = arg min
Cpr∈Cpr

dg(GCpr,Vls). (30)

The two joint selection methods provide same performance
for G ∝ I.

c) Independent Grassmann Codeword Selection:As an
alternative, each single cell channel component could be
quantized independently [14]:

Wss,k = Qind(Vss,k) = argmin
C∈C

dg(C,Vss,k). (31)

This method leads to a loss of performance as it does not take
into account the phase ambiguity between the components of
the optimum precoding vector as recognized in [14], or the
more general unitary matrix ambiguity.

d) Independent Grassmann-Stiefel Codeword Selection:
In order to quantize the per-cell channel components indepen-
dently and efficiently, the unitary matrix ambiguity between
the different channels should be taken into account. We suggest
that first the strongest channel (with the largestαi) is quantized
using the Grassmannian distance

Wss,1 = Qind(Vss,1) = argmin
C∈C

dg(C,Vss,1) . (32)

The unitary rotation not seen by this Grassmannian codeword
selection can be found by performing the polar decomposition1

VH
ss,1Wss,1 = RP, whereR ∈ Uns

, and P is a positive-
semidefinite Hermitian matrix. The channels from the other
BSs, with the rotationR taken into account, are then quantized
using the Stiefel distance:

Wss,k = Qstief(Vss,k) = argmin
C∈C

ds(C,Vss,kR). (33)

To clarify the proposed codeword selection, one can write
the product codeword in terms of Stiefel component code-
wordsCpr = n−1/2

bs [CH
1 , . . . ,CH

nbs
]H , whereCk ∈ C. Given

the polar decomposition ofVH
ss,1C1 = RP, define the

polar decompositions(Vss,kR)HCk = UkPk for any k =
2, . . . , nbs. Joint codeword selection is done by minimizing
the Grassmannian chordal distancedg(Cpr,Vss), equivalent

1Or equivalently the left and right polar decompositions of the square matrix
W

H
ss,1Vss,1 = PR

H
= R

H
P

′.

to maximizing‖VH
ssCpr‖F over the possibleCpr ∈ Cpr. In

terms of component codewords, we have to maximize

‖
nbs
∑

k=1

VH
ss,kCk‖F = ‖RP+

nbs
∑

k=2

VH
ss,kCk‖F (34)

= ‖P+

nbs
∑

k=2

(Vss,kR)HCk‖F = ‖P+

nbs
∑

k=2

UkPk‖F . (35)

By minimizing the Grassmann chordal distance between the
first per-cell channel component and the per-cell codeword
dg(C1,Vss,1), this corresponds to maximizing‖VH

ss,1C1‖F =
‖P‖F , i.e. the norm of the first element of the sum of (35).
Intuitively, to maximize the norm of the sum of complex matri-
ces (35), we have to do two things. First, we have to maximize
each ‖Pk‖F , then we have to make eachUkPk collinear
with P, i.e. get theUk as close as possible to the identity
I. This is what (33) is producing by minimizing the Stiefel
distanceds(Ck,Vss,kR), which corresponds to maximizing
the inner product〈Ck,Vss,kR〉 = R(Tr[(Vss,kR)HCk]) =
R(Tr[UkPk]). As a consequence of Von Neumann’s trace
inequality [34], this is bounded above by〈Ck,Vss,kR〉 ≤
Tr[Pk], with equality if and only ifUk = I.

e) Serial Codeword Selection:This method borrows the
main idea of serial selection from [16], adapted here to
perform codeword selection with a transformed codebook in a
sequential manner. Without loss of generality, assume thatthe
channels are sorted so thatα1 ≥ . . . ≥ αnbs

. The strongest
channel (with the largestαi) is first quantized as in (32).
Then the per-cell components are selected sequentially. Ifthe
first (k − 1) per-cell codewords have been selected, thekth

codeword is

Wss,k = argmin
C∈C

dg(C1→k,Vls,1→k) (36)

whereC1→k =
[

α1W
H
ss,1, . . . , αk−1W

H
ss,k−1, αkC

H
]H

is
a concatenation of the previous chosen per-cell codewords
with thekth trial codeword taking into account the large-scale
channel components, andVls,1→k =

[

Iknt
0knt,(nbs−k)nt

]

Vls

is theknt × ns upper sub-matrix ofVls.

