
2

Binary Subspace Chirps
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Abstract—We describe in detail the interplay between binary
symplectic geometry and notions from quantum computation,
with the ultimate goal of constructing highly structured code-
books. The Binary Chirps (BCs) are Complex Grassmannian
Lines in N = 2m dimensions used in deterministic compressed
sensing and random/unsourced multiple access in wireless net-
works. Their entries are fourth roots of unity and can be de-
scribed in terms of second order Reed-Muller codes. The Binary
Subspace Chirps (BSSCs) are a unique collection of BCs of ranks
ranging from r = 0 to r = m, embedded in N dimensions
according to an on-off pattern determined by a rank r binary
subspace. This yields a codebook that is asymptotically 2.38 times
larger than the codebook of BCs, has the same minimum chordal
distance as the codebook of BCs, and the alphabet is minimally
extended from {±1,±i} to {±1,±i, 0}. Equivalently, we show
that BSSCs are stabilizer states, and we characterize them as
columns of a well-controlled collection of Clifford matrices. By
construction, the BSSCs inherit all the properties of BCs, which
in turn makes them good candidates for a variety of applications.
For applications in wireless communication, we use the rich
algebraic structure of BSSCs to construct a low complexity
decoding algorithm that is reliable against Gaussian noise. In
simulations, BSSCs exhibit an error probability comparable or
slightly lower than BCs, both for single-user and multi-user
transmissions.

I. INTRODUCTION

Codebooks of complex projective (Grassmannian) lines, or
tight frames, have found application in multiple problems
of interest for communications and information processing,
such as code division multiple access sequence design [2],
precoding for multi-antenna transmissions [3] and network
coding [4]. Contemporary interest in such codes arise, e.g.,
from deterministic compressed sensing [5]–[9], virtual full-
duplex communication [10], mmWave communication [11],
and random access [12].

One of the challenges/promises of 5G wireless commu-
nication is to enable massive machine-type communications
(mMTC) in the Internet of Things (IoT), in which a mas-
sive number of low-cost devices sporadically and randomly
access the network [13]. In this scenario, users are assigned
a unique signature sequence which they transmit whenever
active [14]. A complementary use-case is unsourced multiple
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access, where a large number of messages is transmitted
infrequently. Polyanskiy [13] proposed a framework in which
communication occurs in blocks of N channel uses, and
the task of a receiver is to identify correctly L active users
(messages) out of 2B , with one regime of interest being
N = 30, 000, L = 250, and B = 100. Ever since its
introduction, there have been several follow-up works [12],
[15]–[18], extensions to a massive MIMO scenario [19] where
the base station has a very large number of antennas, and a
discussion on the fundamental limits on what is possible [20].

Given the massive number of users/messages to-be-
supported, the design criteria are fundamentally different from
classical multiple-access channel, and solutions have to be
sought for from novel directions. For instance, interference is
unavoidable due to the high number of users. Moreover, due
to the randomness in channel access, the level of interference
varies from instance to instance. As the transmissions are of
initial access type, phase coherence or instantaneous power
control cannot be assumed. Thus, the challenge becomes to
design highly structured codebooks of large cardinality, subject
to invariance with respect to absolute phase and amplitude,
along with a reliable and low-complexity multi-user decoding
algorithm.

Codebooks of Binary Chirps (BCs) [6], [21] provide such
highly structured Grassmannian line codebook in N = 2m

dimensions with additional desirable properties. All entries
come from a small alphabet, being a fourth root of unity,
and can be described in terms of second order Reed-Muller
(RM) codes. RM codes have the fascinating property that
a Walsh-Hadamard measurement cuts the solution space
in half. This yields a single-user decoding complexity of
O(N log2N), coming from the Walsh-Hadamard transform
and number of required measurements. Additionally, the num-
ber of codewords is reasonably large, growing as 2m(m+3)/2 =√
N

3+log2 N
, while the minimum chordal distance is 1/

√
2.

In this paper, we expand the BC codebook to the codebook
of Binary Subspace Chirps (BSSCs) in N = 2m dimensions
by collectively considering all BCs in S = 2r dimensions for
r = 0, . . . ,m. That is, given a BC in S = 2r dimensions, we
embed it in N = 2m dimensions via a unique on-off pattern
determined by a rank r binary subspace. Thus, a BSSC is
characterized by a sparsity r, a BC part parametrized by a
binary symmetric matrix Sr ∈ Sym(r; 2) and a binary vector
b ∈ Fm

2 , and a unique on-off pattern parametrized by a rank r
binary subspace H ∈ G(m, r; 2). Thus, an active device with
a rank r signature will transmit α/

√
2r, α ∈ {±1,±i} during

time slots determined by the rank r subspace H , and it will be
silent otherwise. This resembles the model of [10], in which
active devices can also be used (to listen) as receivers during
the off-slots. The codebook of BSSCs inherits all the desirable
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Figure 1. Interplay of binary world and complex world. The interplay detailed in this
paper, which is then used in the low-complexity decoding algorithm of BSSCs, is

depicted in green.

properties of BCs, and in addition, it has asymptotically about
2.384 more codewords.

Given the structure of BSSCs, a unified rank, on-off pattern,
and BCs part (in this order) estimation technique is needed.
In [22], a reliable on-off pattern detection was proposed,
which made use of a Weyl-type transform [23] on m qubit
diagonal Pauli matrices. The algorithm can be described with
the common language of symplectic geometry and quantum
computation. We show that BSSCs are common eigenvectors
of maximal sets of commuting Pauli matrices, commonly
referred in literature as stabilizer groups. In this way BSSCs
constitute nothing else but a parametrization of stabilizer
states. While there are other known parametrizations, e.g. [24],
the parametrization of this paper is derived in such a way that
it can be leveraged to a low-complexity decoding algorithm.
The key insight will be to decode a BSSC by estimating the
corresponding unique maximal stabilizer that stabilizes it. In
particular, we show that each BSSC is a column of a unique
Clifford matrix (99), which itself is the common eigenspace
of a unique stabilizer group (110); see also Theorem 3. The
interplay between the binary world and the complex world is
depicted in Figure 1.

Making use of these structural results, the on-off pattern
detection of [22] can be generalized to recover the BC part of
the BSSC, this time by using the Weyl-type transform on the
off-diagonal part of the corresponding stabilizer group. This
yields a single-user BSSC reconstruction as described in Algo-
rithm 2. In [1], we added Orthogonal Matching Pursuit (OMP)
to obtain a multi-user BSSCs reconstruction (see Algorithm 3)
with reliable performance when there is a small number of
active users. As the number of active users increases, so does
the interference, which has a quite destructive effect on the
on-off pattern. However, state-of-the-art solutions for BCs [9],
[18], [25] such as slotting and patching, can be used to reduce

the interference. Preliminary simulations show that BSSCs
exhibit a lower error probability than BCs. This is because
BSSCs have fewer closest neighbors on average than BCs.
In addition, BSSCs are uniformly distributed over the sphere,
which makes them optimal when dealing with Gaussian noise.

Throughout, the decoding complexity is kept at bay by
exploiting the underlying symplectic geometry. The sparsity,
the BC part, and the on-off pattern of a BSSC can be described
in terms of the Bruhat decomposition (31) of a symplectic
matrix. Indeed, the unique Clifford matrix (99) of which
a BSSC is a column, is parametrized by a coset represen-
tative (33) as described in Lemma 1. In turn, such coset
representative determines a unique stabilizer group (110). We
use this interplay to reconstruct a BSSC by reconstructing the
stabilizer group that stabilizes the given BSSC. This alone
reduces the complexity from O(N2) to O(N log2N).

The paper is organized as follows. In Section II we
formulate the problem and motivate the solution approach.
In Section III we review the basics of binary symplectic
geometry and quantum computation. In order to obtain a
unique parametrization of BSSCs, we use Schubert cells
and the Bruhat decomposition of the symplectic group. In
Section III-D we lift the Bruhat decomposition of the sym-
plectic group to obtain a decomposition of the Clifford group.
Additionally, we parametrize those Clifford matrices whose
columns are BSSCs. In Section IV we give the formal def-
inition of BSSCs, along with their algebraic and geometric
properties. In Sections V and VI we present reliable low com-
plexity decoding algorithms, and discuss simulation results.
We end the paper with some conclusions and directions future
research.

A. Main Contributions

We have extended the codebook of binary chirps to the
codebook of binary subspace chirps which is asymptotically
2.38 times bigger and has the same minimum chordal distance
as stated in Theorem 1. In Corollary 1 we show that binary
subspace chirps are precisely the collection of stabilizers
states, which in turn immediately makes them a non-Abelian
group code with a faithful representation in N dimensions. Of
prime interest is the corresponding unique maximal stabilizer
as described in Theorem 3. We use the underlying group
structure to generalize the algorithm of [6] to a BSSC setting
without significantly increasing the complexity. We argue that
binary subspace chirps constitute good candidates in a variety
of IoT applications such as random access, unsourced access,
and neighbor discovery.

B. Conventions

All vectors, binary or complex, will be columns. F2 denotes
the binary field, GL(m; 2) denotes the group of binary m×m
invertible matrices, and Sym(m; 2) denotes the group of
binary m ×m symmetric matrices. We will denote matrices
(resp., vectors) with upper case (resp., lower case) bold letters.
AT will denote the transpose and A−T will denote the inverse
transposed. cs (A) and rs (A) will denote the column space
and the row space of A respectively. Since all our vectors are
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Figure 2. Massive Random Access

columns, we will typically deal with column spaces, except
when we work with notions from quantum computation,
where row spaces are customary. Im will denote the m ×m
matrix (complex or binary). G(m, r; 2) ∼= GL(m; 2)/GL(r; 2)
denotes the binary Grassmannian, that is, the set of all r-
dimensional subspaces of Fm

2 . U(N) denotes the set of unitary
N × N complex matrices and † will denote the conjugate
transpose of a matrix.

II. PROBLEM FORMULATION AND SOLUTION APPROACH

A. System model

We consider a dense network of M single antenna low-cost
sensors/users spread out in a cell covered by a base station.
Each sensor becomes active randomly and sporadically, during
which it transmits its signature, or an information carrying
message, to the base station in blocks of N channel uses. We
assume that the users are synchronized to the base station,
and that the channels are frequency flat. The overall number
of users is massive; M � N . Whenever active, user u will
transmit its signature su ∈ CN . During a given communication
event, a random selection of L users is simultaneously active,
with signatures or messages indexed by u`, ` = 1, . . . , L. The
base station then receives

s =

(
L∑

`=1

c`su`

)
+ n, c` ∈ C,n ∈ CN , (1)

where c` denotes the complex channel coefficient between user
u` and the base station, n is Additive White Gaussian Noise
(AWGN) and each user obeys the power constraint ‖su‖ = 1.
Two related problems can be formulated as follows.

Problem 1. Determine the set of active users/their messages
{u1, . . . , uL} given s.

Problem 2. Design a codebook C = {s1, . . . , sM} ⊂ CN that
reliably solves Problem 1 with low complexity.

In simulations we assume to know the number L of active
users at any given time, and the error probability of single

user transmission is estimated as

pu = 1− number of users decoded correctly
total number of active users

. (2)

The performance of a codebook C = {si}Mi=1 ⊂ CN is
governed by the worst-case coherence µ(C) = maxi6=j |s†isj |,
or equivalently by the minimum chordal distance δc(C) =√

1− µ2(C). Thus, we are seeking for a very large number
of unit vectors in CN that are sufficiently separated. As the
users are not phase coherent, codewords are not separated by
phase, and thus we are interested in equivalence classes of
unit vectors, up to U(1) rotations, i.e. complex projective lines
in CPN−1, or equivalently, Grassmannian lines in GC(N, 1).
Given the very large number of total users M that we would
want to support, the codebook C of signatures must be highly
structured, so that low-complexity decoding algorithms are
feasible. One such codebook, shown to be successful in theory
and practice, is the codebook of Binary Chirps (BCs) [6], [21],
defined as follows. Fix a natural number m and put N = 2m.
For a binary vector b ∈ Fm

2 and binary symmetric matrix
S ∈ Sym(m; 2) define

C(m) = {wb,S}b,S , wb,S(a) =
1√
N
ia

TSa+2bTa mod 4.

