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Abstract—Motivated by problems in machine-type wireless
communications, we consider codebooks of complex
Grassmannian lines in N = 2m dimensions. Binary Chirp
(BC) codebooks of prior art are expanded to codebooks of
Binary Subspace Chirps (BSSCs), where there is a binary
chirp in a subset of the dimensions, while in the remaining
dimensions there is a zero. BSSC codebooks have the same
minimum distance as BC codebooks, while the cardinality is
asymptotically 2.38 times larger. We discuss how BC codebooks
can be understood in terms of a subset of the binary symplectic
group Sp(2m, 2) in 2m dimensions; Sp(2m, 2) is isomorphic to
a quotient group of the Clifford group acting on the codewords
in N dimensions. The Bruhat decomposition of Sp(2m, 2) can
be described in terms of binary subspaces in m dimensions,
with ranks ranging from r = 0 to r = m. We provide a unique
parameterization of the decomposition. The BCs arise directly
from the full-rank part of the decomposition, while BSSCs are
a group code arising from the action of the full group with
generic r. The rank of the binary subspace is directly related
to the number of zeros (sparsity) in the BSSC. We develop a
reconstruction algorithm that finds the correct codeword with
O(N log2 N) complexity, and present performance results in an
additive white Gaussian noise scenario.

I. INTRODUCTION

Massive Machine-type Communications (MTC) where
multiple low-cost devices sporadically access communication
resources, is of considerable current interest [1], [2]. Advanced
random access methods have been investigated in this context,
to lower the protocol burden on accessing devices. Both a
signature coding principle [1], and an unsourced random
access paradigm [2] are relevant.

Here we consider codes that can be used for random
access, both from a signature coding, and an unsourced
random access perspective. In addition to trading off
cardinality against minimum distance, we are interested in
low reconstruction/decoding complexity. In signature coding,
each user has a unique signature, which is transmitted
to initiate communication. It is assumed that the channel
from a transmitter to a receiver is constant, but unknown,
and that communication happens in a non-coherent manner.
Accordingly coding happens in a projective space, where the
overall phase of a codeword is irrelevant. Using conventional
codes designed for linear spaces is thus suboptimal.

Binary Chirp sequences [3], [4] provide good signature
codebooks, when the length of the codewords is a power
of two, N = 2m. Binary chirps come from a scaled
fourth-root-of-unity alphabet {±1,±i}, and there exists an

O(N log2 N) decoding algorithm. The simple decoding is
a consequence of the strong underlying algebraic structure,
based on binary symplectic geometry.

Another motivation comes from virtual on-off duplexing
for guaranteeing neighbor discovery in wireless networks [5].
In [6], it was observed that for neighbor discovery, it is
beneficial to have a set of structured zeros in the transmission.
Codebooks with entries from the set {±1, 0} were constructed,
based on a transformation of binary chirp codewords.

Here, we construct codebooks with structured sets of
vanishing entries, expanding the set of binary chirps. The
underlying symplectic geometry allows larger codebooks,
keeping the decoding complexity and distance properties fixed.
By expanding the alphabet to include zero values, we construct
binary subspace chirp codebooks. In these, the symplectic
geometry not only dictates the algebra of the non-zero
elements of the codebooks, but controls the on-off pattern by
a mapping from sets of r-dimensional binary subspaces in m
dimensions. Compared to binary chirps, there is more than
twice as many codewords, at the same minimum distance.

This paper is organized as follows. In Section II, the concept
of binary subspace chirps is introduced. Reconstruction
algorithms are discussed in Section III, along with complexity
and performance assessment. Some of the underlying algebraic
machinery is summarized in the appendix.

II. BINARY SUBSPACE CHIRPS

A. Definition as N = 2m-dimensional Vectors

Binary Chirps [3], [4] are a family of vectors in N =
2m dimensions with entries in 1√

N
{im}3m=0, which allow

extremely simple decoder/reconstruction operations due to
their inherent mathematical structure. Chirps can be defined
as vectors with elements

w(a) =
1√
N

(−i)a
TSa + 2∗bTa (1)

where a ∈ Fm
2 is the index of the vector element in N = 2m

dimensions in binary form, S is an m×m binary symmetric
matrix, and b ∈ Fm

2 is a binary vector. The chirps are 2nd
order Reed-Muller (RM) codes. Interesting subcodes of 2nd
order RM give vectors with different minimum distances,
related to sets of Kerdock, and Delsarte-Goethals vectors [7],
[8]. The absolute value of the inner product of two distinct
binary chirps is at most 1/

√
2. Accordingly, binary chirps



can be considered a codebook Vchirp ∈ G(N, 1,C) of
Grassmannian lines in N -dimensional complex space. That is,
they represent equivalence classes of N -dimensional complex
vectors, up to phase rotations that are considered irrelevant for
distance properties. Alternatively, Vchirp can be understood as
a collection of complex projective lines in N +1 dimensions,
or a frame, i.e., an overcomplete basis, in CN . As there are
2m(m+1)/2 binary symmetric matrices, there are altogether

|Vchirp| = 2m(m+3)/2 =
√
N

log2 N+3
(2)

chirps. A chordal distance between two chirps, when
considered as Grassmannian codewords, can be defined as

d(w1,w2) =
√
1− |wH

1 w2|2 , (3)

and the minimum distance of Vchirp is dmin = 1/
√
2.

