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Abstract— We propose a joint channel estimation and data
detection (JED) algorithm for densely-populated cell-free massive
multiuser (MU) multiple-input multiple-output (MIMO) systems,
which reduces the channel training overhead caused by the
presence of hundreds of simultaneously transmitting user equip-
ments (UEs). Our algorithm iteratively solves a relaxed version
of a maximum a-posteriori JED problem and simultaneously
exploits the sparsity of cell-free massive MU-MIMO channels
as well as the boundedness of QAM constellations. In order
to improve the performance and convergence of the algorithm,
we propose methods that permute the access point and UE
indices to form so-called virtual cells, which leads to better
initial solutions. We assess the performance of our algorithm
in terms of root-mean-squared-symbol error, bit error rate, and
mutual information, and we demonstrate that JED significantly
reduces the pilot overhead compared to orthogonal training,
which enables reliable communication with short packets to a
large number of UEs.

Index Terms— Cell-free communication system, joint channel
estimation and data detection (JED), massive multi-user (MU)
multiple-input multiple-output (MIMO).

I. INTRODUCTION

ELL-FREE massive multi-user (MU) multiple-input
multiple-output (MIMO) wireless systems promise
significant enhancements in spectral efficiency compared to
traditional cellular systems [2]-[5]. The distributed nature of
such systems assures that every user equipment (UE) is able to
communicate with multiple nearby access points (APs) [6],
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[7]. Cell-free massive MU-MIMO systems are envisioned to
operate in time-division duplex (TDD) mode. The ideal case
forchannel estimation in the uplink would be to use orthogo-
nal pilot sequences. However, densely-populated cell-free
massiveMU-MIMO systems, in which hundreds or even thou-
sands of UEs communicate in the same time-frequency re-
source, prevent the use of orthogonal training sequences as it
would reduce the achievable data rates. While non-orthogonal
pilots cancertainly mitigate this issue, without taking special
precautions, the accuracy of the extracted channel estimates
will be severely compromised, resulting in poor spectral
efficiency.

In order to address this issue, recent research has mainly
focused on pilot reuse, and maximizing the signal-to-
interference-plus-noise ratio (SINR) with linear estimation and
equalization methods while taking pilot contamination into
account [8]-[12]. While such approaches have relatively low
complexity, they allow for high spectral efficiency only in
scenarios in which a large number of AP antennas serve a
far smaller number of UEs [7], [13]-[16]. In other words,
as the number of UEs approaches or even exceeds the number
of AP antennas, the performance of such densely-populated
cell-free massive MU-MIMO systems degrades considerably,
especially when relying on linear channel estimation and data
detection methods [17].

A. Contributions

We propose a novel joint channel estimation and data detec-
tion (JED) algorithm tailored to densely populated cell-free
massive MU-MIMO systems in which the number of UEs
is close to or larger than the number of AP antennas. The
distributed placement of UEs and APs results in sparse channel
matrices, as every UE is only nearby to a small number of
APs. The proposed JED algorithm simultaneously exploits
the sparsity of cell-free massive MU-MIMO channels and
the boundedness of constellation sets in order to minimize
the pilot overhead while providing high spectral efficiency.
Our algorithm approximately solves a relaxed version of the
maximum a-posteriori (MAP) JED problem using forward
backward splitting (FBS). To improve the performance and
reduce the complexity of our JED algorithm, we combine



nonorthogonal pilot sequences with novel permutation strate-
gies of AP and UE indices, which enable us to find better
initializers. We present simulation results that demonstrate
the advantages of JED compared to traditional methods that
separate channel estimation from data detection in terms
of the root-mean-squared-symbol error (RMSSE), bit error-
rate (BER), mutual information (MI), and channel-estimation
mean-square error (MSE).

B. Relevant Prior Art

1) Channel Estimation and Data Detection: The major-
ity of research on uplink transmission in cell-free massive
MU-MIMO systems has focused on linear methods that sepa-
rate channel estimation from data detection, such as maximum
ratio combining (MRC), zero forcing (ZF), and linear min-
imum mean-square error (L-MMSE) equalization [7], [15],
[18]-[22]. The optimization targets of such linear methods
are typically the MSE of channel estimation and/or signal
estimation, or maximizing post-equalization SINR. Albeit
computationally efficient and easy to analyze, linear methods
do not perform well in systems (i) that use nonorthogonal
pilot sequences or (ii) where the number of UE antennas
approaches the number of AP antennas [17]. The situation is
further aggravated in overloaded systems, where the number of
UE antennas exceeds the number of AP antennas. In contrast,
our nonlinear JED algorithm enables reliable transmission
in densely-populated systems with (often significantly) fewer
pilots than UEs. In addition, our JED algorithm will not
cause an increase in fronthaul data rates compared to the
centralized data detectors put forward in [22]. Concretely,
given a cell-free massive MU-MIMO system with B APs,
each equipped with N antennas (we assume N = 1), and
U single antenna UEs transmitting pilots and payload for K
time slots within one coherence block, the total amount of
fronthaul signaling is BN K complex scalars. This is the same
as that of the level 4 centralized method in [22, Tbl. I] (where
7. = K and L = B). Furthermore, our JED algorithm does
not require knowledge of second-order statistics on the UEs
channel vectors, which further reduces the pilot and fronthaul
overheads compared to the methods in [22]. As a drawback,
the complexity of our JED algorithm is substantially higher
than that of linear methods. Nonetheless, as we will show in
Section VI, linear methods that separate channel estimation
from data detection, even when performed in a centralized
manner, perform only poorly in densely-populated scenarios.
Moreover, decentralized linear data detectors as proposed
in [21], [22], which excel in complexity and scalability,
perform even worse than their centralized counterparts and
are not suitable for densely-populated scenarios.

2) Joint Channel Estimation and Data Detection: JED has
been studied in the small-scale MIMO literature [23]-[27].
While the complexity of such methods does not scale well
to large systems, an efficient JED algorithm has been pro-
posed in [28] for massive single-input multiple-output (SIMO)
systems. For massive MU-MIMO systems, JED algorithms
have been proposed only recently in [29]-[35]. To the best
of our knowledge, none of these methods exploit the specifics

of cell-free massive MU-MIMO systems. For example, refer-
ence [35] maximizes the /3-norm to exploit beamspace spar-
sity of millimeter-wave (mmWave) MIMO systems. Message
passing (MP) algorithms have also been used for JED in [29],
[32]. In contrast, our method exploits the sparse nature of
cell-free massive MU-MIMO channels in combination with
the boundedness of QAM constellations. Furthermore, our UE
and AP permutation methods discussed in Section IV could
also improve the performance of MP-based algorithms.

3) Sparsity in Cell-Free Massive MU-MIMO Systems: Spar-
sity of the channel matrices in cell-free massive MU-MIMO
systems has, up to now, not been exploited extensively.
In [36]-[39], the authors exploit the sparsity of beamforming
vectors during downlink transmission by only serving a small
portion of UEs. Exploiting sparsity to identify active UEs
was proposed in [40]. Reference [41] formulates channel
estimation as a convex optimization problem using a sparsity-
inducing /1-norm penalty. In [42], [43], channel sparsity in
beamspace domain has been exploited for cellular mmWave
communication systems. In contrast, we exploit sparsity for
the JED algorithm in cell-free massive MU-MIMO systems,
which comes from the distributed placement of APs and UEs,
and the fact that the path loss between UEs and APs causes
only a small number of strong links to be present.

4) Pilot Design and Reuse: In densely-populated cell-free
massive MU-MIMO systems, the shortage of pilots has been
identified as a major concern. A straightforward approach
is to assume that the number of UEs is smaller than the
number of available pilot sequences, which enables the use
of orthogonal training [37], [44], [45]. If the number of UEs
exceeds the number of available pilots, either pilot reuse
or nonorthogonal training is necessary. Reference [10], [46]
propose to divide the UEs into fixed groups, each assigned
with one pilot, whereas reference [9] proposes a dynamic pilot
assignment strategy. Nonorthogonal pilot sequence design has
been studied in [8], [11] aiming at minimizing channel esti-
mation MSE. Nonorthogonal pilot reuse strategies have been
proposed in [17], [47]. JED algorithm natively enables the use
of nonorthogonal pilot sequences as the data symbols are also
used to estimate the channel matrix.

