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Abstract—We explore the underlying algebraic structure of
Mutually Unbiased Bases (MUBs), and their application to code
design. Columns in MUBs have inner products with absolute
values less or equal to 1/

√
N . MUBs provide a systematic way of

generating optimal codebooks for various coding and precoding
applications. A maximal set of MUBs (MaxMUBs) in N = 2m

dimensions, with m ∈ ZZ, can produce codebooks of QPSK
lines with good distance properties and alphabets which limit
processing complexity. We expand the construction by identifying
that in N = 2m dimensions there exists N (m−1)/2 families of
MUB, each with N matrices. Inner products of columns of these
matrices are less or equal to 1/

√
2. As an example, we construct

Grassmannian line codes from the columns of these matrices.
Then decoding or encoding these codebooks can be performed
without multiplications, and with a number of additions that
scales linearly with the number of codewords, irrespectively of
the dimension.

I. INTRODUCTION

Two N×N unitary matrices, i.e. bases in CN , are Mutually
Unbiased if the absolute value of the inner product of any
columns of the matrices is 1/

√
N . Thus if M1 and M2 are

unbiased, we have

∣∣MH
1 M2

∣∣ =
1√
N

 1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

 , (1)

i.e. all the entries in the inner product matrix have norm
1/
√
N . Collections of matrices which are all pairwise

mutually unbiased can be called Mutually Unbiased Bases
(MUBs).

MUBs have a central role in quantum information theory
(see [1] for a recent review), and can be applied in many
information processing problems, such as in the design of
codes on projective spaces [2], and compressive sensing [3].
Codes on projective spaces can be used either for channel
coding, e.g. as space-time [4] or random access codes [5],
for network coding [6], or for source coding, such as vector
quantization for precoding in (MIMO) systems [7].

In dimensions N = pm that are powers of a prime p,
it is known that the maximum set of MUBs (MaxMUB)
consists of N + 1 unitary N ×N matrices [8]. Prime power
MUBs can be systematically constructed from finite fields
in two different ways. In [2], a construction based on ZZ4

quadratic forms was presented for powers of p = 2, whereas
in [9], MUBs for generic prime powers were constructed from

eigenspaces of commuting operators. Alternatively, MUBs can
be generated as a multiplicative group arising from powers of
a N + 1st root of unity generator matrix [10]. Based on these
constructions, multiple quantum information problems can be
approached [1], and Grassmannian codes of different ranks
can be constructed [11].

The motivation for this paper is in code construction, and
we concentrate on dimensions N = 2m. Codes on projective
spaces (e.g. Grassmannians) can be constructed in a natural
way from MUBs. The reasons for this are that the property
of unbiasedness between two matrices is preserved under
arbitrary column rotations, and that unbiasedness sets specific
conditions on the absolute value of inner products of columns
of matrices, which gives a direct relation to chordal distance
properties of sets of columns of MUBs.

Codes arising from MUBs are intriguing from the
perspective that they are, in many cases, either optimal or
the best known codes for their parameters. Also, they have
the interesting characteristic that MUBs can be constructed
so that all entries are 2pth roots of unity. In particular this
means that in dimensions that are powers of 2, codebooks
with 4ary entries from Quaternary Phase Shift Keying (QPSK)
alphabets can be constructed. Such codes are desirable
from implementation perspective. In systems where encoding
and/or decoding is performed real-time in hardware, such as
MIMO precoding and digital communication, implementation
complexity is an issue. Filtering with codebooks having only
QPSK entries can be performed only by additions, and shifts
of real and imaginary parts of numbers, without using any
multiplications in R.

Codes that are constructed as subsets of MUBs have the
apparent drawback, however, that they have a rather low
cardinality. Here, we seek to improve on this. We expand
from maximal MUBs, which in dimensions N = 2m consist
of N matrices with 4-ary entries, to collections of N (m+1)/2

matrices which consist of N (m−1)/2 families of N MUBs.
As an example of codes that can be constructed from

these families of MUBS, we consider the collection of
Grassmannian lines that are columns of these MUBs. There
are N (m+3)/2 such lines, and minimum they have chordal
distance 1/

√
2 irrespectively of the dimensionality. They have

intriguing similarity with rank-1 operator Reed-Muller codes
of [12].



II. UNDERLYING EXTRASPECIAL GROUP

For simplicity, we concentrate on dimensions N = 2m

that are powers of 2. In these dimensions, one can generate
codebooks from MUBs with entries that are normalized fourth
roots of unity, i.e. in the set Q = {±1,±i}/

√
N ∼ ZZ2

2. Such
codebooks are particularly beneficial from an implementation
perspective, as multiplication in Q can be realized simply as
a shift operation. This can be used to significantly reduce
decoding in channel coding applications, and encoding in
source coding.