(3)
A time-slot n ∈ {1, . . . , N} is indexed as a binary vector
a(n) ∈ Fm

2 of length m. Thus, during time-slot n, an active
user will transmit the corresponding symbol wb,S(a(n)) of its
signature wb,S. To simplify the notation, we will drop the
superscript. The number of signatures/codewords is

|C(m)| = 2m · 2m(m+1)/2 =
√
N

3+log2 N
, (4)

while the minimum chordal distance is 1/
√

2; see (9). In [6],
the authors leverage the structure of BCs to construct a
low-complexity decoding algorithm. They use the so-called
shift and multiply technique in conjunction with the Walsh-
Hadamard transform.

B. Generalizing BCs to BSSCs

We aim to further leverage the structure of BCs, by ex-
tending them to a larger codebook, while preserving the main
algebraic and geometric features so that a low-complexity
algorithm for the extended codebook remains feasible. For this,
we use the guiding principles of [10], in which an active user
transmits only on K ≤ N time-slots. This creates an on-off
pattern of time-slots. We assume that the on-pattern forms a
binary subspace of Fm

2 of dimension/rank 0 ≤ r ≤ m, that is,
an active user transmits only during time-slots indexed by a
binary subspace. Given the power constrain of each user, the
dimension of the on-pattern, can also be used to prioritize users
based on their distance from the base station. Now, given an
on-pattern, characterized by a binary subspace H ∈ G(m, r; 2)
of dimension r, an active user will transmit a 2r-dimensional
binary chirp characterized by b̃ ∈ Fr

2, S̃ ∈ Sym(r; 2). This
strategy creates a codebook C(r) = {wb̃,S̃} of 2r-dimensional
binary chirps to be distributed to users that, when active,
transmit on time-slots indexed by H . As we will see, however,
transmitting on a coset of H is just as good as transmitting on
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H itself. Since there are 2m−r different cosets of H , we can
keep track of every single option with a vector b̂ ∈ Fm−r

2 . This

suggest to think of a vector b ∈ Fm
2 as b =

[
b̃

b̂

]
∈ Fr

2×Fm−r
2 ,

the first r bits of which are used to define a 2r-dimensional
binary chirp and the last m− r bits of which are used to keep
track of the coset of H . The concise method for keeping track
of cosets will use Schubert Cells as described in Section III-A,
and will be detailed in Section IV. Note that, since cosets are
disjoint, so are the 2m−r on-patterns determined by H .1 Thus,
combining all together, we obtain a codebook C(r)H = {wb,S̃},
for which |C(r)H | = 2m · 2r(r+1)/2. The codebook of Binary
Subspace Chirps (BSSCs) is defined as

VBSSC =

m⋃
r=0

⋃
H∈G(m,r;2)

C(r)H . (5)

We will have a running example that illustrates all the struc-
tural the details. But first, to compute the size of the extended
codebook, we recall that the size of the binary Grassmannian
is given by the 2-binomial coefficient, that is

|G(m, r; 2)| =
(
m

r

)
2

=

r−1∏
i=0

1− 2m−i

1− 2i+1
, (6)

and hence, the cardinality of our extended codebook is

|VBSSC| = 2m ·
m∑
r=0

2r(r+1)/2 ·

(
r−1∏
i=0

1− 2m−i

1− 2i+1

)
(7)

= 2m ·
m∏
r=1

(2r + 1), (8)

where the last equality is simply the 2-binomial theorem [26].
Recall Slepian’s definition of group codes [27]; a group code

is a code generated as the orbit of a generating vector v under
the action of a finite group G; C = {w = Gv | G ∈ G}. Group
codes are efficient for constructing tight frames/Grassmannian
line codebooks [28].

The main coding-related characteristics of the extended
codebook VBSSC are the following.

Theorem 1. We have δc(VBSSC) = δc(C(m)) = 1/
√

2 and
|VBSSC|/|C(m)| ≈ 2.384. Additionally, VBSSC is a group code
of the Clifford group.

Proof. Fix a binary chirp w1 ∈ VBC parametrized by
S1 ∈ Sym(m; 2), and let w2 range among 2m binary chirps
parametrized by S2 ∈ Sym(m; 2). Then [6], [29], [30]

|w†1w2|2 =

{
1/2r, 2r times,
0, 2m − 2r times,

(9)

where r = rank (S1 − S2). It follows immediately that
|w†1w2| ≤ 1/

√
2, and thus δc(C(m)) = 1/

√
2. Next, let

w1,w2 ∈ VBSSC. By Theorem 4 we have two cases: either (1)
the on-patterns don’t overlap in which case we have |w†1w2| =

1This important feature can be further leveraged by the network. Namely,
a user can receive/listen during the off-pattern, and if neighboring users
are assigned to have disjoint on-patterns, this can be used for neighbour
discovery [9].

0 and δc(w1,w2) = 1, or (2) the on-patterns overlap in which
case the overlap is again a binary chirp of some lower rank. In
the latter case (9) still applies and δc(VBSSC) = 1/

√
2 follows.

The statement relating the cardinalities is a combination of (4)
and (8). Finally, by Corollary 1, VBSSC is the collection of all
stabilizer states, which in turn is the orbit of e0 under the
action of the Clifford group. �

BSSCs thus provide an appealing example of a non-Abelian
group code with a faithful representation in N dimensions.
As we shall see, the group structure enables low-complexity
decoding.

1) Decoding BSSCs: While Theorem 1 points out a clear
coding gain, as mentioned, for our specific use-case, a low
complexity decoding algorithm is of prime interest. The ex-
tension of BCs to BSSCs is done in such a way that we can still
leverage the decoding algorithm of [6]. Within this extended
codebook, a decoding algorithm should be able to identify/re-
construct bu ∈ Fm

2 ,Su ∈ Sym(r, 2), and Hu ∈ G(m, r; 2) for
each active user u. The heavy task of the decoding algorithm
is to identify the on-off pattern characterized by Hu, which we
then tune-in with the BC decoding algorithm of [6] to identify
bu and Su. The case when there is a single active user at any
given time was considered in [22].

As it turns out, even though our construction is purely
motivated by a communication scenario, it leads to well-
known notions in quantum computing. The first tell is that
BCs are exactly the so-called graph states. The second tell
is (8), which hints strong connections with stabilizer states,
and in fact, as we will see, BSSCs are precisely stabilizer
states. Our strategy is to decode a BSSC by identifying
the maximal stabilizer group that stabilizes it. For this, one
will need a well-behaved one-to-one correspondence2 between
stabilizer states and maximal stabilizers that clearly separates
the “chirp part” and the “on-off pattern part”. To establish
this one-to-one correspondence we use Schubert cells and
cosets of the binary symplectic group Sp(m; 2). We leverage
this connection, and its underlying binary structure, to decode
a BSSC by identifying the stabilizer group that stabilizes it.

III. PRELIMINARIES

In this section we will introduce all preliminary notions
needed for navigating the connection between the 2m dimen-
sional binary world and the 2m dimensional complex world,
as depicted in Figure 1. The primary bridge used here is the
well-known homomorphism (71) between the Clifford and
symplectic binary groups, and the Bruhat decomposition of
the symplectic group. We focus on cosets of the symplectic
group modulo the semidirect product GL(m; 2)oSym(m; 2).
In the complex world, this semidirect product corresponds to
column permutations and column rotations. We are interested
in codebooks of Grassmannian lines, and we shall construct
them from columns of Clifford group elements. Column
permutations and rotations thus do not change the codebook,
the cosets are sufficient for constructing all unique codewords.

2A stabilizer state is stabilized by several maximal stabilizer groups, but
because we are interested in decoding (complexity), a well-behaved canonical
form is a must. See also the discussion proceeding Theorem 3.
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The cosets are characterized by a rank r = 0, . . . ,m and
a binary subspace H ∈ G(m, r; 2), which we will think of
as the column space of an m × r binary matrix in column
reduced echelon form. We will use Schubert cells as a formal
and systematic approach. This also provides a framework for
describing well-known facts from binary symplectic geometry
(e.g., Remark 4). Finally, Subsection III-C discusses common
notions from quantum computation.

A. Schubert Cells

Here we discuss the Schubert decomposition of the Grass-
mannian G(m, r; 2) with the respect to the standard flag

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vm, (10)

where Vi = span{e1, . . . , ei} and {e1, . . . , em} is the standard
basis of Fm

2 . Fix a set of r indices I = {i1, . . . , ir} ⊂
{1, . . . ,m}, which, without loss of generality, we assume to be
in increasing order. The Schubert cell CI is the set of all m×r
matrices that have 1 in leading positions (ij , j), 0 on the left,
right, and above each leading position, and every other entry
is free. This is simply the set of all binary matrices in column
reduced echelon form with leading positions I. By counting
the number of free entries in each column one concludes that

dim CI =

r∑
j=1

(m− ij)− (r − j). (11)

Fix H ∈ G(m, r; 2), and think of it as the column space
of a m× r matrix H. After column operations, it will belong
to some cell CI . To emphasize this fact, we will denote it as
HI .

Schubert cells have a well-known duality theory which we
outline next. Let H̃I be such that (HI)TH̃I = 0. Of course
cs (H̃I) ∈ G(m,m − r; 2). Let Ĩ := {1, . . . ,m} \ I and
put C̃I := {H̃I | HI ∈ CI}. There is a bijection between
{C̃I}|I|=r and {CJ̃ }|J |=r, realized by reverting the rows and
columns of H̃I and by identifying the set J̃ = {i1, . . . , im−r}
with its image under the mapping A → Â = {m+1−a | a ∈
A}. With this identification, we will denote HĨ the unique
element of cell CĨ that is equivalent with H̃I , obtained by
reverting the rows and columns of H̃I :

HĨ = Pad,mH̃IPad,m−r, (12)

where Pad is the antidiagonal matrix in respective dimensions.
Each cell has a distinguished element: II ∈ CI will denote

the identity matrix Im restricted to I, that is, the unique
element in CI that has all the free entries 0. Note that II
has as jth column the ij th column of Im, and thus its non-
zero rows form Ir. In particular if |I| = m then II = Im. We
also have IĨ ∈ CĨ . With this notation one easily verifies that

(II)THI = Ir, (II)TIĨ = 0, (H̃I)T IĨ = Im−r. (13)

In addition, HI can be completed to an invertible matrix

PI :=
[
HI IĨ

]
∈ GL(m; 2). (14)

Note that when II is completed to an invertible matrix it gives
rise to a permutation matrix. Next, (13) along with the default

equality (HI)TH̃I = 0 implies that

P−TI =
[

II H̃I

]
. (15)

Let us describe this framework with an example.

Example 1. Let m = 3 and r = 2. Then

C{1,2} =

 1 0
0 1
u v

, C̃{1,2} =

uv
1

, C{̂3} ∼= C{1} =

 1
v
u

,
C{1,3} =

 1 0
u 0
0 1

, C̃{1,3} =

u1
0

, C{̂2} ∼= C{2} =

 0
1
u

,
C{2,3} =

 0 0
1 0
0 1

, C̃{2,3} =

 1
0
0

, C{̂1} ∼= C{3} =

 0
0
1

.
Let us spell out I = {1, 3} in detail. The set CI is constructed
directly by definition, that is, in column reduced echelon form
with leading positions 1 and 3, while C̃I is constructed so that
(HI)TH̃I = 0. Then we revert the rows and columns (only
rows in this case) to obtain the last object where we identify3

{2} = {̃1, 3} with {̂2} ≡ {2}.
In this case, as we see from above, there is only one

free bit. This yields two subspaces/matrices HI , which when
completed to an invertible matrix as in (14) yield

Pu=0 =

 1 0 0
0 0 1
0 1 0

 , Pu=1 =

 1 0 0
1 0 1
0 1 0

 . (16)

Then one directly computes

P−Tu=0 =

 1 0 0
0 0 1
0 1 0

 , P−Tu=1 =

 1 0 1
0 0 1
0 1 0

 . (17)

Compare (17) with (15); the first two columns are obviously
II , whereas the last column is precisely C{̂2} ≡ C{2} with
rows reverted. Note here that when all the free bits are zero
then the resulting P is simply a permutation matrix, and in
this case P−T = P.