5) Clustering for UEs and APs: UE-centric and AP-centric
clustering schemes that aim at reducing the backhaul data
transfer have been studied in network MIMO [36] and redis-
covered in cell-free massive MU-MIMO [3]. UE-centric clus-
tering enables the UEs to communicate with only a few nearby
APs, which has been studied in [21], [37], [39], [48]-[50].
AP-centric clustering only serves a few nearby UEs and has
been studied in [6], [7], [18]. As mentioned above, clustering
strategies for pilot reuse have been discussed in [10], [46].
Clustering to facilitate channel estimation has been proposed
in [51]. In contrast, our approach only clusters AP and UE
indices and dynamically constructs virtual cells in which we
perform orthogonal channel training as interference among
virtual cells is minimized—to minimize intra-virtual-cell inter-
ference, we propose to use mutually unbiased bases [52] as
pilot sequences.



Fig. 1. A cell-free massive MU-MIMO system where we dynamically
construct so-called virtual cells with minimal inter-virtual-cell interference.

C. Notation

Lower case and upper case boldface letters denote matrices
and vectors, respectively. We use Ay, 4, a,, and aj, to represent
the entry in the bth row and uth column of the matrix A,
the uth column of the matrix A, and the kth element of the
vector a, respectively. We use Iy, 17 xar, and O s for the
M x M identity, L x M all-ones, and L x M all-zeros matrix,
respectively. The superscripts *, 7, and ¥ refer to the complex
conjugate, transpose, and Hermitian transpose, respectively.
For the matrices A and B, we define the real-valued inner
product as (A, B, = Re{Tr(A”B)}, where Re{x} extracts
the real part of € C and Tr is the matrix trace. For the vec-
tors a and b, we define (a,b)x = Re{a’b}. Consequently,
we have (A, B)x = (vec(A), vec(B))n,, where vec(-) is the
vectorization operator. The matrix operators ® and o denote
the Kronecker product and Hadamard product, respectively.

e
The operator > denotes element-wise larger-equal-than. For a
matrix A, we will use the following entrywise norms: || A || . =

\/<A7A> > ||AH1 = Zb,u|Ab,U7 and HA||O\O:maXl‘d7A|
with & = [Re {vec(A)}" , Im {vec(A)}"]T.

D. Paper Outline

The rest of the paper is organized as follows. Section II
introduces the system model. Section III formulates the JED
problem and details our FBS algorithm. Section IV proposes
principled initialization schemes for the nonconvex JED prob-
lem. Section V discusses UE and AP permutation based
on CSI and on physical locations. Section VI analyzes the
computational complexity and demonstrates the efficacy of our
method via simulation results. We conclude in Section VIIL.

II. PREREQUISITES

We now introduce the cell-free massive MU-MIMO system
and summarize the channel model.

A. System Model

We focus on the uplink in a cell-free massive MU-MIMO
system with B distributed single-antenna APs and U single-
antenna UEs. As shown in Fig. 1, all the APs are connected to

a central processing unit (CPU) via a backhaul network. Due to
the distributed nature of cell-free massive MU-MIMO systems
and the channel’s sparsity, the area can be divided into virtual
cells shown with different colors in Fig. 1. Each virtual cell
will be constructed dynamically (i.e., dependent on the channel
matrix or the physical UE/AP locations) to minimize inter-
cell interference—this approach will be detailed in Section V.
We assume a block-fading scenario with TDD and a coherence
time of K = T+ D time slots, where 7' time slots are reserved
for pilot-based channel training and D time slots for payload
data. The input-output relation of the considered frequency-
flat! cell-free massive MU-MIMO system is given by [53]

Y = HS + N, (D

where Y € CB*K is the receive-signal matrix, H € CB*UV is
the MIMO channel matrix, S contains two parts and will be
introduced below, and N € CB*X models noise, with entries
assumed to be i.i.d. circularly-symmetric complex Gaussian
with variance Ny per complex entry. To simplify notation,
we separate training from payload by rewriting (1) as follows:

[Yr,Yp]=HI[Sr,Sp] + N. (2)

Here, the matrices Sp € CY*T and Sp € QU*P con-
tain training pilots and data symbols, respectively; the pilot
sequences St are designed as tight frames (see Section I'V-
A for the details) and the entries of Sp are chosen from the
constellation Q; the matrices Y € CB*T and Yp € CB*P
contain the received pilot and data symbols, respectively. Our
goal is to jointly estimate the channel matrix H and detect the
entries in Sp from the received signals in Y and the known
training-pilot matrix Sr.

B. Cell-Free Massive MU-MIMO Channels

To develop a JED algorithm for cell-free massive
MU-MIMO communication, we use the channel model put
forward in [2] and consider single-antenna APs (see Remark 1
for a possible generalization to multi-antenna APs). For this
model, the channel matrix in (1) is decomposed as

H = /5,GA, 3)

where p,, denotes the normalized uplink transmit signal-to-
noise ratio (SNR), G € CE*U is the cell-free channel matrix,
and A € RY*U is a diagonal power control matrix. The
average power of each transmit symbol in S is normalized
so that E [|S,, x|?] = 1, and the entries of N are normalized
so that Vg = 1. Following the model in [2], the entries of
G are modeled as Gy, = /Bv,ubb,w Where 3y, and Oy,
characterize large-scale and small-scale fading between the
bth receive antenna and the uth UE, respectively. We assume
0p, ~ CN(0,1) and Sy, is detailed in Section VI-A.
The power control matrix A is used to attenuate the trans-
mit symbols in S and we absorb its effect in the channel
matrix H.

Since in cell-free massive MU-MIMO systems with random
placement of UEs and APs, the UEs are only close to a

!For frequency-selective channels, we can use orthogonal frequency-division
multiplexing (OFDM) to obtain an equivalent system model per subcarrier.
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Fig. 2. Entry-wise visualization of ‘Hb,u‘ from a cell-free massive MU-MIMO channel matrix: (a) The original (unpermuted) channel matrix; (b) a permuted
channel matrix based on CSI; and (c) a permuted channel matrix based on physical locations. By reindexing APs and UEs at the CPU one can construct
“virtual cells,” for which inter-virtual-cell interference is minimized in order to simplify nonorthogonal channel estimation and improves spectral efficiency.

few APs, most of the entries in G will be small—a central
property which we will discuss further in Section II-C. Since
E [\Su,k|2} = 1, the total received power for the uth UE
is ||y g which may vary substantially among UEs. To this
end, we use a per-UE power control scheme that limits the
maximum receive power by restricting the transmission power
of some UEs based on their channel condition. Concretely,
we set an upper limit on the received power such that UEs
whose received power would exceed the limit have to transmit
with lower power—weak users continue transmitting at their
nominal power. To achieve this goal, we define the entries of
the diagonal power-control matrix A = diag(\1,...,\y) as
follows:

. P .
X2 = min{ g3, 105 miny—1....v w3}/ lgal3. @)

Here, P defines the maximum dynamic range between the
weakest and strongest UE received power in decibels. This
power control scheme relies on the magnitudes of the channel
matrix entries, which change only significantly at the timescale
of large-scale fading. Hence, it is possible that APs transmit
the power level to the UEs in the downlink phase and the UEs
could back-off accordingly. While this power control scheme
is merely to confine the dynamic range of the received signals,
it does not fundamentally alter the channel’s sparsity property
discussed next.

C. Channel Sparsity of Cell-Free Massive MU-MIMO
Systems

Due to the distributed and random placement of APs and
UEs, each UE is likely to be close to only a few APs—this
property causes most links to be weak and the channel matrix
in (3) to be sparse. Fig. 2(a) illustrates this key property, where
we show the absolute values of a channel matrix for 128 APs
and 128 UEs placed randomly in a 1km? square area.

Since the enumeration of APs and UEs is arbitrary, and
only a few entries of the channel matrix contain most of the
energy, it is key to realize that one can permute the rows (APs)
and columns (UEs) of the channel matrix to approximate a
block-diagonal structure, by merely re-indexing the UEs and
APs from the CPU’s viewpoint. As an example, Fig. 2(b)

and Fig. 2(c) show block-diagonal structures that can be
obtained by leveraging either channel-state information (CSI)
or physical UE location, respectively. Interestingly, the UEs
within each diagonal block will experience strong inter-UE
interference, whereas UEs in different blocks will experience
only little interference. Effectively, such clustering strategies
create virtual cells, which can be used to perform orthogonal
training within each virtual cell and nonorthogonal training
among virtual cells where interference is minimized. See
Section V for the details.