MUBs can be generated in the algebra of Weyl operators,
which for m = 2 can be represented in a particularly simple
form as Pauli matrices. We have the 2D matrices

σx =

[
0 1
1 0

]
, σy =

[
1 0
0 −1

]
, (2)

which fulfill the defining anti-commutation relation

σxσy = −σyσx , (3)

and square to identity, σ2
x = σ2

y = I2. Corresponding to the
binary vectors

c =
[
a b

]T ∈ F2
2 (4)

we have the matrices

E(c) = σa
xσ

b
y , (5)

so that the eight matrices {±E(c) | c ∈ F2
2

}
form a 2D

fundamental representation of the (extraspecial) quaternion
group. As we are interested in codebooks with complex-valued
entries, we extend to the 16-element Weyl/Pauli group by
multiplying with powers of i. The matrices

X(c) = i−abσa
xσ

b
y (6)

are Hermitian by definition, and form an Frobenius-orthogonal
basis of the algebra of 2 × 2 Hermitian matrices. Extending
to N = 2m dimensions, we get higher dimensional
extra-special/Weyl/Pauli groups as m-fold tensor products of
the 2D groups, see [2], [12]. The elements are indexed by
vectors

c =

[
a
b

]
, a,b ∈ Fm

2 , (7)

so that

E(c) = σa1
x σb1

y ⊗ σa2
x σb2

y ⊗ . . .⊗ σam
x σbm

y (8)

have real entries and ±E are the elements in the extraspecial
group, whereas

X(c) = i−a
TbE(c) (9)

are Hermitian.
Note that the vector a encodes the diagonality stucture of

X (and E). Each X has precisely N = 2m non-zero elements.
If ak = 0, the kth tensor product component is diagonal; if
ak = 1, it is offdiagonal. Thus if a = 0, the resulting X is
diagonal, and if a = 1, it is fully offdiagonal. The values of
the non-zero elements are determined by the vector b.

From (3) it follows that

E(c1)E(c2) = (−1)a
T
2 b1E(c1 ⊕ c2) , (10)

where ⊕ indicates the modulo-2 sum in F2. Furthermore, we
have the commutation relations

E(c1)E(c2) = (−1)a
T
2 b1+aT

1 b2E(c2)E(c1)

≡ (−1)c1∗c2E(c2)E(c1) , (11)

where c1 ∗ c2 = aT
2 b1 ⊕ aT

1 b2 ∈ F2 is the symplectic inner
product of the vectors c1 and c2. Thus two matrices E(c1)
and E(c2) commute if c1 ∗ c2 = 0. The same holds for their
Hermitian counterparts X(c1) and X(c2).

The 22m matrices X form a Frobenius-orthogonal basis for
the vector space of 2m× 2m-dimensional Hermitian matrices.
This is a very specific basis, as all X:s are unitary by
construction, and thus square to IN . Moreover, each a ∈ Fm

2

characterizes a unique diagonality subspace in this algebra.
There are N = 2m such diagonality subspaces, each defines
a set of 2m matrix elements that may be non-zero, and these
sets do not overlap for different subspaces.

III. GF2 DESCRIPTION OF MUBS

In N = 2m dimensions, there are N+1 MUBs [8]. Without
loss of generality, one of these can be taken to be the identity
matrix. As a consequence of (1), all the remaining ones are
such that all their entries have norm 1/

√
N . They can always

be chosen so that all entries are in Q, which can be seen
by direct construction. Accordingly, maximal sets Mmax of
MUBs exist, which consist of the identity matrix M0 = IN ,
and a set M̃max of N matrices with entries in Q.

The matrices Mk in a collection of MUBs can be
constructed from families of commuting N ×N matrices. A
set of commuting matrices can, according to (11), be generated
from sets of N + 1 vectors cn ∈ F2m

2 which are all mutually
orthogonal w.r.t. the symplectic inner product [2], [9]. Thus a
basis matrix Mk can be characterized by a binary (2m)×m
matrix Ck, which is orthogonal w.r.t. ∗.

A concrete example is given in [9]. Choosing the first matrix
M0 to be identity, the corresponding CT

0 =
[
0m×m Im

]
.