VII. S IMULATIONS

In this section, the codebook designs and codeword selec-
tions discussed are compared through numerical evaluationof
the spectral efficiency (12).

A. Comparison of Codebook Criteria

In Fig. 8, we compare the spectral efficiency with 2 cooper-
ative BSs using joint Grassmann-Stiefel codebooks construc-
tions described in Section V: low-distortion codebooks using
Lloyd-type Algorithm 1, and max-min distance codebooks
from Monte Carlo simulations.

The original per-cell Grassmannian codebooks are
constrained-alphabet constructions available from the
literature. Codewords are selected using joint selection.
We consider equal large scale path loss for each channel
which corresponds to the scenario where the MS is at the
cell edge, or a scenario where a product codebook is used
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low-complexity codebooks from [26], [29], [32], improved codebooks are
according to Section V.

for quantizing point-to-point arrays twice larger than the
component codebook.

Simulations are done for a 2-transmit and 1-receive antenna
system with the 2-bit Square Codebook given in Table I, and
the 3-bit Square Antiprism Codebook from [26]; for a 4-
transmit and 1-receive antenna system with the 4-bit codebook
from [32]; and for a 4-transmit and 2-receive antenna system
with the 4-bit C-Codebook from [29].

The figure shows that the max-min distance and low-
distortion criteria lead to a similar performance. Maximum
average distance codebooks from Monte Carlo simulations
also give similar performance. These have been left out from
the figure for clarity. The marginal gain between an original
codebook and its Stiefel-improved version depends on which
Stiefel representative is initially used for the Grassmanncode-
book. The spectral efficiency of the 2-bit improved codebook
reaches the performance of the non-improved 3-bit codebook,
giving a gain of 1 bit per BS. For 2-bit component codebooks,
the best product codebook performance can be reached using
the improved versions with finite alphabet shown in Table I
and Appendix B. Even if the Square Codebook is not an
optimal Grassmannian codebook, its Stiefel-improved version
reaches the same performance than as the Stiefel-improved
version of the Grassmann-optimal Tetrahedron Codebook
given in Appendix B. The performance of Tetrahedron Code-
book can be found in [35] and in Fig. 2.

B. Comparison Between Selection Methods

Figure 9 depicts the spectral efficiency of the proposed
schemes for 2 cooperative BSs with 2 Tx antennas and
the 2-bit Stiefel-improved Square Codebook of Table I; and
with 4 Tx antennas serving a 2 Rx antenna user with 4-bit
Stiefel-improved version by Algorithm 1 of the C-Codebook
from [29]. Also here, we consider equal large scale path loss
for each channel.
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Fig. 9. Performance of codewords selection methods. Spectralefficiency of
4 × 1 and 8 × 2 systems using2 × 1 and 4 × 2 codebooks respectively,
correponding to two cooperative BS serving a user at cell edge. Codebooks
with one feedback bit per transmit antenna.

Using Stiefel distance consequently improves performance
of independent selection. Serial selection offers slightly better
performance than independent Grassmannian-Stiefel selection.
Both independent Grassmannian-Stiefel selection and serial
selection perform close to joint selection. In [35], simulations
showing similar trends for 2 and 3 cooperative BSs with
2-bit Tetrahedron Codebook [26], and for 2 BSs with 3-
bit Square Antiprism Codebook [26] can be found. Stiefel-
improved codebooks lead to better performance compared to
original codebooks for all codeword selection methods except
independent selection with Grassmann distance.

C. Comparison for Large Scale Path Gain Imbalance

Figure 10 depicts the variation of performance when the
large scale path gain for the first and the second BS are
different. The lower curves represent two BSs with 2 Tx
antenna each, and the upper curves represent two 4-antenna
BSs. Same codebooks as in Fig. 9 are used. The graph can
be interpreted as the performance depending of the position
of the user, from the center of the cell to the cell edge.