III. JOINT CHANNEL ESTIMATION AND DATA DETECTION

We now formulate the JED problem and then relax it so
that it can be solved approximately using FBS [54].

A. The MAP-JED Problem

Using Bayes’ theorem and the assumption made in
Section II, the channel matrix H and data matrix Sp can
be recovered jointly by maximizing the posterior probability
density function (PDF) as follows:

{H,Sp} = arg max p(Y[H, Sp)p(H). 5)

HGCBXU
SpeQVxP

Here, we assume that H and Sp are independent, and the
entries of Sp are i.i.d. taken from the constellation set Q.
Since the entries of N are assumed to be i.i.d. circularly-
symmetric complex normal, the conditional PDF in (5) is
given by
Y - HS7| 7
No
_IXo —HSpll o
Ny '

Due to channel sparsity, we assume that the channel coeffi-
cients in H follow a sparsity-inducing complex-valued Laplace
prior. With the definition in [55, Eq. 14] and the assumption
that the entries in H are i.i.d., the joint PDF is

1
YH,Sp) = ————
p(Y|H,Sp) WBKNOGXP<

/,12 BU
pan = (£) eoamly. ger.



By inserting (6) and (7) into (5), we obtain the following
equivalent MAP-JED problem:

{H,Sp} = arg min |[Y — H[S7,Sp]||% + uH|,. @8
HeCB*V
SpeQ¥*P
Here, the parameter 1 = 1Ny controls the channel’s sparsity,
where larger values promote sparser channel matrices.

Remark 1: For multi-antenna APs, we can generalize
our problem formulation by leveraging block-sparsity [56].
This requires us to replace the Laplace prior in (7) by
p(H) o exp (Zle Zgzl—ﬂﬂhb,u QS, where i € Ry, b €
{1,2,...,B}, and u € {1,2,...,U}. Here, h;, € CN*! is
the channel vector of UE w to AP b, where N is the number of
antennas for each AP. The permutation technique and the JED
solver can also be adapted to this block-sparsity prior. While
the multi-antenna AP case might be more practical, we stick
to the single-antenna AP case for simplicity of exposition.

Remark 2: For cell-free massive MU-MIMO systems that
have access to second-order statistics for each UE channel
vector, as, e.g., in [21], [22], one can adapt our JED problem
formulation with a suitable Gaussian prior for p(H) instead
of the Laplace prior in (7). While our JED formulation in
(8) requires only one hyperparameter (namely u), a MAP-
JED method that exploits such second-order statistics would
require additional pilot resources [21]. For the sake of brevity,
a detailed comparison between the two approaches is left for
future work.

We note that JED in cell-free massive MU-MIMO systems
is different from that in cellular massive MIMO systems
for two reasons. First, channel sparsity naturally arises in
cell-free massive MU-MIMO channels as a result of APs and
UEs placement in space. The collocated antennas at BSs in
cellular massive MU-MIMO system results in approximately
the same path loss, which eliminates channel sparsity. The
second reason is that channel sparsity in cell-free massive
MU-MIMO systems enables us to group APs and UEs in
such a way that the sparse channel matrices are approximately
block diagonal (cf. Fig. 2). This structure enables us to deploy
fewer pilots than UEs, while the UEs within each virtual cell
(corresponding to a block in the block-diagonal matrix) can
still be furnished with orthogonal pilots and UEs among virtual
cells with near-orthogonal pilots. We will further detail this
idea in Section IV.

B. Biconvex Relaxation of the JED Problem

We now provide means that enable us to approximately
solve the MAP-JED problem in (8) with manageable com-
plexity. We start by relaxing the discrete constellation set Q
to its convex hull, which is defined as [28]

¢ ={Xi%0a | 0 e Ry Vi) AL =1}, ©

where ¢; is the ith symbol in Q. Note that for QPSK
with {i\/g + 1/3j}, the convex hull C is a box around
the four constellation points. This relaxation enables us to
find solutions in a continuous region CY*” instead of a
discrete set and has been used recently for massive MIMO

data detection which separates channel estimation from data
detection [57]-[59].

To improve the performance of the relaxed problem,
we additionally use a strategy put forward in [60]. Intuitively,
for QPSK, we are favoring solutions near the four corner
points. Thus, we add a concave regularizer —v||Sp||% with
parameter v € R, to the objective of the relaxed problem
which pushes the solution towards the corners of the convex
hull:

{H7 SD} = arg min
HeC”*V
Specuxp

{IrY - H[S7. 8]l

+ul[H], = ISoll} ) (10)

While the problem (10) remains nonconvex, the following
lemma establishes conditions for which the problem is bicon-
vex in H and Sp. A short proof is given in Appendix A.
Lemma 1: The problem in (10) is biconvex in H and Sp if
Amin > 7, Where Apiy is the smallest eigenvalue of HPH.

C. Uniqueness of the JED Solution

Since our goal is to simultaneously recover the channel
matrix H and the data symbols in Sp, certain nonuniqueness
issues of the solution may arise. We now show how such ambi-
guities can be avoided with suitable pilot matrices S. Define a
diagonal phase-shift matrix D = diag (e/%1,e/%2, ... ei%V)
with ¢, € [0,27], w = 1,...,U, and a permutation matrix
P = [er,,€ru), 1 €ny,| Where er is a standard basis
vector, which is one in the 7(u)th entry and zero otherwise.
Let {H, [St, SD]} be a solution to (10). Then, the alternative
tple {HD¥ P, PD[Sr,Sp]} can also be a solution as it
has exactly the same cost in (10) and satisfies the constraints,
as long as the phase shifts ¢, satisfy e/®vsp = s/, where
sp, s € Q are entries of the training matrix Sp. Such
nonuniqueness issues have been studied in [32]-[35], [61]
and can be resolved in various ways. Pilot-based systems with
orthogonal pilots avoid such issues entirely. Since our goal is
to undertrain channels with nonorthogonal pilots, uniqueness
of a solution to (10) is no longer guaranteed. We now provide
a simple condition for which no phase-permutation ambiguity
can arise. A short proof is given in Appendix B.

Lemma 2: Fix a pilot matrix ST = VUFH where F has
normalized columns so that Hfb||§ =v,b=1,...,B. Let

/{zg;g)}/(!fffb/‘ (11)
be the coherence of the matrix F. If k < v, then no
phase-permutation ambiguity can exist.

In Section IV-A, we provide pilot matrices that avoid
the phase-permutation ambiguity and enable accurate channel
estimation even in heavily undertrained systems.

D. JED via Forward-Backward Splitting

We now show an FBS-based approach to approximately
solve the problem in (10) at low complexity. Due to the
nonconvex nature of (10), FBS is not guaranteed to find an
optimal solution. Nevertheless, we show in Section III-E that



FBS is guaranteed to converge to a stationary point with a
proper stepsize. Furthermore, we show in Section VI that our

algorithm performs well for various performance metrics.
FBS is an efficient numerical method to iteratively solve

convex optimization problems of the following form [54]:
X = arg min f(x) + g(x). (12)

X

Here, the function f is differentiable and convex, and g is
a more general (not necessarily smooth or bounded) convex
function. Given a non-analytic function f : CM — R, we use
the Wirtinger derivatives [62] to define the gradient. To this
end, after initializing the algorithm with x| FBS solves the
problem in (12) via iterations ¢ = 1,2, ... by computing
x(t+) = prox, (x(t) - T(t)Vf(x*(t) ); T(t)), (13)
where Vf(x*(*) is the gradient of f with respect to x*(*),
and 7®) is a per-iteration stepsize. We use the adaptive
stepsize selection proposed in [54, Sec. 4.1] to accelerate the

convergence. The proximal operator for g(x) is defined as

1
prox,(z; 7) = arg min 7g(x) + §||x - z||§ . (14)
X
Instead of performing alternating optimization in H and Sp,
we use FBS to solve for both matrices simultaneously.
We group the two matrices together by defining Z =
[HY S]#, where S = [S7,Sp] and St is known and fixed
throughout the iterations; the matrices H and Sp contain the
optimization variables. We define the functions f and ¢ in
(12) as

£(Z) = f(H,Sp) = 7|Y ~ HS|2, (1s)

v
9(2) = 9(H.Sp) = p|H|,, — Z[Sp + xc (Sp). (16)
where we define the indicator function as