The other matrices can then be taken to be

CT
k =

[
Im Bk

]
, k = 1, . . . , N . (12)

When the m×m binary matrix Bk is symmetric, the columns
of Ck are symplectic orthogonal. Moreover, if all the Bk are
linearly independent, such that Bk⊕Bl is invertible for k 6= l,
the constructed matrices are MUB. In [8] it was shown that
the maximal size of a set of linearly independent matrices Bk

is N , and sets of N linearly independent symmetric matrices
exist. Thus one can characterize a maximal family of MUBs
Mmax by the set {Ck}Nk=0.

Each C has m columns cl, l = 1, . . . ,m. Using these in (9)
one gets m matrices X(cl), which all commute. Considering
the 2m binary vectors d ∈ Fm

2 one can then construct
2m matrices X(c1)d1X(c2)d2 . . .X(cm)dm . By construction,
these are proportional to X(Cd), and they all commute. In [9],



the MUB-matrices Mk were constructed as the common
eigenspaces of these commuting matrices.

In order to formulate the generalization of interest of this
paper, we depart from [9], [12] at this point, and construct
MUBs directly from the X-matrices. This is also a departure
from [12], where codes were constructed from eigenspaces of
the Xs. Constructing matrices directly has the benefit that we
have full control over the entries of the resulting codebooks,
as no eigendecomposition has to be performed.

From the m commuting Hermitian matrices X(ck), one may
construct the unitary matrix

M =

m∏
k=1

1√
2

(
IN + iX(ck)

)
(13)

=
1√
N

∑
d∈Fm

2

iΣd X(c1)d1X(c2)d2 . . .X(cm)dm(14)

=
1√
N

∑
d∈Fm

2

id
T(Im+B̃)d E (Cd) . (15)

This is unitary by construction, as the Xs are Hermitian,
commute, and square to identity. We have used the shorthand
Σd ≡

∑m
k=1 dk = dTd for the weight of a binary vector. The

symmetric matrix B̃ has entries rkl = aT
k bl for k ≤ l. Thus

for C of the form (12), we simply have B̃ = B. Note that
the off-diagonal terms of B̃ just give rise to sign changes, not
factors of i.

When C is of the form (12), we have a = d. Recalling that
the vector a determines a unique diagonality subspace, each
element in the sum (15) is in a different diagonality subspace.
In each diagonality subspace, there is a unique vector b = Bd.
Accordingly, all matrix elements in M have norm 1/

√
N , and

M is mutually unbiased with IN .
Next we continue with two basis matrices M1 and M2,

which correspond to two binary matrices C1 and C2 of the
form (12). Their inner product matrix can be expanded as in
(15), resulting in

MH
1 M2 =

1

N

∑
d1,d2∈Fm

2

id
T
2 (Im+B2)d2−dT

1 (Im+B1)d1

× (−1)d
T
1 B1d2 E (C1d1 ⊕C2d2)

To proceed, we change the summation variables so that d =
d1 ⊕ d2. Care has to be taken in this change of variables, as
the exponent of i is mod 4, not mod 2. The result can be
written in the form

MH
1 M2 =

1

N

∑
d∈Fm

2

i−d
T(Im+B2)dV(C1 ⊕C2,d)E (C2d)

(16)
where

V =
∑

d1∈Fm
2

(−1)d
Td1 id

T
1 (B1−B2)d1 E ((C1 ⊕C2)d1) .

(17)
Here, in the argument of E we have the matrix C1 ⊕C2 =[
0m×m B1 ⊗B2

]
. Thus all matrices in the sum are

diagonal. As a consequence of the linear independence, the
matrix B1 ⊗ B2 is full rank. Thus all matrices in the sum
are Frobenius orthogonal. Also, we can change variables in
the sum so that d1 =

√
B1 ⊗B2 d̃. This change of variables

exists in Fm
2 , and is one-to-one as B1 ⊗B2 is full rank. As

a result, V can be written in the form (14), where there are
certain additional signs that depend on the individual bits d̃
and their products with bits from d, but not on products of
bits in d̃. Also, the normalization

√
N is missing. Then V can

be written in the product form (13), in terms of some diagonal
matrices X, and V is

√
N times a diagonal unitary matrix.

As a consequence, the inner product matrix is precisely a sum
over unitary matrices in the 2m diagonality subspaces, and
each entry has norm 1/

√
N . The bases M1 and M2 are thus

MUB.
It is worth noting that the construction (13) with C of

form (12) gives directly a matrix where all entries are in Q.
However, using C0 in (12) does not give the identity matrix,
but a diagonal one, and the elements are not in Q.