The graph shows that the performance gap between the
joint selection and independent/serial selection first reduces
and then is reversed when the large scale path gain imbalance
grows. With imbalance, joint selection is not optimal anymore
as it quantizes the channel components with equal weight.
Transforming the codebook according to (30) mitigates this
problem, and gives the overall best selection method: matching
the performance of independent selections for large imbalance
and joint selection for no imbalance. When the user is at
the center of the first cellα2/α1 ≈ 0, independent selection
outperforms joint selection without codebook transformation,
agreeing with the results of [14]. Intuitively, in the limiting
case α2 = 0 when there is no cooperation and only a
single BS is transmitting, quantizing only the first channel
is enough, on the other hand joint transmission balances this
quantization with equal weight by a quantization of a zero-
gain second channel. Also, at this point, the performance of
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the independent selection methods merge which is justified
since the signal of the second BS vanishes.

VIII. CONCLUSION

We have considered product codebook quantization where
codewords from a single small point-to-point codebook are
concatenated to quantize larger MIMO channels, e.g. channels
from cooperative BSs. We have proposed a joint Grassmann-
Stiefel codebook design to remove the performance gap
between product codebook quantization and global Grass-
mannian quantization. We have investigated methods to con-
struct good Stiefel codebooks conditioned on Grassmannian
codebooks. A Lloyd-type algorithm on Stiefel manifold con-
ditioned on a given Grassmannian codebook is proposed,
as well as some closed-form examples of joint Grassmann-
Stiefel codebooks. For the Lloyd-type algorithm, a closed-
form solution to the centroid problem on the Stiefel manifold
was provided. Finally, we discussed low-complexity codeword
selection methods showing good performance.

APPENDIX

A. Illustrative Codebooks of Fig. 4

The following table gives the two alternative real Stiefel
codebooks inVR

3,1
∼= S2, both generating the same optimum

2-bit Grassmannian packing inGR3,1 , which is a set of 4
antipodal points forming a cube. The second alternative gives
a tetrahedron configuration which is an optimum packing in
the Stiefel manifoldVR

3,1
∼= S2.

Square 1√
3











1
1
1









1
−1
1









−1
1
1









−1
−1
1











Tetrahedron 1√
3











1
1
1









−1
1
−1









1
−1
−1









−1
−1
1











B. Tetrahedron Codebook inGC2,1
In the table below theTetrahedron Codebookfrom [26]

and an Stiefel-improved version of it are presented. The
Tetrahedron Codebook is an optimum Grassmannian packing,
and also an optimum Thomson configuration for several values
of p. Comparison to Monte Carlo simulations suggests that the
proposed Stiefel version below is the best Stiefel codebook
conditioned on the Tetrahedron Codebook according to many
metrics. It maximizes the Stiefel minimum distance andp-
mean distance for several values ofp, e.g.p = −1,−2, 1, 2.
Nevertheless, this is not an optimum unconditioned Stiefel
codebook. The optimum Stiefel codebook is a simplex with
squared distance83 ≈ 2.67, while the conditioned code-
book achieves a squared minimum Stiefel distance of 2.
The codebook is written in term of the following constants:
α±=

√

1
6 (3±

√
3) and γ±=e±i π

4 = 1±i√
2

.

Codebook in [26]

{[

α+

α−

] [

α+

−α−

] [

α−
iα+

] [

α−
−iα+

]}

Grass-Stief CB

{[

α+

α−

] [

−α+

α−

] [

γ+α−
−γ−α+

] [

γ−α−
−γ+α+

]}

Squared Grass. dist.
Squared Stief. dist.

CB in [26] Grass-Stief CB
2 � 3

2 � 3

2 � 3

2
� 3

2 � 3

2 � 3

c

a

a

a

d

a

a = 2- 2�3
» 1.18

c » 0.85

= 2- 2� 3

d » 3.15

= 2+ 2� 3

d

d

d

2

2

2

d = 2+ 2�,3

» 3.15
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