0 SD ECUXD

o Sp ¢ cUxP, {17

Xxc (Sp) = {

With the above definitions, the objective function consisting
of a sum of (15) and (16) is not analytic. That said, the
objective function is not only dependent on the complex matrix
Z, but also implicitly on Z* and hence the quantities g—é and
aazf* are both gradients of f with respect to Z and Z* [62].
According to [62, Eq. 4.49], the steepest descent direction
is simply % and thus the complex-valued gradient of f is
given by

of
o Of lage| | HS-Y)S¥
Vf(z)_aZ*_ of _[(HSY)HH - 19
oST

The proximal operator for H is given by

prox,, (H; 7®) = arngin {T(t),u||X||1

1
+5IX—HI% | = Hipr®), (19)

where 7(H; u7(*)) is the shrinkage operator [54] defined as

W(Hpai ) = b maX{|Hbu
) |Hb,u| )
where division and multiplication are interpreted entry-wise.
Here, p is the sparsity parameter, 7(!) is the per-iteration
stepsize, and we define z/|z| = 0 for z = 0.
The proximal operator for Sp can be derived from (14) as

—ur,0}, 0)

(t) 1

. T

prox,(Sp; (")) = arg min — L |X[[}. + 5 X = Sp|7,
XchxD

21

where we moved the indicator function in g(Z) back to the
constraint. By completing the square, the solution to (21) is

. 1
prox, (Sp; 7*)) = proje <71 — @ SP T‘”) (22)

where p) = 7/~ Note, for stability we must choose 7(*)
to be small enough that p*) € [0,1). The right-hand side
proximal operator is the projection onto the convex hull C.
For complex-valued QAM constellations, each element of the
projection is applied independently to real and imaginary parts
as

proje (Re{ Xy q}) = min{max{|Re{X, a}|, —a},a} (23)
proje (Im{ Xy ¢}) = min{max{|[Im{ X, a}|, —a}, a}, (24)

where d € {1,2,..., D} and « defines the radius of the box
around Q.

E. Convergence of FBS for the JED Problem in (10)

Since the problem in (10) is nonconvex, we now analyze
the convergence properties of FBS which depend on the initial
choice of the initialization variable Z("). For this reason, rather
than identifying a specific stepsize 7(*) to use, it is simpler to
guarantee convergence when a simple backtracking line search
is used [54]. The following result is proven in Appendix C.

Theorem 1: Let h(Z) = f(Z)+ g(Z) be the objective func-
tion given by (15) and (16). Suppose that the stepsizes ) of
FBS are bounded away from zero, and selected small enough
to satisfy the following backtracking line search condition:

FZE) < £(Z20) 4z — 20 vz D)) n
7,t+1) _ 7(t)

1 2
+27’(t) H F 25)
where NV f(Z*®)) is the gradient for f at Z*(). Then, the
objective h decreases monotonically, i.e., we have

h(ZEY) < h(ZD). (26)

In addition, if ) is further restricted to satisfy 7 < 1/,
then the sequence of iterates converges.

Note that while FBS for solving (10) is guaranteed to
converge if the stepsizes are chosen appropriately, it is not
guaranteed to converge to an optimal solution. We reiterate
that our FBS solver only approximately solves the formulated
MAP-JED problem in (10) but our simulation results in
Section VI demonstrate that it converges to excellent sta-
tionary points. Establishing stronger optimality guarantees is
extremely challenging and left for future work.



IV. INITIALIZING FBS-JED

We now show methods to initialize our FBS-JED algorithm
that improve performance and reduce complexity.

A. Pilot Sequence Design

One key aspect for JED is designing suitable pilot
sequences, which is particularly important as we focus on
undertraining the channel matrix with nonorthogonal pilots.
Concretely, we will use pilot matrices with low coherence as
defined in (11).

As in Lemma 2, let the pilot matrix be Sr = VUFH,

where F has unit-norm rows and normalized columns
2 . .
Ifll;=v=1%,b = 1,...,B. A prominent instance of

matrices with near-orthogonal columns are equiangular tight
frames (ETFs) [63] for which all pairs of inner products,
ie, k = |fIfy| for b # b achieve the same coherence

% %, given by the Welch lower bound [64].

Furthermore, ETFs have orthonormal rows, i.e., FF? =
I+. Another useful class of matrices with low-coherence are
mutually unbiased bases (MUBs). MUBs have the following
block structure F = [Fy,...,Fy], where F,, € CT*T with
n = 1,..., N blocks. Besides having orthonormal rows,
MUBs also have orthogonal blocks, i.e., F,I;IF,,L = %I%,

n =1,..., N, and the coherence between any two columns
of two different blocks is k = % %

From the perspective of sparse signal recovery, nonorthog-
onal pilots S7 € CUXT where U > T and noise may cause
ambiguity and render estimation difficult. ETFs and MUBs
have low coherence and thus enable stable recovery of sparse
signals using ¢1-norm penalty as shown in [65]. Even though
MUBs have higher coherence than ETFs, the orthogonal
structure within each block matrix F,, is particularly helpful
for block-permuted channel matrices that form virtual cells
(cf. Fig. 2). We refer the interested readers to [52], [63]
for detailed properties and construction steps of MUBs and
ETFs. Note that we use ETFs for the ¢;-norm-based channel
estimator (39) for unpermuted channels, and we use MUBs to
estimate each block on the diagonal separately for permuted
channels; see Section IV-C for the details.

Rk =

B. Permutation of APs and UEs

The distributed nature of APs and UEs in cell-free massive
MU-MIMO systems promotes sparsity in the channel matrix.
Given this property together with the fact that enumeration
of APs and UEs is arbitrary, we can permute the rows
and columns of the channel matrix to attain approximately
block-diagonal structure (cf. Fig. 2). Mathematically, we intro-
duce two permutation matrices Pap and Pyg to reformulate
input-output relation as:

PapY = (PapHPyg)(PI:S) + PapN. (27)

By defining Y = PpY, H = PopHPyg, and [S7,Sp] =
P{LS, we see that all of the assumptions for N, H,Sp in
Section II and also the cost function in (10) are invariant to
such permutation. Note that all of the assumptions on N, H,

and Sp in Section II are invariant to such permutations, i.e.,
the problem (10) can be posed equivalently as

o~ e 2
{H7SD} = arg min {HY_H[ST’SD]H
HeCBxU F
SDchxD

e, offsef, ). e

where Y = PapY, H = PopHPyg, and [Sp,Sp] = PY.S.
For the assumptions on H and N, the JED problem remains
unaffected by such AP and UE permutations, and the i.i.d.
Laplace distribution of each entry in H and the i.i.d. circular
symmetry of the Gaussian noise also remains. In fact, the
new variables H and Sp are merely two new matrices in
CBXU and CU*P, respectively. Nonetheless, the goal behind
such AP and UE permutations are to (i) assign suitable pilot
sequences to the UEs and (ii) find better initializers for both
H and Sp, which matters as we are solving a nonconvex
problem using FBS. By permuting the channel matrix to
obtain approximately block-diagonal structures as illustrated
in Fig. 2(b) and Fig. 2(c), we can separately perform channel
estimation and data detection within these blocks, which we
call “virtual cells” in Fig. 2, with MUBs that approximately
decouple the interference among both blocks.

We note that clustering methods in papers on UE-centric
cell-free systems, e.g., [21], typically form overlapping cells,
which is cruicial for the design of decentralized and scalable
data detection methods. However, we do not perform our
permutation approach in that way for two reasons. First, our
virtual cells only serve the purpose of assigning pilots to UEs
and simplifying channel estimation. Overlapping cells would
not help us in accomplishing this goal. Second, the vectors
in each sub-block of MUBs are orthogonal, while the vectors
from different sub-blocks are correlated. If we were to form
overlapping cells, then the block-wise orthogonality of MUBs
can no longer be exploited.

C. Initialization of the Channel Matrix

In our conference paper [1], we used a least-square (LS)
channel estimator to initialize H. Here, we show that we
can improve upon this approach using the permutation idea
introduced above. Consider an example with two virtual cells
in H, where the input-output relation during the training phase
is given by the following block structure:

Yo, | _ |Hu Hip |:le| n N7,
Yr, Hy) Hayo | [T2 Nr, |

Here, we use the permutation approach to create two virtual
cells Hi; and Hao whose entries are much stronger than
those in the block-off-diagonal matrices Hqo and Hy;. See
Figs. 2(b) and 2(c) for an illustration of four virtual cells.
Assume that the pilot matrix is constructed by an MUB with
N = 2, where T1TH = T,TE = TTy and the inter-cell
correlation is T1 T4 = ToTH = \/Tl%X ¢ Due to the facts
that (i) the entries in the block-off-diagonal matrices are much
weaker than the block-diagonal matrices and (ii) the coherence
between T; and Ty is low, we can perform independent

(29)




training within the two virtual cells, assuming the off-diagonal
blocks are zero. ~

We now illustrate this approach for estimating Hy; the case
for Hao is analogous. Since T is orthogonal and the entries
in H;o are close to zero, we can perform least-squares (LS)
channel estimation?