B. Bruhat Decomposition of the Symplectic Group
We first briefly describe the symplectic structure of F2m

2 via
the symplectic bilinear form

〈a,b | c,d 〉s := bTc + aTd. (18)

One is naturally interested in automorphisms that preserve
such symplectic structure. It follows directly by the definition
that a 2m× 2m matrix F preserves 〈 • | • 〉s iff FΩFT = Ω
where

Ω =

[
0m Im
Im 0m

]
. (19)

We will denote the group of all such symplectic matrices F
with Sp(2m; 2). Equivalently,

F =

[
A B
C D

]
∈ Sp(2m; 2) (20)

3In this specific case there is no need for identification, but this is only a
coincidence. For different choices of I one needs a true identification.
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iff ABT,CDT ∈ Sym(m; 2) and ADT + BCT = Im. It is
well-known that

|Sp(2m; 2)| = 2m
2

m∏
i=1

(4i − 1). (21)

Consider the row space H := rs [A B] of the m × 2m
upper half of a symplectic matrix F ∈ Sp(2m; 2). Because
ABT is symmetric one has [A B]Ω[A B]T = 0 and thus
〈x |y 〉s = 0 for all x,y ∈ H . We will denote ( • )⊥s the dual
with respect to the symplectic inner product (18). It follows
that H ⊆ H⊥, that is, H is self-orthogonal or totally isotropic.
Moreover, H is maximal totally isotropic because dimH = m
and thus H = H⊥. The set of all self-dual/maximal totally
isotropic subspaces is commonly referred as the Lagrangian
Grassmannian L(2m,m; 2) ⊂ G(2m,m; 2). It is well-known
that

|L(2m,m)| =
m∏
i=1

(2i + 1). (22)

For reasons that will become clear latter on we are interested
in decomposing symplectic matrices into more elementary
symplectic matrices, and we will do this via the Bruhat
decomposition of Sp(2m; 2). While the decomposition holds
in a general group-theoretic setting [31], here we give a rather
elementary approach; see also [32]. We start the decomposition
by writing

Sp(2m; 2) =

m⋃
r=0

Cr, (23)

where

Cr =

{
F =

[
A B
C D

]
∈ Sp(2m; 2)

∣∣∣∣ rank C = r

}
. (24)

In Sp(2m; 2) there are two distinguished subgroups:

SD :=

{
FD(P) =

[
P 0
0 P−T

] ∣∣∣∣ P ∈ GL(m; 2)

}
, (25)

SU :=

{
FU (S) =

[
I S
0 I

] ∣∣∣∣ S ∈ Sym(m; 2)

}
. (26)

Let P be the semidirect product of SD and SU , that is,

P = {FD(P)FU (S) | P ∈ GL(m; 2),S ∈ Sym(m; 2)}.
(27)

Note that the order of the multiplication doesn’t matter since
the semidirect product satisfies

FD(P)FU (S) = FU (PSPT)FD(P), (28)

and PSPT is again symmetric. It is straightforward to verify
that P = C0, and that in general

Cr = {F1FΩ(r)F2 | F1,F2 ∈ P}, (29)

where
FΩ(r) =

[
Im|−r Im|r
Im|r Im|−r

]
, (30)

with Im|r being the block matrix with Ir in upper left corner
and 0 else and Im|−r = Im−Im|r. Note here that Ω = FΩ(m)
and ΩFΩ(r)Ω = FΩ(m − r). Then it follows by (29) (and

by (28)) that every F ∈ Sp(2m; 2) can be written as

F = FD(P1)FU (S1)FΩ(r)FU (S2)FD(P2). (31)

The above constitutes the Bruhat decomposition of a symplec-
tic matrix; see also [1], [33].

Remark 1. It was shown in [34] that a symplectic matrix F
can be decomposed as

F = FD(P1)FT
U (S1)ΩFΩ(r)FU (S2)FD(P2). (32)

If we, instead, decompose ΩF as in (32) and insert Ω2 = I2m
between FD(P1) and FT

U (S1), we see that (32) is reduced
to (31). This reduction from a seven-component decomposition
to a five-component decomposition is beneficial in quantum
circuits design [33], [35].

In what follows we will focus on the right action of P
on Sp(2m; 2), that is, the right cosets in the quotient group
Sp(2m; 2)/P . It is an immediate consequence of (31) and (28)
that a coset representative will look like

FD(P)FU (S)FΩ(r), (33)

for some rank r, invertible P, and symmetric S. However, two
different invertibles P may yield representatives of the same
coset. We make this precise below.

Lemma 1. A right coset in Sp(2m; 2)/P is uniquely charac-
terized by a rank r, an r× r symmetric matrix Sr ∈ Sym(r),
and a r-dimensional subspace H in Fm

2 .

Proof. Write a coset representative F as in (33). This imme-
diately determines r. Next, write S in a block form

S =

[
Sr X
XT Sm−r

]
, (34)

where Sr,Sm−r are symmetric. Denote S̃r, Ŝm−r ∈
Sym(m; 2) the matrices that have Sr and Sm−r in upper left
and lower right corner respectively and 0 otherwise. Put also

X̃ =

[
Ir 0
XT Im−r

]
. (35)

With this notation we have

FU (S)FΩ(r) = FU (S̃r)FΩ(r)FU (Ŝm−r)FD(X̃). (36)

In other words FU (S)FΩ(r) and FU (S̃r)FΩ(r) belong to the
same coset. Now consider an invertible

P̃ =

[
Pr 0
0 Pm−r

]
. (37)

It is also straightforward to verify that

FU (S̃r)FΩ(r)FD(P̃) = FU (S̃r)FD(P̂)FΩ(r)

= FD(P̂)FU (P̂−1S̃rP̂
−T)FΩ(r),

where
P̂ =

[
P−Tr 0

0 Pm−r

]
, (38)

and the second equality follows by (28). Thus
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FD(P1)FU (S1)FΩ(r), where

P1 := PP̂, S1 := P̂−1S̃rP̂
−T (39)

represents the same coset. Note that the transformation (39)
doesn’t change the column space C (that is, the lower left
corner of F), which is an r-dimensional subspace in Fm

2 . �

Next, using Schubert we cells will choose a canonical coset
representative. We will use the same notation as in the above
lemma. Let r and S̃r be as above. To choose P, think of the r-
dimensional subspace H from the above lemma as the column
space of a matrix H, which belongs to some Schubert cell CI .
We will use the coset representative

FO(PI ,Sr) := FD(PI)FU (S̃r)FΩ(r), (40)

where PI is as in (14).
Let F ∈ Sp(2m; 2) be in block from as in (20), and assume

it is written as

F = FD(P−T)FU (S̃r)FΩ(r)FD(M)FU (S). (41)

Multiplying both sides of (41) on the left with FD(PT) and on
the right with FU (S), and then comparing respective blocks
we obtain

PTA = (S̃r + Im|−r)M, (42)

PTAS = PTB + Im|rM
−T, (43)

P−1C = Im|rM, (44)

P−1CS = P−1D + Im|−rM
−T, (45)

which we can solve for M, S̃r and S, while assuming that we
know F (and implicitly P which can be determined by the
column space of the lower-left block of F). First we find M.
For this, recall that S̃r has nonzero entries only on the upper
left r×r block. Thus, it follows by (42) that the last m−r rows
of M coincide with the last m − r rows of PTA. Similarly,
it follows from (44) that the first r rows of M coincide with
the first r rows of P−1C. With M in hand we have

S̃r = PTAM−1 + Im|−r. (46)

By using (44) in (45) we see that the first r rows of MS
coincide with first r rows of P−1CS. Similarly, by using (42)
in (43), we see that the last m − r rows of MS coincide
with the last m− r rows of PTAS. Multiplication with M−1

yields S. We collect everything in Algorithm 1, which gives
not only the Bruhat decomposition but also a canonical coset
representative.

We end this section with a few remarks.

Remark 2. One can follow an analogous path by considering
left action of P on Sp(2m; 2). This follows most directly by
the observation that if F = FD(P)FU (S)FΩ(r) is a right
coset representative then F−1 = FΩ(r)FU (S)FD(P−1) is a
left coset representative.

Remark 3. Note that for the extremal case r = m, a
coset representative as in (40) is completely determined by
a symmetric matrix S ∈ Sym(m; 2), since in this case, as one
would recall, PI = II = Im.

Algorithm 1 Bruhat Decomposition of Symplectic Matrix
Input: A symplectic matrix F.

1. Block decompose F to A,B,C,D as in (20).
2. r = rank (C).
3. Find P as in (14) from cs (C).
4. Mup is the first r rows of P−1C.
5. Mlo is the last m− r rows of PTA.

6. M =

[
Mup

Mlo

]
.

7. S̃r = PTAM−1 + Im|−r.
8. Sr is the upper left r × r block of S̃r.
9. Nup is the first r rows of P−1D + Im|−rM

−T.
10. Nlo is the last m− r rows of PTB− Im|rM

−T.

11. S = M−1
[

Nup

Nlo

]
.

Output: r,P,Sr,M,S

Remark 4. Directly from the definition we have

|P| = |GL(m; 2)| · |Sym(m; 2)| = 2m
2

m∏
i=1

(2i − 1), (47)

which combined with (21) yields

|Sp(2m; 2)/P| =
m∏
i=1

(2i + 1) = |L(2m,m)|. (48)

The above is of course not a coincidence. Indeed, Sp(2m; 2)
acts transitively from the right on L(2m,m). Next, consider
rs
[
0m Im

]
∈ L(2m,m). If a symplectic matrix F as in (20)

fixes this space, then C = 0 and A is invertible. Additionally,
because F is symplectic to start with, we obtain D = A−T

and ABT =: S is symmetric. Thus B = SAT, and F ∈ P .
That is, P is the stabilizer (in a group action terminology) of
rs
[
0m Im

]
∈ L(2m,m). The mapping Sp(2m; 2)/P −→

L(2m,m), given by

FO(PI ,Sr) 7−→ rs
[

Im|rPI
T (Im|rS̃r + Im|−r)P−1I

]
(49)

is well-defined. This follows by the fact that the upper half of
a symplectic matrix is maximal isotropic. It is also injective,
and thus bijective due to cardinality reasons. Of course one can
have many bijections but we choose this one due to Theorem 3.

C. The Heisenberg-Weyl Group

Fix N = 2m, and let {e0, e1} be the standard basis of C2,
which is commonly referred as the computational basis. For
v = (v1, . . . , vm) ∈ Fm

2 set ev := ev1 ⊗ · · · ⊗ evm . Then
{ev | v ∈ Fm

2 } is the standard basis of CN ∼= (C2)⊗m. The
Pauli matrices are

I2, σx =

[
0 1
1 0

]
, σz =

[
1 0
0 −1

]
, σy = iσxσz. (50)

For a,b ∈ Fm
2 put

D(a,b) := σa1
x σb1

z ⊗ · · · ⊗ σam
x σbm

z . (51)
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Directly by definition we have

D(a,0)ev = ev+a and D(0,b)ev = (−1)bTvev, (52)

and thus, the former is a permutation matrix whereas the latter
is a diagonal matrix. Then

D(a,b)D(c,d) = (−1)bTcD(a + c,b + d). (53)

Thanks to (53) we have

D(a,b)D(c,d) = (−1)bTc+aTdD(c,d)D(a,b). (54)

In turn, D(a,b) and D(c,d) commute iff

〈a,b | c,d 〉s := bTc + aTd = 0, (55)

that is, iff (a,b) and (c,d) are orthogonal with respect to the
symplectic inner product (18). Also thanks to (53), the set

HWN := {ikD(a,b) | a,b ∈ Fm
2 , k = 0, 1, 2, 3} (56)

is a subgroup of U(N) and is called the Heisenberg-Weyl
group. We will also call its elements Pauli matrices as well.
Directly from the definition, we have a surjective homomor-
phism of groups

ΨN : HWN −→ F2m
2 , ikD(a,b) 7−→ (a,b). (57)

Its kernel is ker ΨN = {±IN ,±iIN} ∼= Z4. We will denote
HW∗N := HWN/ ker ΨN the projective Heisenberg-Weyl
group, and the induced isomorphism Ψ∗N .