IV. 2m(m−1)/2 FAMILIES OF MAXMUBS

Taking Cs of the form (12), the construction (13) produces
a unitary 2m × 2m matrix M(B) from a symmetric binary
m×m matrix B. By construction, all of these matrices have
entries in Q, and all are mutually unbiased with IN . In the
previous section we saw that one can choose a subset of 2m

matrices Bk such that all sums have full F2 rank; that the
corresponding matrices Mk form a Maximal set M̃max of
MUBs with entries in Q; and that Mmax = {IN} ∪ M̃max

is a maximal set of MUBs without constraints on the entries,
i.e., |Mmax| = N + 1.

The set of binary symmetric matrices Gm(F2) ⊂Mm(F2)
has cardinality 2m(m+1)/2. The MUB construction of [8], [9]
uses 2m of them. Here we consider the full set

U =
{
M(Bk)

∣∣∣ Bk ∈ Gm(F2)
}

(18)

of 2m(m+1)/2 unitary matrices with entries in Q that can be
constructed from Gm(F2) by (13).

First we note that when constructing MaxMUBs, Wootters
& al. constructed a set S0 ⊂ Gm(F2) of binary matrices
with 2m elements [8]. S0 has the property that each non-zero
element is invertible. We skip the proof of the following.

Lemma 1: We can find a set of 2m(m−1)/2 elements xi ∈
Gm(F2) so that

Gm(F2) =

2m(m−1)/2⋃
i=1

{xi + S0} ≡
2m(m−1)/2⋃

i=1

Si , (19)

where {xi + S0} ∩ {xj + S0} = ∅, when i 6= j.
From Lemma 1 it follows that we can partition the set (18)

of unitary matrices

U =

2m(m−1)/2⋃
i=1

M̃max,i (20)

where each set Mmax,i has N elements, is a MaxMUB with
entries in Q, andMmax,i∪{IN} is a MaxMUB. We have thus



TABLE I
CODE CARDINALITIES K FOR DIFFERENT N

N |CmMUB| |CO−RM|
4 32 30
8 512 1080
16 214 215 +

∑11
k=4 2

k − 27

partitioned the set U with 2m(m+1)/2 matrices into 2m(m−1)/2

maximal families of 2m MUBs.
It is clear that not all of these matrices are unbiased.

However, based on (16), precise statements about their inner
product matrices can be given. We have

Lemma 2: For any M1,M2 ∈ U with M1 6= M2, the
absolute values of entries of MH

1 M2 come from the set

E = {0} ∪
{

1√
2k

}m

k=1

. (21)

With rankF2
(B1 ⊗B2) = r, MH

1 M2 vanishes in 2N−r

diagonality subspaces, whereas all other entries have absolute
value 1/

√
2r.

The proof hinges on analysis of (16), and is ommitted.

V. CODE CONSTRUCTIONS FROM MULTIPLE MAXMUBS

The set of matrices U with inner product properties
controlled as indicated by Lemma 2 provide a platform for
multiple code constructions.

The inner product properties of the matrices in U
are, by construction, invariant under column permutations
and rotations. The matrices M are thus elements of the
permutation invariant flag manifold ~FN,N = UN/(U

p
1SN ),

i.e. representatives of equivalence classes of unitary matrices
modulo column rotations and permutations. Thus U and its
subsets are codebooks on ~FN,N . They can be expanded to
codebooks of generic unitary matrices by adding column
permutations and rotations. See [13] for a discussion on flag
manifold codebooks.

Grassmannian codebooks can in turn be generated from U
by taking subspaces of p columns from the matrices. Here
we concentrate on the simplest case, where p = 1. Thus we
generate complex Grassmannian line codebooks directly from
collections of columns uk of matrices in U or its subsets. If u
is a column of a matrix M, we denote u ∈M. The distance
of interest for a Grassmannian code is the chordal distance,
which for lines reduces to dc =

√
1− |uH

1 u2|2. We have
Proposition 1: The codebook

CmMUB =
{
u
∣∣ u ∈M ; M ∈ U

}
(22)

consists of K = N (m+3)/2 Grassmannian lines, and has a
minimum chordal distance dc,min = 1/

√
2 . All u consist of

scaled fourth-root-of unity entries from Q.
Proof: Follows directly from Construction (13), and

lemmas 1 and 2.
In Table I, the properties of these codes can be compared

to the best known Grassmannian codes in the literature, which
can be found in [12]. There, line codes CO−RM with precisely
the same minimum distance 1/

√
2 are constructed as operator
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Fig. 1. Squared minimum distance of codes in N = 8 dimensions.

Reed-Muller codes. It is our understanding that, except for
N = 4, C is the subset of CO−RM with entries in Q. We
conjecture that by expanding U with matrices of the same
form, but with the possibility for zero-entries, one may expand
CmMUB.