Hy, LS = ?TlT_l —H;, +N, (30)

where N = NTIT + H12T2T . The property of MUBs
helps to mltlgate the noise NTlT_1 and the interference
H12T2T present in N. To see this, recall that the entries
in Ny are iid. circularly-symmetric complex Gaussian with
variance Ny = 1. Furthermore, we have Tl_1 = %Tfl . Hence,
the covariance and the interference of the noise after LS
channel estimation are %I B and %ng 1 uyu, respectively.

The interference is small as long as the entries in ﬁlg
are small. The presented permutation strategy is designed
to ensure this property, i.e., inter-virtual-cell interference is
minimized. Consequently, the use of MUBs for initial channel
training is sensible for the following reasons: (i) Orthogonal
pilots are used within each virtual cell and (ii) noise and
inter-virtual-cell interference are further suppressed due to
the incoherence between MUB blocks. We reiterate that our
clustering approach only improves initialization of our FBS
algorithm—Section VI-D shows that this approach results
in low MSE and can significantly reduce our algorithm’s
complexity. The CPU still solves the JED problem in (28)
as a whole.

D. James-Stein Estimator and Median Absolute Deviation

To further reduce the MSE of initial channel estimation,
we propose to use the James-Stein (JS) estimator [66].
By treating N as a matrix consisting of circularly-symmetric
complex Gaussian random entries with variance Ny per com-
plex entry, we can improve the initial channel estimate as
follows. Let th = h + n represent one column of HH LS
in (30). Assuming that n is circularly-symmetric complex
Gaussian with variance Ny, the complex-valued version of the

JS estimator is given by
X B—1)Ng \»
hys = (1 - %)hm,

which results in lower channel estimation MSE compared to
the traditional LS estimator if B > 1 [66].

The remaining piece of the puzzle is to identify the unknown
variance Ny of the noise and interference term n. Fortunately,
reference [67] recently provided a computationally efficient
way to estimate the noise variance in systems where sparse
signals are observed in complex Gaussian noise. By exploiting
the sparsity of h, we can estimate the noise variance Ny =
median (|his|?) / log(2) [67, Eq. 4] where median(-) refers to
the sample median and |IA1L5|2 refers to the entry-wise absolute
value square of the vector flLs.

(3D

2We utilize LS channel estimation instead of the linear mean-square error
(L-MMSE) estimator as we lack the necessary statistical knowledge of the
interference caused by UEs from an adjacent virtual cell, i.e., the distribution
of H12T2 is unknown.

E. Initialization of the Data Matrix

We now show how to initialize the data @atrix Sp.
We first define a vector h that is the vectorized H and then
compute Ny, = median(|h[2)/log(2) followed by L-MMSE
estimation from the received payload data matrix Yp as
§D = I/‘:\[HI/‘\I+NI:IIU ﬁHYD since £ [|Suk|2] =
We reiterate that the proposed methods to initialize the channel
and data matrices can also improve the performance and
complexity of other JED algorithms.

V. AP AND UE PERMUTATION

We now propose two algorithms that perform AP and UE
permutation with the goal of constructing virtual cells.

A. CSI-Based Channel Matrix Permutation

We start by focusing on a CSI-based permutation approach.
Our goal is to cluster the entries in the channel matrix H
into an approximately block-diagonal structure as shown in
Fig. 2(b). To this end, we define the auxiliary matrix A €
RB*U where Ay, 2 [Hy.|? for all b,u. Given A, we can
permute its rows and columns by A = Pap APy where Pap
and Pyg are permutation matrices for the rows and columns of
A. Permuting A into an approximately block-diagonal matrix
can be formulated as a nonconvex optimization problem:

maximize 1;xp [MN o (PApAPUE)] 1kt (32)

Papellp
Pye€lly

Here, 1I,; is the set of all possible M x M permutation
matrices, My € RP*U is a mask which determines the
structure of the permuted matrix A = My o (PApAPyg),
and N indicates there are N virtual cells to be constructed.
To arrive at an approximately block-diagonal structure with N
virtual cells on the diagonal, we set M to be block-diagonal
with N diagonal blocks 1z, y. In our simulations, we set
N € {2,4} for different modulation schemes which are
divisible by B and U.

Since the complexity of enumerating all possible pair of
permutation matrices in (32) is prohibitive, we use a convexi-
fication method put forward in [68]. Specifically, we relax the
set of permutation matrices 11, to the set of doubly-stochastic
matrices:

Dy = {X e RM*M . X >,
X1arx1 = arxt, X Larer = Lassa -

While a solution in (33) is not necessarily a pair of permutation
matrices (as the entries may lie in the set [0, 1]), we use the
technique from [60] to gently push the results to the corners
of Dp, Dy . The resulting problem to solve therefore becomes

(33)

minimize { — 11 x B [MN O (PAPAPUE)} 1U><1
Pap€Dp
PyreDy

4 4
~211Pael: — SIPuelly b 34
with the parameter p € R.. Such a problem can be solved with

FBS as well. The gradient can be calculated by exploiting the
property of Hadamard product. The proximal can be solved



with Douglas-Rachford splitting (DRS). We omit the details
of such a solver due to the lack of space.

B. Physical Location-Based Channel Matrix Permutation

The block-diagonal structure can also be attained by permut-
ing the channel matrix using information on physical locations
as shown in Fig. 2(c). Given Euclidean distances, we group
fixed APs into N balanced-sized clusters where we assign all
of the UEs accordingly.

To obtain balanced-sized clusters, we employ the algorithm
put forward in [69], which consists of an assignment step and
an update step for cluster grouping and centroid updating,
respectively. For AP clustering, we iterate the two steps until
convergence, whereas we only run the assignment step once
for UE clustering since the centroids are already obtained in
the AP clustering. In what follows, we only demonstrate how
to formulate the AP assignment problem in the form that is
solvable with FBS and DRS since the update step is obvious.

In order to minimize the overall Euclidean distance between
APs and their corresponding centroids, the relaxed version of
AP assignment problem can be formulated as

S w
minimize 1145 (Qo D) 1yy1 — —HQH;, (35)
QeDpnN 2
where
ﬁBN:{XERBXN:XEO,
B
X"y = NlethNn =1px1}. (36)
Here, Q is the partition matrix where @, = 1 indicates

the bth AP belongs to the nth cluster, D € RE*YN s the
distance matrix consisting of the Euclidean distances between
all the APs and their corresponding centroids, and the second
term with a parameter w € R, indicates that we are favoring
solutions close to the corners of 153 ~. Consequently, (35) is
basically a simplified version of (34).

VI. NUMERICAL RESULTS
We now demonstrate the efficacy of our JED algorithm.

A. Simulation Setup

We evaluate our algorithm with the cell-free channel model
detailed in Section II-B and consider a square area of
1 km? with U = 128 randomly positioned UEs. As in our pre-
vious study [1], we assess the performance of BPSK, QPSK,
16-QAM with B = 64, B = 128, and B = 256 randomly
positioned APs, respectively. The maximum UE transmission
power is 100mW and we use the per-UE power control with
P = 12dB discussed in Section II-B. The carrier frequency
is 1.9GHz and the bandwidth 20 MHz. The receive and UE
antennas are at a height of 15m and 1.65m, respectively.
We use the three-slope path-loss model defined in [70]. The
small-scale fading and large-scale fading parameters between
the bth antenna and the uth UE are 6,;, ~ CN(0,1) and
Bup = PLU,,,m%S"b where PL,, ; is the path loss, oy, is
8dB, and z,;, ~ N (0,1) is shadow fading with variance o3,.
We permute the channel matrices using CSI-based and phys-
ical locations-based methods shown in Section V. Pilots are

tailored for different channels. We design S with ETFs and
MUBs for unpermuted and permuted channels, respectively.
We perform the ¢;-norm-based channel estimator (cf. (39))
for unpermuted channels. For permuted channels, we estimate
channels in the way discussed in Section IV.