Note that 〈 • | • 〉s defines a nondegenerate bilinear form in
F2m
2 that translates commutativity inHWN to orthogonality in

F2m
2 . A commutative subgroup S ⊂ HWN is called a stabilizer

group if −IN /∈ S . Thus, for a stabilizer S, thanks to (55)
we have ΨN (S) ⊆ ΨN (S)⊥s [36], [37]. In addition, because
ΨN restricted to a stabilizer is an isomorphism, we have that
|S| = 2r iff dim ΨN (S) = r. We will think of ΨN (S) as the
row space of a full rank matrix [A B] where both A and B
are r ×m binary matrices. We will write

E(A, B) := {E(xTA, xTB) | x ∈ Fr
2}, (58)

where E(a, b) := ia
TbD(a,b). Combining this with (52) and

(53) we obtain

E(a,b) = ia
Tb
∑

v∈Fm
2

(−1)bTvev+aev
T. (59)

Next, if rs [A B] is self-orthogonal in F2m
2 then E(A, B)

is a stabilizer. Moreover, ΨN (E(A, B)) = rs [A B], which
yields a one-to-one correspondence between stabilizers in
HWN and self-orthogonal subspaces in F2m

2 . It also follows
that a maximal stabilizer must have 2m elements. Thus there
is a one-to-one correspondence between maximal stabilizers
and Lagrangian Grassmannians L(2m,m) ⊂ G(2m,m). Of
particular interest are maximal stabilizers

XN := E(Im,0m) = {E(a,0) | a ∈ Fm
2 }, (60)

ZN := E(0m, Im) = {E(0,b) | b ∈ Fm
2 }, (61)

which we naturally identify with XN := ΨN (XN ) =
rs [Im 0m] and ZN := ΨN (ZN ) = rs [0m Im].

What follows holds in general for any stabilizer, but for

our purposes, we need only focus on the maximal ones. Let
S = E(A, B) ⊂ HWN be a maximal stabilizer and let
{E1, . . . ,Em} be an independent generating set of S (that
is, span{ΨN (E1), . . . ,ΨN (Em)} = ΨN (S)). Consider the
complex vector space [38]

V (S) := {v ∈ CN | Eiv = v, i = 1, . . . ,m}. (62)

It is well-known (see, e.g., [39]) that dimV (S) = 2m/|S| =
1. A unit norm vector that generates it is called stabilizer
state, and with a slight abuse of notation is also denoted by
V (S). Because we are disregarding scalars, it is beneficial
to think of a stabilizer state as Grassmannian line, that is,
V (S) ∈ G(CN , 1). Next,

ΠS :=

m∏
i=1

IN + Ei

2
=

1

N

∑
E∈S

E (63)

is a projection onto V (S).
Given a stabilizer as above, for any d ∈ Fm

2 ,
{(−1)d1E1, . . . , (−1)dmEm} also describes a stabilizer Sd.
Similarly to (63) put

ΠSd :=

m∏
i=1

IN + (−1)diEi

2

=
1

N

∑
x∈Fm

2

(−1)dTxE(xTA, xTB).

(64)

It is readily verified that {ΠSd | d ∈ Fm
2 } are pair-wise

orthogonal, and a stabilizer group determines a resolution of
the identity

IN =
∑

d∈Fm
2

ΠSd . (65)

Thus every such projection determines a one-dimensional
subspace which with another abuse of notation (see also
Remark 5 below) we call a stabilizer state.

Remark 5. A stabilizer state as in (62) is the unit norm
vector that is fixed by the stabilizer. Now for every E ∈
S = E(A, B) there exists a unique x ∈ Fm

2 such that
E = E(xTA, xTB). For d ∈ Fm

2 , consider the map χd :

E(xTA, xTB) 7−→ (−1)dTx. Then ΠSd projects onto

V (Sd) := {v ∈ CN | Ev = χd(E)v for all E ∈ Sd}, (66)

that is, the state that under the action of E is scaled by χd(E).
Then of course V (S0) = V (S) where 0 ∈ Fm

2 . In addition, the
map χd is a linear character of S, which has led to non-binary
quantum stabilizer codes [40].

Remark 6. Let {E1, . . . ,Em} be an independent generating
set of a maximal stabilizer S and consider Sd. By [39,
Prop. 10.4] it follows that for each i = 1, . . . ,m, there exists
Gi ∈ HWN such that G†iEiGi = −Ei and G†iEjGi = Ej

for i 6= j. Now put Gd := Gd1
1 · · ·Gdm

m . Then

G†dΠSGd = ΠSd . (67)

It follows that {V (Sd) | d ∈ Fm
2 } is an orthonormal basis

of CN . In [41] the authors used a similar insight to construct
maximal sets of mutually unbiased bases.
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D. Clifford Group

The Clifford group in N dimensions [42] is defined to be
the normalizer of HWN in U(N) modulo U(1):

CliffN = {G ∈ U(N) | GHWNG† = HWN}/U(1). (68)

The reason one quotients out U(1) ∼= {αIN | |α| = 1}, is to
obtain a finite group. In this case HW∗N is a normal subgroup
of CliffN .

Let {e1, . . . , e2m} be the standard basis of F2m
2 , and con-

sider G ∈ CliffN . Let ci ∈ F2m
2 be such that

GE(ei)G
† = ±E(ci). (69)

Then the matrix FG whose ith row is ci is a symplectic matrix
such that

GE(c)G† = ±E(cTFG) (70)

for all c ∈ F2m
2 . Based on (70) we obtain a group homomor-

phism

Φ : CliffN −→ Sp(2m; 2), G 7−→ FG, (71)

with kernel ker Φ = HW∗N [35]. This map is also surjective;
see Section III-D1 where specific preimages are given. From
(21) and (57) (|HW∗N | = 22m) follows that

|CliffN | = 2m
2+2m

m∏
i=1

(4i − 1). (72)

Remark 7. Since Φ is a homomorphism we have that
Φ(G†) = F−1G and as a consequence G†E(c)G =
±E(cTF−1G ). We will make use of this simple observation
later on to determine when a column of G is an eigenvector of
E(c). This interplay with symplectic geometry provides an ex-
ponential complexity reduction in various applications. Here,
we will focus on efficiently computing common eigenspaces
of maximal stabilizers.

The phase and Hadamard matrices

GP =

[
1 0
0 i

]
and H2 =

1√
2

[
1 1
1 −1

]
(73)

are easily seen to be in the Clifford group Cliff2. Some authors
also include (GPH2)3 = exp(πi/4)I2 [37], which in our case
would disappear as a scalar quotient. Thus (72) differs by a
factor of 1/8 of what is commonly considered as the cardinality
of the Clifford group; see https://oeis.org/A003956. For our
purposes the phases are irrelevant.

1) Decomposition of the Clifford Group: In this section
we will make use of the Bruhat decomposition of Sp(2m; 2)
to obtain a decomposition of CliffN . To do so we will use
the surjectivity of Φ from (71) and determine preimages of
coset representatives from (40). The preimages of symplectic
matrices FD(P),FU (S), and FΩ(r) under Φ are the unitary
permutation matrix, a diagonal matrix, and a partial Hadamard
matrix,

GD(P) := ev 7−→ ePTv, (74)

GU (S) := diag
(
iv

TSv mod 4
)

v∈Fm
2

, (75)

GΩ(r) := (H2)⊗r ⊗ I2m−r , (76)

respectively. We refer the reader to [35], [43] for details.

Remark 8. Note that directly by the definition of the
Hadamard matrix we have

HN := GΩ(m) =
1√
2m

[(−1)vTw]v,w∈Fm
2
. (77)

Whereas, for any r = 1, . . . ,m, one straightforwardly com-
putes

GΩ(r)·Z(m, r) = [(−1)vTw · f(v,w, r)]v,w∈Fm
2
, (78)

where Z(m, r) := I2r ⊗σ⊗m−rz is the diagonal Pauli that acts
as σz on the last m− r qubits, and

f(v,w, r) =

m∏
i=r+1

(1 + vi + wi). (79)

Note that the value of f will be 1 precisely when v and w
coincide in their last m − r coordinates and 0 otherwise. It
follows that f is identically 1 when r = m and f is the
Kronecker function δv,w when r = 0. We will use f to
determine the sparsity of a Clifford matrix/stabilizer state. Of
course r = m corresponds to fully occupied objects with only
nonzero entries; see also Remarks 11 and 12 for the extreme
cases of r = 0, 1.

Example 2 (Example 1 continued). Let us reconsider the
invertible matrices from (16). Recall that there we had m =
3, r = 2. Here we will construct the Cliffords corresponding
to the canonical coset representative (49), with Sr = 02×2.
For the case u = 0 one computes4 GD(PT

u=0) as in (74), and
multiplies it (from the right) by GΩ(2) as in (76) (we will
omit 1/

√
22) and and then by Z(3, 2) to obtain

Gu=0 =



+ 0 + 0 + 0 + 0
+ 0 − 0 + 0 − 0
0 − 0 − 0 − 0 −
0 − 0 + 0 − 0 +
+ 0 + 0 − 0 − 0
+ 0 − 0 − 0 + 0
0 − 0 − 0 + 0 +
0 − 0 + 0 + 0 −


. (80)

As mentioned, (74) by definition yields a permutation matrix.
Thus Gu=0 is nothing else but GΩ(2) = H2⊗H2⊗ I2, with
its rows permuted accordingly, and a possible sign introduced
to its columns by the diagonal matrix Z(3, 2) = I4 ⊗ σz .
Similarly, for the case u = 1, one obtains

Gu=1 =



+ 0 + 0 + 0 + 0
+ 0 − 0 + 0 − 0
0 − 0 − 0 − 0 −
0 − 0 + 0 − 0 +
0 − 0 − 0 + 0 +
0 − 0 + 0 + 0 −
+ 0 + 0 − 0 − 0
+ 0 − 0 − 0 + 0


. (81)

We will discuss how the {+,−, 0} patterns are correlated later
on.

4See Section IV-A for why we consider the transpose instead of P itself.
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Let us now return to the Clifford group. The Bruhat decom-
position (31) of Sp(2m; 2) already gives a decomposition of
CliffN . However, in order to have a concise approach one has
to be a bit careful. In this section we will write G = Φ−1(F),
where the equality is taken modulo the center HW∗N nZ8. In
other words, we will disregard the central part of Φ−1(F) and
consider only the Clifford part. The cyclic group Z8 of order
8 comes into play to accommodate 8th roots of unity coming
out of products GU (S)GΩ(r). This setup, yet again, confirms
the importance of

Cliff∗N := {exp(iπk/4)G | k ∈ Z8,G ∈ CliffN}. (82)

Let G = {GD(P)GU (S) | P ∈ GL(m; 2),S ∈ Sym(m; 2)}
be the preimage of P from (27). For obvious reasons, it is
referred as the Hadamard-free group; see also [44]. As for the
case of the symplectic group, this group acts from the right
on matrices of the form

GD(P1)GU (S1)GΩ(r)GU (S2)GD(P2) (83)

and thus, a coset representative would look like

GF := GD(P1)GU (S1)GΩ(r) . (84)

For Grassmannian line codebooks, one is interested on coset
representatives, the right action of GU (S1)GΩ(r) has been
divided out, i.e., column rotations and permutations.

The coset representatives can be understood in terms of
the preimage of generators of GL(m; 2) and Sym(m; 2). Let
us start with the former, which can be generated by two
elements [45]. Namely, it can be generated P := Im + E12

where E12 is the elementary (binary) matrix with 1 in position
(1, 2) and 0 elsewhere, together with the cyclic permutation
matrix Πcycl acting as the permutation (12 · · ·m). A larger set
of generators is also of interest. Let Πi,j be a transposition
matrix. Then of course P along with all the Πi,j generate
GL(m; 2). While Πi,j swaps dimensions i and j in Fm

2 , it is
easily seen that Φ−1(FD(Πi,j)) swaps the tensor dimensions
i and j in (C2)⊗m. Moreover

Φ−1(FD(P)) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⊗ IN−4. (85)

The above 4 × 4 matrix is known in quantum computation
as the controlled-NOT (CNOT) quantum gate. In itself, the
CNOT gate is of form GD(P) where

P = P−1 =

[
1 1
0 1

]
. (86)

For Sym(m; 2) we consider matrices Sv := vTv where
v ∈ Fm

2 is a vector with at most two non-zero entries. Then

Φ−1(FU (Sv)) =
1√
2

(IN + iE(0,v)). (87)

Note that when v has exactly one non-zero entry in position
j, the jth tensor dimension will contain the phase matrix
GP = exp(−iπ/4)(I2 + iσz) form (73). On the other hand,
when v has exactly two non-zero entries (87) gives rise

to GCZ(GP ⊗ GP ) in tensor dimensions i and j, where
GCZ = diag(1, 1, 1,−1). The latter is known in quantum
computation as the controlled-Z (CZ) quantum gate, and it
is of form GU (I2).