In Figure 1, we concentrate on the case N = 8. We have
plotted min d2

c against the code rate R = (log2K)/N . The
Rankin bound, and a Hamming type bound are reported. The
latter is from [14], [15], and is based on spherical cap Kissing
radius. These are bounds for codebooks with unconstrained
entries. In addition, a numerically found bound for codebooks
with entries in Q is shown. The three codebooks that can
be created from MUBs are separately shown. A codebook
with K = 8 elements and min d2

c = 1 can be created from
one unitary matrix M. Taking the columns of a MaxMUB
M̃max with entries in Q one gets a code with K = 64 and
min d2

c = 7/8. This is close to the Rankin bound, which can
be reached by adding the 8 columns of I8 so that one gets an
unconstrained MaxMUB. Finally, the code CmMUB constructed
from U has K = 512 and min d2

c = 1/2.

VI. ENCODING/DECODING AND STORAGE COMPLEXITY

Given that codes constructed from multiple MUBs are likely
subsets of known codes, the main benefit from the presented
construction comes from the control on the code alphabet, and
the identified structure in terms of MUBs. This can be used
to reduce decoding complexity.

Irrespectively of the use of a code in an information
processing system, a matched filter stage is needed. If a code
is used for channel coding, the decoder faces the challenge
of identifying the codeword that is closest to a received
signal. If it used for source coding, the quantizer faces the
encoding problem of finding the codeword closest to a source
signal. In both, optimum en/decoding would start by a distance
calculation, which again starts with matched filtering, i.e.
calculating the inner products between all codeword vectors
and the signal. When the signal, and the codewords are vectors,
the codebook can be described as a matrix U where the



TABLE II
ENCODING/DECODING AND STORAGE COMPLEXITY FOR Q CODES.

Code Encoding/Decoding Storage
CQ NK 2NK

CC−Hadamard log2N K
(log2 N)2

N
K

CmMUB K
log2 N

N
K

codewords are columns. The matched filter stage would be

z =
√
NUHy . (23)

Here, for a channel coding problem, such as for sending
Random Access signatures over a non-coherent channel [5],
y would be the received signal. For a vector quantization
problem, such as MIMO precoding [7], the signal y would
be a channel vector.

When all entries of U are in Q, z can be calculated
without a single multiplication. Instead, one only needs to
switch real and imaginary parts, and signs. However, the
number of additions depend on the code construction. For
a generic Q code CQ with no structure, NK additions are
needed in (23). For a codebook CC−Hadamard consisting of
columns of K/N complex Hadamard matrices without further
structure, one can calculate N entries of z with a fast transform
consisting of mN additions. In all, mK additions are needed.
For the codebook CmMUB discussed in the previous section,
the complex Hadamard matrices can be grouped according to
the common columns in their B-matrices. In total, K additions
are needed.

Similarly, one may consider the storage needed for a code.
For an unstructured code CQ, 2NK bits are needed. For a
Complex Hadamard code, each matrix can be stored with m2

bits, so that in total m2K/N bits are needed. For CmMUB

one only needs to store K/N binary m-vectors. Note that
the elements in the codebooks need not be generated when
calculating (23), an algorithm operating directly with the
stored bits can be devised.

The encoding/decoding complexity in terms of additions
needed for calculating (23), and the number of bits for
codebook storage, are summarized in Table II. The numbers
for an unconstrained Q-code, a code of complex Hadamard
matrices, and CmMUB are reported. It is remarkable that the
complexity of calculating the matched filter (23) for CmMUB

is linear in the code cardinality, and does not depend on
the dimension N . The decoding algorithm of the operator
Reed-Muller codes of [12] for rank-1 codes is slightly larger
than the complexity of the arbitrary C-Hadamard codes
discussed above.

VII. CONCLUSION

We have provided a construction of unitary matrices in
N = 2m dimension with scaled fourth-root-of-unity (QPSK)
entries, which have column inner products of absolute value
at most 1/

√
2. The construction produces a multifamily

set of Mutually Unbiased Bases, and is directly expressed
in terms of basis matrices. No decompositions are needed
to create Grassmannian codes from these matrices—it is

sufficient to take collections of columns to get Grassmannian
codebooks with controlled properties. As an example, we have
constructed QPSK codebooks with K = N (m+3)/2 lines at
minimum chordal distance 1/

√
2 for any m. The structure of

the codebooks enables reduced complexity encoding/decoding
with complexity K, irrespectively on N . The codes have
intriguing connections with Operator Reed-Muller codes,
which will be explored in future work.
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