B. Performance Metrics and Baseline Algorithms

In a cell-free massive MU-MIMO system, the UEs are expe-
riencing different SNRs which prevents us from generating
conventional BER vs. SNR plots. Thus, we characterize the
per-UE cumulative density function (CDF) for the RMSSE,
BER, and channel estimation MSE to examine our algorithm’s
efficacy from different aspects. Also, instead of providing a
spectral efficiency (SE) analysis, which is difficult due to the
nonlinearity of our JED algorithm and would require Gaussian
codebooks instead of discrete transmit constellations (which is
what our JED algorithm exploits), we numerically calculate the
mutual information (MI) between the discrete transmit signals
and soft-symbol estimates generated by the data detector for
each UE individually, and we show the resulting distribution.
Our performance metrics are as follows.

1) Per-UE BER: We define the BER for the uth UE as
BER, = ni—lD where ¢, is the total number of bit errors for
UE u over D payload data slots and 7, is the number of bits
per symbol.

2) Per-UE RMSSE: We define the RMMSE for UE u over
D payload data slots as

Ejllﬁth—WSDh$2

S Splusl”

where [§ DJu,k and [Spl,., denote the estimated and transmit-
ted data symbols of the uth UE at time slot k, respectively.
3) Per-UE MI: In the interest of a SE analysis, we numer-
ically simulate the MI for each UE given the discrete input
constellation [71]. The MI for the uth UE is defined as

KT

RMSSE,, =

; (37)

M, (H([Splu) —H ([Splul[Splu))-

Here, 7" and K are the pilot time slots and total time slots,
respectively. The prefactor (K —1")/ K takes the pilot overhead
into account and decreases the per-UE MI by the fraction
of used pilots (as they do not carry any payload data).
The quantities [Sp], and [Sp]., denote the transmitted and
quantized estimated data symbols of the uth UE over D data
slots, H([Sp].) is the empirical source entropy of the uth
UE over D data slots, and H ([Splu|[Sp]u) is the empirical
conditional entropy of the uth UE over D data slots. Since the
output of JED is continuous, we quantize the output of JED
and numerically compute the empirical entropies.

4) Per-UE MSE: We define the channel estimation MSE of
the uth UE as MSE,, = IE‘LHflu — hu||§} where h,, and h,,
are the estimated and true channel vectors, respectively.

5) CDFs: By treating all of the above performance quanti-
ties as random variables, we use Monte-Carlo simulations to
characterize their CDFs over multiple UE and antenna place-
ments, noise realizations, and data transmissions. The fraction

(38)



of Monte-Carlo trials for which the per-UE RMSSE was below
x is defined as Pr[RMSSE < z]; the quantities Pr[BER < x]
and Pr[MSE < z] are defined analogously. To ensure consis-
tency among all performance metrics (i.e., good performance
is indicated by a curve in the upper-left of the respective plot),
we define the per-UE MI as Pr[MI > ] (which is technically
a complementary CDF) on the y-axis and show the largest
per-UE MI value on the left-hand-side of the x-axis—this
is in stark contrast to classical CDF plots for the Gaussian
SE in the literature (see, e.g., [2]). We note that all of the
above performance metrics come with their own shortcomings.
We thus demonstrate the efficacy of our JED problem with all
four metrics.

6) Baseline Algorithms: To characterize the performance of
our JED algorithm, we introduce two baseline algorithms for
comparison. The first one is the L-MMSE symbol detector
defined in Section IV-E. To obtain a channel estimate for this
detector, we employ the ¢1-norm-based channel estimator to
exploit the sparsity in cell-free massive MU-MIMO systems:
i — arg min %HYT ~HSz|% + | H,,

HECBXU

(39

where we tune the sparsity parameter y1 for each scenario. The
other benchmark is the single-input multiple-output (SIMO)
lower bound, which perfectly cancels MU interference in a
genie-aided fashion [72]. Both baselines are simulated with
permuted channels.

C. RMSSE, BER, MI, and MSE Results

We now compare the performance of JED with unpermuted
and permuted channel matrices to our baseline algorithms.
Figure 3 shows simulation results for a B = 64 antenna
system with U = 128 UEs transmitting pilots and BPSK
payload data over K = 128 time slots, where T' = 64 (50%)
pilots are used. The permuted channels have two virtual cells.
Figure 4 shows simulation results for a B = 128 antenna
system with U = 128 UEs transmitting pilots and QPSK
payload data over K = 128 time slots, where 7' = 32 (25%)
pilots are used. The permuted channels have four virtual cells.
Figure 5 shows simulation results for a B = 256 antenna
system with U = 128 UEs transmitting pilots and 16-QAM
payload data over K = 128 time slots, where 7" = 64
(50%) pilots are used. The permuted channels have two virtual
cells. Note that the differences among the three setups are
the number of APs, modulation scheme, and the number of
virtual cells. We do not further investigate the case where
the available time slots K is smaller than the number of
UEs U; the interested readers are encouraged to simulate
such cases using our code that is available on GitHub at
https://github.com/IIP-Group/Cell-Free-JED. To understand
the performance in terms of RMSSE, it is instructive to
compare the resulting RMSSEs to the error vector magnitudes
(EVMs) allowed in UE implementation. The EVM charac-
terizes the distortion caused by transmitter hardware on the
digital constellation. The 3GPP 5G NR technical specifica-
tion [73, Tbl. 6.4.2.1-1] allows UEs to distort the BPSK,
QPSK, and 16-QAM constellations by an EVM of 30, 17.5,

and 12.5 %, respectively. In Fig. 3(a), Fig. 4(a) and Fig. 5(a),
we see that JED enables more than 90%, 88% and 80% of
the UEs to have an RMSSE at the receiver that is smaller
than the EVM allowed to UE hardware. In Fig. 3(b), Fig. 4(b)
and Fig. 5(b), we see that JED enables an 10~ uncoded BER
for 60%, 78%, and 76% of the UEs for BPSK, QPSK, and
16-QAM, respectively. In Fig. 3(c), Fig. 4(c) and Fig. 5(c),
we see that the JED supports 90% of the UEs to achieve
a transmission rate at 0.43bits/symbol, 1.4 bits/symbol, and
1.9bits/symbol for BPSK, QPSK, and 16-QAM, respectively.
Particularly, the per-UE MI results suggest that if cell-free
massive MU-MIMO systems are equipped with strong error
correction codes, over 90% of the UEs could transmit at high
data rates, without the common assumption [7], [13]-[16] that
the number of UEs should be far lower than the number
of receive antennas. In Fig. 3(d), Fig. 4(d), and Fig. 5(d),
we see that JED provides 3dB, 5dB, and 3dB lower channel
estimation MSE than the /;-norm channel estimator in (39) for
BPSK, QPSK, and 16QAM, respectively. Notably, our JED
algorithm achieves satisfactory performance in overloaded
(B < U) and fully-loaded (B = U) MU-MIMO systems.
More specifically, we observe that the L-MMSE detector, even
when performed in a centralized manner with an /;-norm-
based channel estimator, still performs significantly worse
than our JED algorithm. Decentralized data detectors, although
attractive due to their low complexity and scalability [21], [22],
perform even worse. In fact, this observation is particularly
valid in densely-populated systems as shown in Fig. 3 and 4
where centralized L-MMSE data detection completely fails in
the overloaded case (B < U) and is almost 6x worse than
our JED algorithm in the fully-loaded case (B = U).

We also note that in user-centric cell-free massive
MU-MIMO systems [21], the number of APs that serve each
UE is does not necessarily depend on the ratio B/U. However,
we observe from the above simulations that increasing the
ratio B/U from 0.5 to 2 significantly improves the efficacy
of linear methods. This property applies for both centralized
and distributed data detectors—corresponding simulations are
omitted due to the page limit.