In conclusion, the Bruhat decomposition of Sp(2m; 2) di-
rectly yields some fundamental quantum gates as described
above. Similar ideas were used in [33] where the depth
of stabilizer circuits was considered. Classically, there exist
several decompositions of the symplectic group, which in
principle would yield a decomposition of the Clifford group.

IV. BINARY SUBSPACE CHIRPS

Let us recall the definition of Binary Subspace Chirps
from (5). A BSSC w is a unit complex vector in N = 2m

dimensions characterized by a rank 0 ≤ r ≤ m, a “binary
chirp part”, and an “on-off pattern part”. Namely, given a
binary subspace H ∈ G(m, r; 2) of rank 0 ≤ r ≤ m,
we have w(a) = 0 for a /∈ H , whereas the collection of
dimensions indexed by H , {w(a) | a ∈ H}, will form a
binary chirp in 2r dimensions. As in Section III-A, we will
think of the subspace H as the column space of a full-rank
m × r matrix HI , for which a ∈ H iff a = HIx for
some unique x ∈ Fr

2. Additionally, the “BC part”, in turn, is
characterized by Sr ∈ Sym(r; 2) and br ∈ Fr

2. As mentioned
in Section II-B, working with a coset of H is just as good, and
since there 2m−r different cosets, we can keep track of them
with a vector bm−r ∈ Fm−r

2 . Namely, for bm−r ∈ Fm−r
2 , the

BC part, will be located in dimensions indexed by the coset
{a = IĨbm−r + HIx | x ∈ Fr

2}, with IĨ as in Section III-A.
With this notation, we recover the subspace H for bm−r = 0.
Thus, for a general vector bT = [bT

r bT
m−r] ∈ Fm

2 we have

wH
b,Sr

(a) =

{
1√
2r
ix

TSrx+2bT
rx, if a = HIx + IĨbm−r,

0, otherwise.
(88)

Before procceding with further understanding (88), we point
out that BCs are indeed a special case of BSSC. Indeed, for
r = m we have H = Fm

2 and Sr=m ∈ Sym(m, 2) and (88)
has only non-zero entries and exactly matches (3). The next
step, is to better understand (88) by further leveraging Schubert
Cells. Note first that

a = HIx + IĨbm−r =
[
HI IĨ

] [ x
bm−r

]
= P

[
x

bm−r

]
,

(89)
where P is the unique invertible matrix (14) associated to the
subspace H . Making use of (15), we obtain[

x
bm−r

]
= P−1a =

[
(II)T a

H̃I
T
a

]
, (90)

which, in particular, tells us that the coset {IĨbm−r + HIx |
x ∈ Fr

2} is precisely the solution set of the equation

H̃I
T
a = bm−r. (91)

Next, recall the function f(v,w, r) from (79). Recall also
that, by the very definition, its value is 1 precisely when v,w
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coincide in their last m−r coordinates. We thus conclude that

f(b,P−1a, r) =

{
1, if a = HIx + IĨbm−r,

0, otherwise,
(92)

for any a,b ∈ Fm
2 . We will use this to keep track of the

on-off pattern of the corresponding BSSC. We point out
here that Remark 8 already hints a close relationship with
the partial Hadamard matrix GΩ(r) = (H2)⊗r ⊗ I2m−r .
Next, as already hinted in the proof of Lemma 1, it is
beneficial to embed Sr ∈ Sym(r; 2) as the upper-left block
of S ∈ Sym(m; 2), and set the rest of S to zero. Then, for
a ∈ Fm

2 satisfying (91) (that is, nonzero locations of the
BSSC), (90) implies aTP−TSP−1a = xTSrx. Combining
everything together, (88) reads as

wH,Sr

b (a) =
(−1)wt(bm−r)

√
2r

ia
TP−TSP−1a+2bTP−1af(b,P−1a, r).

(93)
Above, the function wt( • ) is just the Hamming weight which
counts the number of non-zero entries in a binary vector. The
overall sign (−1)wt(bm−r) is insignificant for our purposes
since we are dealing with Grassmannian/projective codebooks.
Thus, in what follows, we will use (93) as the definition of
BSSCs.

A. Algebraic Structure of BSSCs

In what follows we fix a rank r, invertible P, symmetric
S, and b ∈ Fm

2 . As usual, P is uniquely associated with
H ∈ G(m, r; 2), S contains an r × r symmetric in its
upper left corner and 0 otherwise, and bT = [bT

r bT
m−r].

Next, let F := FΩ(r)FU (S)FD(PT) ∈ Sp(m; 2) and let
GF = GD(PT)GU (S)GΩ(r) ∈ CliffN , so that Φ(GF) = F.
Recall also that {ea | a ∈ Fm

2 } is the standard basis of CN .
With a substitution u := P−1a in (93) we have

wb =
∑

a∈Fm
2

wb(a)ea (94)

=
(−1)wt(bm−r)

√
2r

∑
u∈Fm

2

iu
TSu(−1)bTuf(b,u, r)ePu (95)

= GD(PT) ·GU (S) · (−1)wt(bm−r)

√
2r

∑
u∈Fm

2

(−1)bTuf(b,u, r)eu

(96)

= GD(PT)GU (S)
(

(−1)wt(bm−r)
)

GΩ(r)Z(m, r)eb (97)

= GD(PT)GU (S)GΩ(r)eb (98)
= GFeb, (99)

where (96) follows by (74) and (75), (97) follows
by (78), and (98) follows by the fact that Z(m, r)eb =
(−1)wt(bm−r)eb. We have proved the following.

Theorem 2. With the same notation as above, the BSSC wb

is the bth column of the Clifford matrix GF.

Corollary 1. Each binary subspace chirp is a stabilizer state.
The converse is also true. In particular, the BSSC codebook is
a group code of the Clifford group with generating vector e0.

Proof. Stabilizer states can be defined equivalently as the orbit
of e0 under the action of CliffN ; see [46] for instance. Then
the first statement follows by (99). The converse is true due
to cardinalities. �

Example 3 (Examples 1 and 2 continued). Let us consider
the case u = 0, and for simplicity, let us set the symmetric S to
be the zero matrix5, so that GU (S) is the identity matrix. The
on-off pattern of the resulting BSSCs is governed by the r = 2
dimensional subspace H = {000T, 100T, 001T, 101T} =
cs (H{1,3}). The above argument tells us that these BSSCs are
precisely the columns of Gu=0 from (80). One verifies this
directly using the definition (93). Moreover, the structure of
the on-off patterns is completely determined by (89). Indeed,
we see in (80) two on-off patterns: one determined by H
(if IĨbm−r ∈ H) and one determined by its coset6 (if
IĨbm−r /∈ H). In our specific case, we have I = {1, 3}, and
thus IĨ = I{2} = 010T. Thus IĨbm−r ∈ H iff bm−r = 0 iff
b ∈ {000T, 010T, 100T, 110T}, which corresponds to columns
{1, 3, 5, 7}. Additionally, within each of these columns, the
on-off pattern is again governed by H . Indeed, the non-zero
entries in these columns are in positions/rows indexed by H ,
that is, {1, 2, 5, 6} – precisely as described by (91). Since
cosets form a partition, it follows immediately that columns
indexed by different cosets are orthogonal. Orthogonality of
columns within each coset is a bit more delicate to see directly.
We will further discuss the general structure of on-off patterns
in Section IV-B.

Equation (49) gives a one-to-one correspondence between
canonical coset representatives and maximal stabilizers. Above
we mentioned that BSSCs are columns of Clifford matrices
parametrized by such coset representatives. The last piece
of the puzzle is found by simultaneously diagonalizing the
commuting matrices of a maximal stabilizer. We make this
precise in the following.

Theorem 3. Let F and GF be as above. The set {wb |
b ∈ Fm

2 } consisting of the columns of GF is the common
eigenspace of the maximal stabilizer E(Im|rP

T, (Im|rS +
Im|−r)P−1) from (49).

Proof. Consider the matrix G := GF parametrized by the
symplectic matrix F, and recall that wb is the bth column of
GF. It follows from Remark 7 that the columns of G are the
eigenspace of E(x,y) iff

G†E(x,y)G = ±E([x,y]TF−1) (100)

is diagonal. Recall also that E(x,y) is diagonal iff x = 0,
and observe that FΩ(r)−1 = FΩ(r). Thus, GΩ(r) will
be the common eigenspace of the maximal stabilizer S iff
±E([x y]

T
FΩ(r)) is diagonal for all E(x,y) ∈ S. Then it

is easy to see that such maximal stabilizer is E(Im|r, Im|−r).
Next, if w is an eigenvector of E(c) then

Gw = ±GE(c)w = ±GE(c)G†Gw = ±E(cTΦ(G))Gw

5GU (S) does not affect the on-off pattern at all.
6There are exactly 2 = 23/22 cosets since H has dimensions 2.
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implies that Gw is an eigenvector of E(cTΦ(G)). The proof
is concluded by computing [Im|r Im|−r]FU (S)FD(PT). �

The result above is well-known in the sense that of course
stabilizer states are common eigenvectors of maximal stabi-
lizers. However, the parametrization above has a nice duality
built in (see also (110)) which is to the best of our knowledge
novel. It also serves our main purpose in the sense that it
clearly distinguishes between the “chirp part” and the “on-
off pattern part”. Namely, the subspace H governs the off-
diagonal part of the maximal stabilizer and it will be used to
decode the “chirp part”, whereas, its dual governs the diagonal
part of the maximal stabilizer and it completely determines
the “on-off pattern part”. It is precisely this duality that we
leverage for decoding BSSCs. Additionally, (93) provides
a parametrization of stabilizer states. Other parametrizations
are known in literature, e.g. [24, Thms. 5&6], that as well
capture their subspace structure. It is our conviction that the
natural way to capture this structure is via partial Hadamard
matrices and Schubert Cells, as facilitated by (79) and (92).
The canonical form of the invertible matrix P in (14) (which
in the complex domain corresponds to qubit permutations)
explicitly encodes the subspace/coset on which a stabilizer
state is nonzero. Additionally, it can provides a simplified
description of the underlying quadratic form that determines
the nonzero entries. It is also our conviction that, as indicated
by the semiproduct rule (28), this is the natural way to capture
such quadratic form.

Remark 9. Note that for r = m one has E(Im|r, Im|−r) =
E(Im, 0m) and GΩ(r) = HN . Thus the above theorem
covers the well-known fact that HN is the common eigenspace
of the maximal stabilizer XN = E(Im, 0m). It is also well-
known that the standard basis of CN (that is, IN ) is the com-
mon eigenspace of the maximal stabilizer ZN = E(0m, Im) of
diagonal Paulis. This is of course consistent with the aforesaid
fact since [0m Im]Ω = [Im 0m] and HN = Φ−1(Ω). In
this extremal case we also have PI = Im and S̃r = S ∈
Sym(m; 2). So the above theorem also covers [30, Lem. 11]
which (in the language of this paper) says that the common
eigenspace of E(Im, S) is GU (S)HN . Additionally, because
S is symmetric, it can be thought of as an adjacency matrix
of some underlying graph, and therefore binary chirps are
nothing else but graph states. In this way, the BC to BSSC
extension can be realized as the graph states to the stabilizer
states extension.

Remark 10. Theorem 3 is a closed form realization of a
more general fact. Let S be a maximal stabilizer and let
S = rs [A B] ⊂ F2m

2 be its corresponding isotropic subspace.
Consider also the diagonal Paulis ZN and its corresponding
subspace ZN = rs [0m Im]. Then, by [35, Alg. 1] there exists
G ∈ CliffN such that GSG† = ZN . In other words, G†

simultaneously diagonalizes S, and moreover, the respective
diagonal is a Pauli. In the symplectic domain, it follows by [35,
Thm. 25] that there are precisely 2m(m+1)/2 symplectic solu-
tions to the equation [A B]F = [0m Im].

(a)
r = 0.

(b) r = 1.

(c) r = 2 (BCs).

Figure 3. BSSCs in N = 4 dimensions. White = 0, Blue = 1, Cyan = -1, Red = i,
Magenta = −i.

Corollary 2. Let S be a maximal stabilizer. Then the stabilizer
state V (S) is a rank r BSSC iff |S ∩ ZN | = 2m−r.

Proof. By Corollary 1 we know that V (S) is a BSSC of
rank r, which in turn is stabilized by the maximal stabilizer
of Theorem 3. Such stabilizer has precisely 2m−r diagonal
Paulis; see also (110). �

We mentioned that the extremal case r = m gives the
codebook VBC. Before discussing general on-off patterns, we
consider the lower-end extremal cases r = 0, 1.

Remark 11. Let r = 0. In this case we again have P = Im
and S = 0m. In addition f(v,w, 0) = δv,w. Thus, from (93)
we see that wb(a) 6= 0 iff a = b, in which case we
have wb(a) = (−1)wt(b). This can also be seen from (99).
Indeed, since GΩ(0) = IN we have GF = IN . Note also
that Z(m, 0) = σz ⊗ · · · ⊗ σz = E(0,1) is the common
eigenspace of the maximal stabilizer E(Im, Im), as established
by Theorem 3.

Remark 12. Let r = 1. In this case, either S = 0m or S =
e1e1

T, where e1 ∈ Fm
2 is the first standard basis vector. It

follows that, up to a Pauli matrix, GU (S) is either IN or
the transvection (IN + iZ1)/

√
2 where Z1 = E(0, e1) has

σz on the first qubit and identity elsewhere; see also (87).
Similarly GΩ(1) = (X1 + Z1)/

√
2 is another transvection.

Thus, rank one BSSCs are columns of transvections, permuted
by some Clifford permutation GD(P). See [47], [48] for more
on transvections transvections.

Example 4. Let m = 2. There are 3 =
(
2
1

)
2

one dimensional
spaces in Fm

2 and there are two 1×1 symmetric matrices. Thus
there are 22 · 3 · 2 = 24 BSSCs of rank r = 1 in N = 2m = 4
dimensions, as depicted in Figure 3b. Furthermore, there are
eight 2×2 symmetric matrices, and these yield 32 = 22·8 BCs,
as depicted in Figure 3c. Along with 4 = 22 BSSCs of rank
0 depicted on Figure 3a, we have in total 60 = 4 + 24 + 32 =
4 · 3 · 5 BSSCs in N = 4 dimensions, as given by (8).

B. Structure of On-Off Patterns

As discussed, for Sr ∈ Sym(r; 2) and H ∈ G(m, r; 2) we
obtain a unitary matrix

UH,Sr
(a,b) =

[
wb(a)

]
a,b
∈ U(N). (101)

We will omit the subscripts when the context is clear. We
know from (99) that such a matrix is an element of CliffN .
The subspace H determines the sparsity of U. Indeed, we see
from (88) that the on-off pattern is supported either on H or
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on a coset of it. Thus, the on-off patterns of different columns
are either equal or disjoint. It also follows that in U there are
2m−r different on-off patterns, each of which repeat 2r times.

In [29] it was shown that BCs form a group under
coordinate-wise multiplication. Whereas, we can immediately
see that this is not the case for BSSCs. For instance, if one
considers two BSSCs with disjoint on-off patterns then they
coordinate-wise multiply to 0 ∈ CN . When two BSSCs have
the same on-off pattern the coordinate-wise multiplication can
be determined as follows. Let w1 and w2 be two columns
of U with the same on-off pattern, indexed by b1 and b2

respectively. Let r̃ = m − r. In such case, (91) implies
b1,r̃ = b2,r̃, that is, they are equal in their last r̃ coordinates.
Recall also that the non-zero coordinates of a BSSC are
determined by (89). We have that

2rw1(a)w2(a) = (−1)xTSx+(b1,r+b2,r)
Tx, (102)

where x ∈ Fr
2 is such that

P−1a =

[
x

b1,r̃

]
=

[
x

b2,r̃

]
. (103)

The matrix P above corresponds to H as usual. Next, the
map x 7−→ xTSx is additive modulo 2, and thus it is of form
x 7−→ bTSx for some bS ∈ Fm

2 . It follows that

2rw1(a)w2(a) = (−1)(bS+b1,r+b2,r)
Tx. (104)

Then it is easy to see that the right-hand-side of (104) is, up
to a sign, a column of GD(PT)GΩ(r).

With a similar argument, when two BSSCs with the same
on-off pattern, but different symmetric matrices S1 and S2, are
coordinate-wise multiplied, we obtain, up to sign, a column of
GD(PT)GU (S1 + S2)GΩ(r). In all cases, the “up to sign”
is determined by wt(br̃), that is, the Hamming weight of the
last r̃ coordinates of the column index.

Also with a similar argument, one determines the conjugate
of BSSCs and the coordinate-wise multiplication of BSSCs
with H1 ∈ G(m, r1) and H2 ∈ G(m, r2). Without diving in
details, in this case the on-off pattern will be determined by
H1 ∩ H2 and of course the sparsity will be determined by
r = dimH1 ∩H2.

In particular, we have proved the following.

Theorem 4. The set VBSSC is closed with respect to
coordinate-wise conjugation. The set VBSSC ∪{0N} is closed
with respect to coordinate-wise multiplication. The set of all
BSSCs of given sparsity r and on-off pattern is isomorphic to
Sym(r; 2).

By Theorem 1, the codebooks VBC and VBSSC have the
same minimum distance, and the latter is 2.384 bigger. Thus,
from a coding prospective the codebook VBSSC provides a
clear improvement. Additionally, we will see next that VBSSC

can be decoded with similar complexity as VBC. For these
reasons, VBSSC is an optimal candidate for extending VBC

also from a communication prospective. The alphabet of VBC

is {±1,±i} whereas the alphabet of VBSSC is {±1,±i} ∪
{0}, which is a minimal extension from the implementation
complexity prospective.

Corollary 3. Let Gj = GU (Sj)HN ∈ CliffN for j = 1, 2

and Sj ∈ Sym(m; 2). Then G = G†1G2 has sparsity r where
r = rank (S1 + S2) and its on-off pattern is determined by
H = rs (S1 + S2).

Proof. Recall that Gj constitutes all the BCs parametrized by
Sj . Then the statement follows directly by (9). �

Remark 13. The vector space of symmetric matrices can be
written in terms of a chain of nested subspaces, referred in
literature as Delsarte-Goethals sets,

DG(m, 0) ⊂ DG(m, 1) ⊂ · · · ⊂ DG(m, (m− 1)/2) (105)

with the property that every nonzero matrix in DG(m, r) has
rank at least m−2r [49], [50]. For applications in deterministic
compressed sensing, random access, and quantum computation
see [6], [30], [51]. Since DG(m, r) is a vector space, it comes
with the property that the sum of every two different matrices
also has rank at least m−2r. Thus, for S1,S2 ∈ DG(m, (m−
r)/2), the construction of Corollary 3 yields a Clifford matrix
of sparsity at least r. This is an alternative way of creating rank
r BSSCs in terms of BCs. However, this will not yield all the
BSSCs because not every subspace H is the row/column space
of a symmetric matrix S.

V. RECONSTRUCTION ALGORITHMS

In this section we use the rich algebraic structure of
BSSCs to construct a low complexity decoding/reconstruction
algorithm. We will build our way up by starting with the
reconstruction of a single BSSC. In order to gain some
intuition we disregard noise at first. The problem in hand is to
recover H,Sr, and b given a binary subspace chirp wb as in
(93). In this noiseless scenario, the easiest task is the recovery
of the rank r. Namely, by (91) we have

wb(a)wb(a) =

{
1/2r, 2r times,
0, 2m−r times. (106)

To reconstruct H and then eventually Sr we generalize the
shift and multiply technique used in [6] for the reconstruction
of binary chirps. Here “shift” means shifting/permuting the
coordinates of wb according to a 7−→ a + e and “multiply”
means coordinate-wise multiplication of the shifted version
with the original vector. The underlying structure that enables
this generalization is the fact that the on-pattern of BSSC is
a BC of lower rank as discussed in Section IV. The prime
focus will be to upgrade to a technique that also takes care of
identifying the subspace H . Additionally, in our scenario extra
care is required as the shifting can perturb the on-off pattern.
Namely, we must use only shifts a 7−→ a+e that preserve the
on-off pattern. It follows by (91) that we must use only shifts
by e that satisfy (H̃I)Te = 0, or equivalently e = HIx for
x ∈ Fr

2. In this instance, thanks to (13) we have

P−1e = P−1HIx =

[
x
0

]
. (107)

If we focus on the nonzero entries of wb and on shifts (107)
that preserve the on-off pattern of wb we are left with a rank-
r binary chirp which remains unaffected by the shift. It is
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beneficial to take y to be fi - one of the standard basis vectors
of Fr

2 and identify x with P−1e. With this preparation we are
able to use the shift and multiply technique, that is, shift the
given BSSC wb according to the shift x 7−→ x + fi (which
only affects the on-pattern and fixes the off-pattern) and then
multiply by its conjugate:

wb(x+fi)wb(x) =
1

2r
·if

T
iSrfi ·(−1)bT

rfi ·(−1)xTSrfi . (108)

Note that above only the last term depends on x. Now if we
multiply (108) with the Hadamard matrix (77) we obtain

if
T
iSrfi · (−1)bT

rfi
∑
x∈Fr

2

(−1)xT(v+Srfi), (109)

for all x ∈ Fr
2 (where we have omitted the scaling factor).

Then (109) is nonzero precisely when v = Srfi - the ith
column of Sr. With Sr in hand, one recovers br similarly
by multiplying wb(x)w0(x) with the Hadamard matrix. To
recover bm−r one simply uses the knowledge of nonzero
coordinates and (89). Next, with b in hand and the knowledge
of the on-off pattern one recovers HI (and thus H) using (91).
We will refer to the process of finding the column index b as
dechirping.

In the above somewhat ad-hoc method we did not take
advantage of the geometric structure of the subspace chirps
as eigenvectors of given maximal stabilizers or equivalently
as the columns of given Clifford matrices. We do this next by
following the line of [22].

Let w be a subspace chirp as in (93), and recall that,
by Theorem 2, it is the column of G := GF =
GD(PT)GU (S)GΩ(r) where F := FΩ(r)FU (S)FD(PT).
Then by construction G and F satisfy G†E(c)G =
±E(cTF−1) for all c ∈ F2m

2 . Recall also from Theorem 3
that G is the common eigenspace of the maximal stabilizer

E(Im|rP
T, (Im|rS + Im|−r)P−1) = E

([
HI

T
SrI

T

I

0 H̃I
T

])
.

(110)
Thus, to reconstruct the unknown subspace chirp w, it is
sufficient to first identify the maximal stabilizer that stabilizes
it, and then identify w as a column of G. The best way to
accomplish the latter task, dechirping that is, is as described
above, and thus we focus only on the former task. A crucial
observation at this stage is the fact that the maximal stabilizer
in (110) has precisely 2r off-diagonal and 2m−r diagonal Pauli
matrices; see also Corollary 2.

We now make use of the argument in Theorem 3, that is,
w is an eigenvalue of E(c) iff E(cTF−1) is diagonal. Let
us focus first on identifying the 2m−r diagonal Pauli matrices

that stabilize w, that is, c =

[
0
y

]
. First we see that

F−1 =

[
IISr H̃I II 0
HI 0 0 IĨ

]
. (111)

Then for such c, w is an eigenvector of E(c) iff yTHI = 0 iff
y = H̃Iz for some z ∈ Fm−r

2 . Thus, to identify the diagonal
Pauli matrices that stabilize w, and consequently the subspaces

HI , H̃I , it is sufficient to find 2m−r vectors y ∈ Fm
2 such that

0 6= w†E(0,y)w = w†E(0, H̃Iz)w. (112)

It follows by (59) that the above is equivalent with finding
2m−r vectors y such that

0 6=
∑

v∈Fm
2

(−1)yTv|w(v)|2 =
∑

v∈Fm
2

(−1)zTH̃Tv|w(v)|2.

(113)
The above is just a Hadamard transform which can be effi-
ciently undone.

With a similar argument, w is an eigenvector of a general
Pauli matrix E(x,y) iff

w†E(x,y)w = ix
Ty
∑

v∈Fm
2

(−1)vTyw(v + x)w(v) 6= 0.