D. Computational Complexity Analysis

We now analyze the complexity of our JED algorithm.
We start by measuring the complexity of the L-MMSE
equalizer and our FBS solver by counting the number of
real-valued multiplications (and ignore the complexity of
additions, square roots, reciprocals, etc.). We assume that
one complex-valued multiplication requires four real-valued
multiplications. In what follows, the numbers in parentheses
refer to the complexity.
__The L-MMSE equalizer corresponds to computing
Sp = (pIy + HTH)"'HYY p. From [74], we have that the
total complexity is 2U3 + 6 BU? —2BU +4BUD —2U + 1.
In each iteration of FBS, we first compute HS — Y (4BUK).
Then, we multiply it with S# (4BUK) and H (4BUK). The
next step is to scale S with 1—1T (2BU + 2K U). Therefore,
the total computational complexity in each iteration of FBS is
12BUK + 2U(B + K). Note that we ignore the complexity
of the permutation problem for two reasons. First, this
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transmitting BPSK, K = 128 time slots, and 7" = 64 (50%) nonorthogonal training symbols. The permuted channels have two virtual cells which form two
32 X 64 blocks on the diagonal. In such an overloaded system, the proposed JED algorithm supports over 90% of the UEs with an RMSSE of 30% and over
60% of the UEs with an uncoded BER of 10~ 3; and enables 90% of the UEs to achieve a per-UE MI of 0.43bits/symbol; ¢1-norm training-based L-MMSE

data detection fails completely.
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32 % 32 blocks on the diagonal. In such a fully-loaded system, the proposed JED algorithm supports over 88% of the UEs with an RMSSE of 17.5% and
nearly 80% of the UEs with an uncoded BER of 10~3; and enables 90% of the UEs to achieve a per-UE MI of 1.4bits/symbol; £1-norm training-based

L-MMSE data detection is unable to achieve acceptable performance.
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Fig. 5.
transmitting 16-QAM, K = 128 time slots, and 7" = 64 (50%) nonorthogonal training symbols. The permuted channels have two virtual cells which form

two 128 x 64 blocks on the diagonal. In a conventional massive MU-MIMO system, the proposed JED algorithm supports over 80% of the UEs with an
; and enables 90% of the UEs to achieve a per-UE MI of 1.9bits/symbol;

5

RMSSE of 12.5% and nearly 80% of the UEs with an uncoded BER of 103
£1-norm training-based L-MMSE data detection does not perform as well as JED.

problem only needs to be solved when the large-scale We therefore propose to use the initialization techniques pro-
fading components of the UEs change, which is at lower posed in Section IV to reduce complexity while still enabling
rate than the JED problem and mainly depends on UE excellent performance. Figure 6 and 7 show the required iter-
locations—this observation is even more obvious for the ations for convergence and the initialized channel estimation
position-based permutation problem. Second, solving these MSE results for a B = 128 antenna system with U = 128
permutation problems mainly requires additions and other UEs transmitting with QPSK over K = 128 time slots, where
simple operations. Since we measure complexity by counting 7T = 32 (25%) are used for training. The stopping condition
the number of multiplications, it is challenging to relate the requires the ratio between the norm of the estimated gradient
complexity of such operations in a fair manner. in the current iteration and the maximum of the norm of the
Due to the nonconvexity of JED, better initialization meth- estimated gradient throughout all the iterations to be smaller
ods improve the performance and require fewer iterations for than the tolerance. For the unpermuted channels (shown as
FBS to converge. Solving the LASSO problem (39) indeed “None” in Fig. 6), ETFs are used for pilots; LS and ¢;-norm
yields a good initializer, but is also computationally intensive. channel estimator are used to initialize H; the L-MMSE
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Fig. 6. Numbers of iterations required for convergence of FBS with different
initialization methods for a system same as Fig. 4. In permuted channels, the
proposed initialization techniques support 90% of the UEs to converge at
the same speed as the ¢1-norm based benchmark. The FBS with naive LS
channel estimation and L-MMSE data detection has the lowest convergence
speed among all the cases, which requires 2x more iterations.

equalizer using the variance of noise is selected to initialize
Sp. For the permuted channels (shown as CSI and PHY in
Fig. 6), MUBs are used as pilots; the block-wise James-Stein
estimator aided with the MAD technique is used to initialize H
(permuted channel matrix); the L-MMSE equalizer is used to
initialize Sp as shown in Section IV-E. Analogously, we use
the ¢1-norm channel estimator as the benchmark in both plots.

In Fig. 6, our proposed initialization techniques enable 90%
of the UEs to converge after 1600 iterations which achieves the
same convergence speed as the ¢;-norm benchmark. In stark
contrast, we see that the poor initialization generated by
least square (LS) channel estimation requires more than 3500
iterations for 90% of UEs to converge. Specifically, after
clustering the large entries into blocks on the diagonal, both
of CSI and PHY permutation methods are able to halve
the required iterations to 1600. Besides, the block-diagonal
channel matrix also enables distributed processing with JED
in each block in future work, which could be the key to
significantly reduce interconnect data rates and algorithm
complexity. Clearly, the development of new methods that
further reduce the complexity of JED are necessary to enable
a successful deployment in practice.

In Fig. 7, we show the channel estimation MSE for dif-
ferent initialization methods instead of the MSE of the JED
algorithm. Analogously, we use the ¢;-norm-based method
in unpermuted channels as the benchmark. We see that the
¢1-norm method provides the lowest MSE for channel estima-
tion and thus has the fastest convergence speed in the com-
plexity comparison. In the same channel, the least square (LS)
channel estimation in a fully-loaded system with only 25%
nonorthogonal pilots provides the worst channel estimation
MSE and yields the lowest convergence speed. The permuted
channel matrices have four virtual cells on the diagonal which
form the block-wise structure. Such a structure and the usage
of mutually unbiased bases (MUBs) enable local orthogonality
in each virtual cell with which we perform LS and our pro-
posed initialization techniques in each virtual cell to get 3dB
gain for MSE. Lower initialized channel estimation MSE and
better shaped channel matrix together make the convergence
of FBS comparable with the ¢;-norm-based benchmark.
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Fig. 7. MSE of different initialization methods for a system same as in Fig. 4.
In unpermuted channels, the £1-norm-based channel estimation method serves
at the benchmark; LS channel estimation only achieves 2.4dB MSE for 90%
of the UEs. In permuted channels, our proposed initialization methods and
the mutually unbiased bases (MUBs) together can support 90% of the UEs
to achieve —1.7dB and —2.47dB MSE, respectively.
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Fig. 8. Trade-off between pilot overhead and the MI achieved by 90% of
UEs for three U = 128 UE cell-free systems with K = 128 time slots:
(diamond) B = 256 antennas with 16-QAM; (plus sign) B = 128 antennas
with QPSK; (triangle) B = 64 antennas with BPSK. Dotted lines show the
trade-off of L-MMSE. We see that less training is required for massive MIMO
systems whereas overloaded systems require more training.

We emphasize that the computational complexity of our JED
algorithm, even when reduced by the proposed initialization
methods, remains to be the main bottleneck in practice. One
of the goals of our paper is to demonstrate that densely pop-
ulated scenarios benefit significantly from more sophisticated
data-detection algorithms (cf. Fig. 3 and 4). However, even
in conventional cell-free massive MU-MIMO scenarios with
more AP than UE antennas, our JED algorithm significantly
outperforms linear data detectors (cf. Fig. 5). As it can be
seen in Section VI-C, if we try to serve more UEs, even the
centralized L-MMSE data detector fails at providing satisfying
performance—alternative methods that enable decentralized
data detection in cell free systems [21] would struggle even
more in such scenarios. In short, JED buys performance advan-
tages at higher complexity and issues with scalability to more
UEs, but realizes a clear advantage in such densely-populated
scenarios. On the bright side, our JED algorithm requires
essentially only matrix-vector multiplications, which is key to
enabling efficient and parallel hardware implementations.

E. Pilot Overhead vs. MI Trade-Off

Figure 8 shows the trade-off between the per-UE MI
achieved by 90% of UEs and the amount of used pilots



(as a fraction of orthogonal training). We show the per-UE
MI for the B = 64 system with BPSK, B = 128 system
with QPSK, and the B = 256 system with 16-QAM; all the
systems have U = 128 UEs transmitting over K = 128 time
slots. The three dashed lines correspond to upper bounds,
assuming that a rate loss is only caused by pilot transmission.
For example, the point (50, 2) in the blue dashed line shows
that the maximum transmission rate with 16-QAM modulation
is 2bits/symbol/UE with 50% pilot overhead. We see that
our JED algorithm can asymptotically achieve a per-UE MI
close to the upper bound for all the scenarios. For 50%
pilot overhead, all three systems reach the upper bound.
The highest per-UE MI is achieved by with 28%, 18%, and
11% for BPSK, QPSK, and 16-QAM, respectively. These
peaks are lower than the upper limit by 0.175 bits/symbol/UE,
0.255bits/symbol/UE, and 0.65 bits/symbol/UE, respectively.
We also see that as the number of antennas increases, the
minimum requirement of pilots decreases. Conversely, con-
ventional L-MMSE (shown as dotted lines) data detection
with ¢i-norm channel estimator is not able to achieve a
satisfactory per-UE MI. Concretely, L-MMSE fails entirely
in the overloaded BPSK system and is lower than the peak
of QPSK and 16-QAM curves by 1.16 bits/symbol/UE and
2.2 bits/symbol/UE, respectively.