(114)
The above is again just a Hadamard transform. In fact, we
see here both the “shift” (by x), the “multiply”, and the
Hadamard transform of the “shift and multiply”. This is the
main insight that transfers the shift and multiply technique
of [6] to computation with Pauli matrices. By definition, the
Pauli matrix E(x,y) has a diagonal part determined by y
and an off-diagonal part determined by x. The off-diagonal
part of a Pauli determines the shift of coordinates whereas the
diagonal part takes care of the rest.

Computing w†Uw for a generic N×N matrix is expensive,
and even more so if the same computation is repeated N2

times. However, when U is a Pauli matrix, which is a
monomial matrix of sparsity 1, the same computation is much
faster. Moreover, as we will see, for a rank r BSSC we need
not compute all the possible N shifts but only r of them. This
is an intuitive observation based on the shape of the maximal
stabilizer (110). Indeed, once the diagonal Pauli matrices are
identified, one can use that information to search the off-
diagonal Pauli matrices only for x ∈ cs (HI), which reduces
the search from 2m to 2r. In fact, as we will see, instead of
2r shifts we will need only use the r shifts determined by
columns of HI .

Let us now explicitly make use of (114) to reconstruct the
symmetric matrix Sr, while assuming that we have already
reconstructed HI , H̃I . In this case, as we see from (111),
the only missing piece of the puzzle is the upper-left block

of F−1. We proceed as follows. For c =

[
x
y

]
, we have

w†E(x,y)w 6= 0 iff E(cTF−1) is diagonal, iff

xT[IISr H̃I ] = yT[HI 0]. (115)

As before, we are interested in y ∈ Fm
2 that satisfy (115).

First note that solutions to (115) exist only if xTH̃I = 0, that
is only if x = HIz, z ∈ Fr

2. For such x, making use of (13),
we conclude that (115) holds iff

zTSr = yTHI . (116)

Solutions of (116) are given by

y = H̃Iv + IISrz, v ∈ Fm−r
2 . (117)

If we take z = fi - the ith standard basis vector of Fr
2 - we
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Algorithm 2 Reconstruction of single noiseless BSSC
Input: Unknown BSSC w

1. Compute w†E(0,y)w for y ∈ Fm
2 .

2. Find HI using

w†E(0,y)w 6= 0 iff yTHI = 0 iff y ∈ cs (H̃I).

3. Construct PI as in (14).
4. r = rank (HI).
5. for i = 1, . . . , r do:
6. Compute w†E(HIfi,y)w for y ∈ Fm

2 .
7. Determine the ith row of Sr using (117).
8. end for
9. Dechirp w to find b.

Output: r,Sr,PI ,b.

have that zTSr is the ith row/column of Sr while x = HIz
is the ith column of HI .

We collect all these observations in Algorithm 2.

A. Reconstruction of Single BSSC in the Presence of Noise

In order to move towards a multi-user random access
scenario, one needs a reliable reconstruction algorithm of noisy
BSSCs. For this we consider a signal model

s = w + n, (118)

where n is Additive White Gaussian Noise (AWGN). In
such instance, the subspace reconstruction, that is, step (2) of
Algorithm 2 is a delicate procedure. However, one can proceed
as follows. For each y ∈ Fm

2 we compute s†E(0,y)s and use
it as an estimate of w†E(0,y)w. We sort these scattered real
values in decreasing order and make rank hypothesis, that is,
for each 0 ≤ r ≤ m we select 2m−r largest values that form
a subspace of rank r, and then proceed with Algorithm 2 to
obtain wr. We then select the best rank using the Euclidean
norm:

w̃ = arg min
r
‖s−wr‖2. (119)

Figure 4. On-off pattern of noisy BSSC versus on-off pattern of noiseless BSSC.

In Figure 4 we see an instance of a rank r = 2 BSSC on-
off pattern in N = 28 dimensions, with and without noise.
In this case w†E(0,y)w is non-zero 2m−r = 64 times. In
this instance, only 94% of the 64 highest s†E(0,y)s values
of the noisy version match the on-off pattern of w. However,
this can be overcame in recusntruction by using the fact that
the on-off pattern is determined by a subspace. Thus one can
build up H̃I in a greedy manner by starting with the highest
values and then including linear combinations. This strategy
was tested in [22] with Monte-Carlo simulations yielding low
error rates even for low Signal-to-Noise Ratio (SNR); see [22,
Fig. 1]. There it was observed that, rather remarkably, BSSCs
outperform BCs despite having the same minimum distance.

VI. MULTI-BSSC RECONSTRUCTION

The strategy of noisy single BSSC reconstruction can be
used as a guideline to generalize Algorithm 2 to decode
multiple simultaneous transmissions in a block fading multi-
user scenario

s =

L∑
`=1

h`w` + n. (120)

Here the channel coefficients h` are CN (0, 1), with neither
phase nor amplitude known, and w` are BSSCs. Noise n may
be added, depending on the scenario. This model represents,
e.g., a random access scenario, where L randomly chosen
active users transmit a signature sequence, and the receiver
should identify the active users. In such application, the
channel gain is not known at the receiver, and thus one cannot
use the amplitude to transmit information. For this reason, the
amplitude/norm is assumed, without loss of generality, to be
one. Additionally, the channel phase is also not known at the
receiver and should not carry any information. Thus without
loss of generality, the codewords can be assumed to come from
a Grassmannian codebook, such as VBC or VBSSC.

We generalize the single-user algorithm to a multi-user al-
gorithm, where the coefficients h` are estimated to identify the
most probable transmitted signals. For this, we use Orthogonal
Matching Pursuit (OMP), which is analogous with the strategy
of [6]. We assume that we know L.

The estimated error probability of single user transmission
for L = 2, 3 is given in Figure 5. For the simulation, the rank
r is selected in a weighted manner, according to the relative
size of rank r BSSCs (recall that there are 2m ·

(
m
r

)
2
·2r(r+1)/2

rank r BSSCs). Whereas, within a given rank, BSSCs are
chosen uniformly. We compare the results with BC codebooks
and random codebooks with the same cardinality. For random
codebooks, steps (2)-(5) of Algorithm 3 are substituted with
exhaustive search (which is infeasible is beyond m = 6).

The erroneous reconstructions of Algorithm 3 come in part
from steps (3)-(4). Specifically, from the cross-terms of

s†s =

L∑
`=1

|h`|2‖w`‖2 +
∑
i 6=`

hih`w
†
iw`. (121)

For BCs, these cross-terms are the well-behaved second order
Reed-Muller functions. The BSSCs, unlike the BCs [29], do
not form a group under point-wise multiplication (Theorem 4),
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Algorithm 3 Reconstruction of noiseless multi-BSSCs
Input: Signal s as in (120).

1. for ` = 1 : L do
2. for r = 0 : m do
3. Greedily construct the m− r dimensional subspace

H̃I using the highest values of |s†E(0,y)s|.
4. Estimate w̃r as in Alg. 2.
5. end for
6. Select the best estimate w̃`.
7. Determine h̃1, . . . , h̃` that minimize∥∥∥∥∥∥s−

∑̀
j=1

hjw̃j

∥∥∥∥∥∥
2

.

8. Reduce s to s′ = s−
∑`

j=1 h̃jw̃j .
9. end for

Output: w̃1, . . . , w̃L.

Figure 5. Error probability of Algorithm 3 on absence of noise. Random codebook
included for comparison.

and thus the products w†iw` are more complicated. Indeed,
when two BSSCs of different ranks and/or different on-off
patterns are multiplied coordinate-wise (which we do during
the “shift and multiply”) the resulting BSSCs could be poten-
tially very different (if not zero) as described in Theorem 4.
In addition, linear combinations of BSSCs (120) may perturb
the on-off patterns of the constituents, and depending on the
nature of the channel coefficients h`, the algorithm may detect
a higher rank BSSC in s. If the channel coefficients of two
BSSCs happen to have similar amplitudes, the algorithm may
detect a lower rank BSSC that corresponds to the overlap of the
on-off patterns of the BSSCs. These phenomena are depicted
in Figure 6 (in blue) in which the on-off pattern of a linear
combination of a rank two, a rank three, and a rank six BSSCs
in N = 28 dimensions is displayed. There, we see multiple
levels (in blue) of s†E(0,y)s, only some of which correspond
to actual on-off patterns w†`E(0,y)w` of the given BSSCs,
and the rest corresponds to different combinations of overlaps.
The problem for multi-BSSC reconstruction caused by these

Figure 6. On-off pattern of a noiseless vs. noisy linear combination of BSSCs.

phenomena is alleviated by the fact that most BSSC codewrods
have high rank. E.g., as m grows, it follows by Theorem 1
that about 42% of BSSCs are BCs. Low rank BSSCs are very
unlikely in (120).

Despite these phenomena affecting BSSC on-off patterns
in multi-BSSC scenarios, a decoding algorithm like the one
discussed is able to distinguish different levels and provide
reliable performance. It is worth mentioning that by comparing
Figure 5 with [22, Fig. 1] we see that the interference of
BSSCs is much more benign than general AWGN, which in
turn explains the reliable reconstruction of noiseless multi-user
transmission.

Interestingly, even in this multi-user scenario, we see that
BSSCs outperform BCs. With increasing m, the performance
benefit of the algebraically defined codebook over random
codebooks diminishes. However, the decoding complexity
remains manageable for the algebraic codebooks.

In [22] it was demonstrated that reconstruction of a single
noisy BSSC was possible even for low SNR. We have per-
formed preliminary simulations and have tested Algorithm 3
on a noisy multi-user transmission. Unlike the single BSSC
scenario, the multi BSSCs scenario requires a higher SNR
regime for reliable performance. In Figure 6 we have shown
(in red) |s†E(0,y)s| for a noisy version of the same linear
combination as before (displayed in blue). In this instance
we have fixed SNR = 8 dB. A close look shows that this
scenario is different from the single user scenario displayed in
Figure 4. In this instance, even an exhaustive search over ranks
r as in Algorithm 3 produces an on-off pattern that matches
at most 61% any actual on-off pattern, and thus the subspace
reconstruction inevitably fails. On the other hand, if the on-
off pattern is reconstructed correctly, then the corresponding
r-dimensional BC can be reconstructed reliably. When noise
is on manageable level, reliable reconstruction of multi-user
BSSCs is possible with Algorithm 3. In Figure 7, we depict
the performance of N = 256 BSSC and BCs in a scenario
with SNR 30 dB, for a varying number of simultaneously
transmitting users. Again, we see that BSSCs provide slightly
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Figure 7. Error probability of Algorithm 3 for noisy multi-user transmission in
N = 256 dimensions and SNR = 30 dB.

better error performance than BCs, despite the codebook being
larger.

VII. CONCLUSIONS AND FUTURE RESEARCH

Algebraic and geometric properties of BSSCs are described
in details. BSSCs are characterized as common eigenspaces
of maximal sets of commuting Pauli matrices, or equivalently,
as columns of Clifford matrices. This enables us to fully
exploit connections between symplectic geometry and quan-
tum computation, which in turn yield considerable complexity
reductions. Further, we have developed a low complexity
decoding algorithm for multi BSSCs transmission with low
error probability.

By construction, BSSCs inherit all the desirable proper-
ties of BCs, while having a higher cardinality. In wireless
communication scenarios BSSCs exhibit slightly lower error
probability than BCs. For these reasons we think that BSSCs
constitute good candidates for a variety of applications.

Algorithm 3 is a generalization of the BC decoding algo-
rithm of [6] to BSSCs. As pointed out in [12], the decoding
algorithm of [6] does not scale well in a multi-user scenario,
in terms of the number of users supported as a function of
codeword length. In [12], [25] slotting arrangements were
added on top of BC codes to increase the length, and the
number of supported users. Part of the information in a
transmission is embedded in the choice of a BC, part in
the choice of active slots. In [12], interference cancellation
across slots is applied, and the discussed scheme can be
considered a combination of physical layer (PHY) BC coding,
and a Medium Access Control (MAC) Layer code of the
type discussed in [52]. The works of [12], [25] show that
following such principles, practically implementable massive
random access schemes, operating in the regime of interest
of [13], can be designed. If the small-m BC-transmissions in
the slots would be replaced with BSSC transmissions with the
same m, the results of this paper indicate that performance
per slot would be the same, if not slightly better than in [12],

[25]. This indicates that combined MAC/PHY codes, where
BSSC would be the PHY component instead of BC as used
in [12], [25], are likely to provide slightly higher rates with
otherwise similar performance as [12], [25]. In future work,
we plan to investigate such codes.

As mentioned, we have seen in all our simulations that
BSSCs outperform BCs. Although our algorithms do not find
the closest codeword, this may be due to a fact that BSSCs
have fewer closest neighbors on average than BCs. We will
investigate this in future work with a statistical analysis of
Algorithm 3 along the lines of [29].

Binary chirps have been generalized in various works to
prime dimensions, and recently to non-prime dimensions [53].
In future work we will consider analogues generalizations of
BSSCs, by adding a sparsity component to generalized BCs
and/or by lifting BSSCs modulo 2t.

As a byproduct, we have obtained a Bruhat decomposition
of the symplectic group that involves five elementary symplec-
tic matrices (compared to the seven layers of [34], c.f., (32)).
We think that this has implications in quantum computation.
In future research we will explore whether Algorithm 1 can
be leveraged to improve upon [33], [54].

REFERENCES

[1] T. Pllaha, O. Tirkkonen, and R. Calderbank, “Reconstruction of multi-
user binary subspace chirps,” in 2020 IEEE International Symposium on
Information Theory (ISIT), 2020, pp. 531–536.

[2] P. Viswanath and V. Anantharam, “Optimal sequences and sum capacity
of synchronous CDMA systems,” IEEE Trans. Inf. Th., vol. 45, no. 6,
pp. 1984–1991, Sep. 1999.

[3] D. Love., R. Heath, Jr., and T. Strohmer, “Grassmannian beamforming
for multiple-input multiple-output wireless systems,” IEEE Trans. Inf.
Th., vol. 49, no. 10, pp. 2735–2747, Oct. 2003.

[4] R. Kötter and F. Kschischang, “Coding for errors and erasures in random
network coding,” IEEE Trans. Inf. Th., vol. 54, no. 8, pp. 3579–3591,
Aug. 2008.

[5] R. DeVore, “Deterministic constructions of compressed sensing matri-
ces,” Journal of Complexity, vol. 23, no. 4–6, pp. 918–925, 2007.

[6] S. D. Howard, A. R. Calderbank, and S. J. Searle, “A fast recon-
struction algorithm for deterministic compressive sensing using second
order Reed-Muller codes,” in Conference on Information Sciences and
Systems, March 2008, pp. 11–15.

[7] S. Li and G. Ge, “Deterministic sensing matrices arising from near
orthogonal systems,” IEEE Trans. Inf. Th., vol. 60, no. 4, pp. 2291–
2302, Apr. 2014.

[8] G. Wang, M.-Y. Niu, and F.-W. Fu, “Deterministic constructions of
compressed sensing matrices based on codes,” Cryptography and Com-
munications, Sep. 2018.

[9] A. Thompson and R. Calderbank, “Compressed neighbour discovery
using sparse Kerdock matrices,” in Proc. IEEE ISIT, Jun. 2018, pp.
2286–2290.

[10] D. Guo and L. Zhang, “Virtual full-duplex wireless communication via
rapid on-off-division duplex,” in Allerton Conference on Communica-
tion, Control, and Computing, Sep. 2010, pp. 412–419.

[11] C. Tsai and A. Wu, “Structured random compressed channel sensing for
millimeter-wave large-scale antenna systems,” IEEE Trans. Sign. Proc.,
vol. 66, no. 19, pp. 5096–5110, Oct. 2018.

[12] R. Calderbank and A. Thompson, “CHIRRUP: a practical algorithm for
unsourced multiple access,” Information and Inference: A Journal of the
IMA, no. iaz029, 2019, https://doi.org/10.1093/imaiai/iaz029.

[13] Y. Polyanskiy, “A perspective on massive random-access,” in 2017 IEEE
International Symposium on Information Theory (ISIT), 2017, pp. 2523–
2527.

[14] Z. Utkovski, T. Eftimov, and P. Popovski, “Random access protocols
with collision resolution in a noncoherent setting,” IEEE Wireless
Communications Letters, vol. 4, no. 4, pp. 445–448, 2015.



19

[15] S. S. Kowshik, K. Andreev, A. Frolov, and Y. Polyanskiy, “Energy
efficient random access for the quasi-static fading MAC,” in 2019 IEEE
International Symposium on Information Theory (ISIT), 2019, pp. 2768–
2772.

[16] ——, “Short-packet low-power coded access for massive MAC,” in 2019
53rd Asilomar Conference on Signals, Systems, and Computers, pp. 827–
832.

[17] A. Glebov, L. Medova, P. Rybin, and A. Frolov, “On LDPC code
based massive random-access scheme for the Gaussian multiple access
channel,” in Internet of Things, Smart Spaces, and Next Generation
Networks and Systems, O. Galinina, S. Andreev, S. Balandin, and
Y. Koucheryavy, Eds. Cham: Springer International Publishing, 2018,
pp. 162–171.

[18] A. Vem, K. R. Narayanan, J. Chamberland, and J. Cheng, “A user-
independent successive interference cancellation based coding scheme
for the unsourced random access gaussian channel,” IEEE Transactions
on Communications, vol. 67, no. 12, pp. 8258–8272, 2019.

[19] A. Fengler, G. Caire, P. Jung, and S. Haghighatshoar, “Massive MIMO
unsourced random access,” arXiv preprint arXiv:1901.00828, 2019.
[Online]. Available: https://arxiv.org/pdf/1901.00828.pdf

[20] S. S. Kowshik and Y. Polyanskiy, “Fundamental limits of many-user
MAC with finite payloads and fading,” 2019. [Online]. Available:
https://arxiv.org/pdf/1901.06732.pdf

[21] L. Applebaum, S. D. Howard, S. Searle, and R. Calderbank, “Chirp
sensing codes: Deterministic compressed sensing measurements for fast
recovery,” Applied and Computational Harmonic Analysis, vol. 26, no. 2,
pp. 283 – 290, 2009.

[22] O. Tirkkonen and R. Calderbank, “Codebooks of complex lines based
on binary subspace chirps,” in in Proc. Information Theory Workshop
(ITW), Aug. 2019.

[23] Q. Qiu, A. Thompson, R. Calderbank, and G. Sapiro, “Data representa-
tion using the Weyl transform,” IEEE Transactions on Signal Processing,
vol. 64, no. 7, pp. 1844–1853, 2016.

[24] J. Dehaene and B. D. Moor, “Clifford group, stabilizer states, and linear
and quadratic operations over GF(2),” Phys. Rev A, vol. 68, p. 042318,
Oct. 2003.

[25] P. Yang, D. Guo, and H. Yang, “Massive access in multi-cell wireless
networks using Reed-Muller codes,” arXiv preprint arXiv:2003.11568,
2020. [Online]. Available: https://arxiv.org/pdf/2003.11568.pdf

[26] G. E. Andrews, q-series: their development and application in anal-
ysis, number theory, combinatorics, physics, and computer algebra,
ser. CBMS Regional Conference Series in Mathematics. American
Mathematical Society, Providence, RI, 1986, vol. 66.

[27] D. Slepian, “Group codes for the Gaussian channel,” The Bell System
Technical Journal, vol. 47, no. 4, pp. 575–602, 1968.

[28] M. Thill and B. Hassibi, “Low-coherence frames from group Fourier
matrices,” IEEE Transactions on Information Theory, vol. 63, no. 6, pp.
3386–3404, 2017.

[29] R. Calderbank, S. Howard, and S. Jafarpour, “Construction of a large
class of matrices satisfying a statistical isometry property,” in IEEE
Journal of Selected Topics in Signal Processing, Special Issue on
Compressive Sensing, vol. 4, no. 2, 2010, pp. 358–374.

[30] T. Can, N. Rengaswamy, R. Calderbank, and H. D. Pfister, “Kerdock
codes determine unitary 2-designs,” IEEE Transactions on Information
Theory, vol. 66, no. 10, pp. 6104–6120, 2020.

[31] N. Bourbaki, Elements of Mathematics - Lie groups and Lie algebras,
Chapters 4-6, springer, 1968.

[32] R. Ranga Rao, “On some explicit formulas in the theory of Weil
representation,” vol. 157, no. 2, 1993, pp. 335–371.

[33] D. Maslov and M. Roetteler, “Shorter stabilizer circuits via Bruhat
decomposition and quantum circuit transformations,” IEEE Trans. Inf.
Th., vol. 64, no. 7, pp. 4729–4738, Jul. 2018.

[34] T. Can, “The Heisenberg-Weyl group, finite symplectic geometry, and
their applications,” Senior Thesis, Duke University, May 2018.

[35] N. Rengaswamy, R. Calderbank, S. Kadhe, and H. D. Pfister, “Synthesis
of logical Clifford operators via symplectic geometry,” in Proc. IEEE
ISIT, Jun. 2018, pp. 791–795.

[36] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane,
“Quantum error correction and orthogonal geometry,” Phys. Rev. Lett.,
vol. 78, no. 3, pp. 405–408, 1997.

[37] ——, “Quantum error correction via codes over GF(4),” IEEE Trans.
Inform. Theory, vol. 44, no. 4, pp. 1369–1387, 1998.

[38] D. Gottesman, “Stabilizer codes and quantum error correction,” PhD
thesis, California Institute of Technology, 1997.

[39] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum
information. Cambridge University Press, Cambridge, 2000.

[40] A. Ashikhmin and E. Knill, “Nonbinary quantum stabilizer codes,” IEEE
Trans. Inform. Theory, vol. 47, no. 7, pp. 3065–3072, 2001.

[41] O. Tirkkonen, C. Boyd, and R. Vehkalahti, “Grassmannian codes from
multiple families of mutually unbiased bases,” in Proc. IEEE ISIT, Jun.
2017, pp. 789–793.

[42] D. Gottesman, An Introduction to Quantum Error Correction and Fault-
Tolerant Quantum Computation, arXiv:0904.2557, 2009.

[43] N. Rengaswamy, R. Calderbank, S. Kadhe, and H. D. Pfister, “Logical
clifford synthesis for stabilizer codes,” IEEE Transactions on Quantum
Engineering, vol. 1, pp. 1–17, 2020.

[44] S. Bravyi and D. Maslov, “Hadamard-free circuits expose the
structure of the Clifford group,” 2020. [Online]. Available:
https://arxiv.org/pdf/2003.09412.pdf

[45] R. Steinberg, “Generators for simple groups,” Canad. J. Math., vol. 14,
pp. 277–283, 1962.

[46] S. Aaronson and D. Gottesman, “Improved simulation of stabilizer
circuits,” Phys. Rev A, vol. 70, no. 5, p. 052328, 2004.

[47] T. Pllaha, N. Rengaswamy, O. Tirkkonen, and R. Calderbank, “Un-
Weyl-ing the Clifford Hierarchy,” Quantum, vol. 4, p. 370, Dec. 2020.
[Online]. Available: https://doi.org/10.22331/q-2020-12-11-370

[48] T. Pllaha, K. Volanto, and O. Tirkkonen, “Decomposition of clifford
gates,” in 2021 IEEE Global Communications Conference (GLOBE-
COM), 2021, pp. 01–06.

[49] P. Delsarte and J.-M. Goethals, “Alternating bilinear forms over GF(q),”
Journal of Combinatorial Theory, Series A, vol. 19, no. 1, pp. 26–50,
1975.

[50] A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and
P. Sole, “The Z4-linearity of Kerdock, Preparata, Goethals, and related
codes,” IEEE Transactions on Information Theory, vol. 40, no. 2, pp.
301–319, 1994.

[51] R. Calderbank and S. Jafarpour, “Reed-Muller sensing matrices and the
LASSO,” in Sequences and Their Applications – SETA 2010, C. Carlet
and A. Pott, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 442–463.

[52] G. Liva, “Graph-based analysis and optimization of contention resolution
diversity slotted ALOHA,” IEEE Transactions on Communications,
vol. 59, no. 2, pp. 477–487, 2011.

[53] R. A. Pitaval and Y. Qin, “Grassmannian frames in composite dimen-
sions by exponentiating quadratic forms,” in 2020 IEEE International
Symposium on Information Theory (ISIT), 2020, pp. 13–18.

[54] R. Koenig and J. A. Smolin, “How to efficiently select an arbitrary
Clifford group element,” J. Math. Phys., vol. 55, no. 12, p. 122202, Dec
2014.