From the RMSSE and BER results in Fig. 3 to Figs. 5,
we see that centralized L-MMSE data detection gradually
approaches our JED algorithm in these metrics by increasing
the number of pilots. This trend is, however, not only because
the presence of more pilots but also due to the number of
AP and UE antennas. Figure 8 further illustrates that JED
significantly reduces the required pilot overhead compared to
the L-MMSE data detector in densely-populated scenarios. For
example, consider the trade-off realized by QPSK modulation
in a densely-populated scenario (B = U = 128; red curves).
We observe that JED reaches the highest per-UE MI with only
18% pilot overhead. In contrast, we see that the L-MMSE
data detector performs way worse than JED and approaches
the upper limit (the dashed curve) only at around 50% pilot
overhead. For the overloaded scenario with BPSK modulation
(B = 64 and U = 128; pink curves), JED achieves a peak
per-UE MI at around 25% pilot overhead—the L-MMSE
data detector achieves zero per-UE MI across the board.
In short, deploying nonorthogonal pilots in densely-populated
scenarios strongly affects data detectors that separate chan-
nel estimation from data detection. The reason is that such
methods require accurate channel estimates, which results in
high pilot overhead, whereas JED leverages payload data for
channel estimation and the pilots mainly serve to resolve the
uniqueness issue (cf. Section III-C). The trade-off analysis for
conventional massive MU-MIMO systems [75, Fig. 5] shows
a similar result—pilot contamination caused by the lack of
available pilots will lead to severe performance degradation.

VII. CONCLUSION

We have proposed a novel joint estimation and detec-
tion (JED) algorithm for densely populated cell-free massive
MU-MIMO systems. We have formulated a suitable MAP-JED

problem and have developed an algorithm that builds upon
forward-backward splitting (FBS). In addition, we have shown
that such JED algorithms can be initialized by clustering the
user equipments (UEs) and access points (APs). By combining
both techniques, we have shown that if the number of UEs
approaches or even exceeds the number of APs, then reliable
transmission is possible with 50% or much fewer pilots that
would be necessary for orthogonal training.

We see many open research problems. First and foremost
is the design of techniques that further reduce the complexity
of our JED algorithm—a promising direction is our recent
work in [76] that solves a related JED problem in only
10 iterations with the aid of a neural network. Furthermore,
methods as in [20]-[22], [77], [78] that decentralize data
detection algorithms, so that complexity can be off-loaded to
the APs and interconnect data rates can be reduced, will be
key for a practical deployment of JED—here, the formation
of overlapping UE clusters might be beneficial. Moreover,
establishing stronger optimality results for our FBS algorithm
is an interesting but extremely challenging topic. In addition,
our results show that JED performs well in systems where
the effective number of transmitting UEs is lower than the
number of AP antennas B, which indicates that JED might be
particularly useful for nonorthogonal multiple access (NOMA)
with appropriate modifications. Finally, a hardware prototype
of our JED algorithm that is able to support the throughputs of
future cell-free massive MU-MIMO systems would pave the
way for a practical deployment of JED.

APPENDIX A
PROOF OF LEMMA 1

We start by proving convexity in H with Sp fixed.
In this case, the matrix [St,Sp| and the concave regularizer
—v||Sp||% are constants. Hence, (10) reduces to a quadratic
problem that is obviously convex. To prove the convexity in
Sp with H fixed, we rewrite the objective function in Sp as

f(Sp) =Tr(YRYp +SEASp — 2R{YRHSp}), (40)

with A = (H”H —7Iy). We now provide conditions for
which the Hessian of f(Sp) is positive semidefinite. Note that
f (Sp) is a real-valued function of complex-valued variables.
As discussed in Section I1I-D, f (Sp) depends on two matrices
Sp and S7,, hence there exist four different complex-valued
Hessian matrices for f (Sp) with respect to all the ordered
combinations of Sp and S}, [62]. Since the second-order
derivatives of the constant term and affine terms in (40) are
zero, we refer to the results in [62, Ex. 5.1, 5.4] and get the
Hessian with A and AT on the diagonal and 0 otherwise.
Here, A = A ®Iy. Since the eigenvalues of H(f) are the
eigenvalues of A, H( f) is positive semidefinite as long as
the smallest eigenvalue of A is non-negative—this holds if
Amin — 77 > 0, where Ay, is the smallest eigenvalue of HIH

and +y is the regularizer of the concave term in (10).
APPENDIX B
PROOF OF LEMMA 2

If a phase-permutation ambiguity exists, then at least two
columns of F will be identical after a phase change, i.e.,



f, = e/%fy, b # V. By inserting this into ||f,]|5 = v, we have
v=|tf] = |/ £ fy|. (41)

Hence, if k < v, then (41) cannot not hold, which means that
no pair of columns of F are the same after a phase change.

APPENDIX C
PROOF OF THEOREM 1

We start by rewriting the FBS update as follows:

2
ZH) — arg min g(Z)+ (t)Vf(Z*(t))HF
z

(42)

= arg min {g(Z) +1(E0) + HZ 0 H2
VA 27(t) F

+(Z - 29, V(2 O) . 3)

Note that (42) and (43) differ by only additive constants,
so both formulations attain the same minimizer.

We begin by proving monotonicity of the algorithm. Since
the choice Z = Z{*tY) minimizes the expression in (43),
choosing instead Z = Z(*) will result in a larger (or equal)
value for this expression. More formally,

g(z(Hl)) + f(z(t)> + <Z(i+1) _ Z(t),Vf(Z*(t))>m
2
= ||z @) () (t) (t)
5|20 20 < 9(2) + 120, @
Combining this inequality with the line search condi-
tion (25) results in

g(Z(tH)) +f(z(t+1)) < g(Z(t)) +f(Z(t)). 45)

The minimizer Z(**1) is always achieved after calculating the
proximal in each iteration of FBS, indicating that (45) holds
for every t. Therefore, we see that the method is monotonic
throughout the iterates.

To prove convergence of the iterates, we start by defining
the subgradient of a real-valued function g : CE*(U+K) R,
A matrix G is called a subgradient of g at Z(*) if for any
Z € CB*(U+K) we have

9(Z) — 9(ZV) > (Gg, Z — ZV)x (46)
We now consider the function
2
9(2) = 9(2) + ||z - 2| 7)

This function is convex, and thus lies above its linear approx-
imation. We therefore have

gz > g(z ) 4z — z(+Y éz(tH))%
= gz VHZuH) z(t)H

2
+(ZW -2 Ggiesn)m — 7“Z(t+1) B z(t)HF
= g(ZY) (2O — ZHD Gguin)m

,ZHZ(H—D — Z(t)H2 (48)
2 F

where Gyi1) = Ggusn +7(ZED — ZM) is a subgradient
of g at Z+1) and Gy11) is a subgradient of g at Z(+1),

Adding (48) with (25), and noting that §(Z®)) =
we get

h(z(t+1)) _

9(Z),

f(z(t+1)) +g(z(t+1))
1+ 70y 2
() (t) LT (t+1) _ ()
< F(2O)+9(20) + 2 20 — 20|
+ <Z(t+1) _ Z(t)7 Vf(Z*(t)) +Ggzw)n.  (49)

To simplify the inner product, we obtain from the optimality
condition for (43) at Z(t+1 that

Gy + VF(Z*D) +
Combining (49) with (50), we have

(Z(t+1) (50)

ZY) = 0.

t
h(ZHD) < h(zm) n MHZ(M) _ 70|
- F

o) Hz(tH) Z(t)H
-

:h(zm)fﬁ’lzum Z(t)H (51)

Summing this result over the first 7' — 1 iterations, we obtain

=1y _ 7By 2

Wz©®) - h(z™) > Y 7Hz<t+1> _zZ® ‘ . (52)
F

t=0

27(®)

Because we have assumed 7% < 1 /7 and the stepsizes are
uniformly bounded away from zero, this guarantees that {Z”'}
approaches some limit point Z°"" as ¢ — oco.
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