We now expand the set of binary chirps to binary subspace
chirps. These are vectors that may take the value 0, in addition
to integer powers of i. For this, take a rank r, and a binary
r-dimensional subspace H ∈ G(m, r, 2). Then, take a binary
symmetric r× r matrix Sr, and a binary vector b ∈ Fm

2 . The
subspaces can be uniquely described in terms of Schubert cells
CI as discussed in the appendix. These are indexed by ordered
collections I of r elements from {1, 2, . . . ,m}. For the rank
of interest, a matrix HI ∈ CI can be uniquely expanded to
an invertible binary m × m matrix P =

[
H IĨ

]
, see

the appendix. Here Ĩ is the complement of I. The m − r
dimensional subspace dual to H is H̃, and the inverse of P
can be expressed in terms of H̃, see (22).

The subspace chirps can now be defined as the vectors w
of sparsity determined by r, with elements

w(a) =
1√
2r

(−i)a
TP−TSP−1a + 2bTP−1a f(b,P−1a, r) ,

(4)
where S is Sr expanded to an m×m symmetric matrix. The
on-off pattern (which of the elements vanish) is determined
by the binary polynomial

f(b, c, r) =

m∏
n=r+1

(1 + bn + cn) , (5)

which yields 1 iff the argument vectors b and c coincide in
the last m− r dimensions, and otherwise it is zero.

For full rank r = m, we have P = I. Thus f = 1 for all
a, and one gets the binary chirp codewords (1). For r < m,
using (21), we find that (4) is non-zero when

H̃T
I a = br̃ , (6)

where br̃ consists of the m− r last elements in the parameter
vector b. As H̃I has rank m − r, and its r-dimensional null
space is given by HI , all solutions of (6) can be written as

a = IĨbr̃ +HIx , (7)

where x is free in Fr
2. This shows how HI yields the non-zero

elements of the vector w in (4), and for rank r, there are
precisely 2r non-zero elements in w. The binary subspace
HI thus determines the on-off pattern of the codeword w.

B. Grassmannian Line Codebook of Binary Subspace Chirps

The collection of binary subspace chirps w thus subsumes
the set of binary chirps, with the alphabet enlarged to
{±1,±i, 0}, up to normalization. The interesting feature about
the expanded set of vectors is that the minimum distance of
the binary chirps is preserved. We have

Proposition 1: The set of binary subspace chirps, with all
ranks r ∈ {0, 1, . . . ,m}, and all binary subspaces H and
binary symmetric matrices Sr of the given rank, and all vectors
b, provide a codebook VBSSC of Grassmannian lines in N
dimensions with cardinality |VBSSC| = 2m

∏m
k=1

(
2k + 1

)
,

and minimum distance dmin = 1/
√
2.

Proof: If the ranks are different, r′ > r, the inner product
is non-zero in at most 2r locations. The absolute values of the
vector elements are

√
2

−r′

and
√
2

−r
. The absolute value of

the inner product is thus at most 2r
√
2

−r−r′ ≤ 1/
√
2. The

subspaces are described by invertible matrices P1,P2, and
binary vectors b1,b2. For r = r′, (7) shows that the number
of non-zero elements in the inner product is the number of
pairs of binary r-dimensional vectors x1,x2 fulfilling

a = P1

[
x1

b1,r̃

]
= P2

[
x2

b2,r̃

]
. (8)

It is sufficient to investigate what restrictions the lower part
of this equation poses on x2. Expanding as in (20) we find

that b1,r̃ = H̃T
1

[
H2 IĨ

] [ x2

b2,r̃

]
has to be fulfilled. If

the subspaces are not the same, the action of the dual space
of one vector on the subspace of the other does not vanish,
H̃T

1 H2 6= 0. Thus the space of solutions of (8) is at most
r− 1-dimensional, so that the vectors overlap in at most 2r−1

positions. The absolute value of the inner product is at most
2r−12−r = 1/2. Finally, for the inner product of vectors with
precisely the same non-zero subspace, one simply has the inner
product of two binary chirps in 2r dimensions, which is at
most 1/

√
2.

The ratio of the cardinality of the binary chirp
codebooks and the binary subspace chirp codebooks is
|VBSSC| / |Vchirp| ≈ 2.384.

C. Connection to Binary Symplectic Group in 2m Dimensions

Recall that stabilizer states are defined as eigenvectors of
commutative subgroups of the Pauli group. The cardinality
of VBSSC is directly given by 2m times the number of
distinct maximal commutative subgroups of the Pauli group,
thus |VBSSC| equals the number of stabilizer states. BSSCs
are indeed directly related to stabilizer states, and for each
BSSC, there is a maximal commutative set of Pauli matrices.
Due to lack of space, we omit the discussion of this
interesting connection. We shall use a diagonal reduction
of this property when developing effective reconstruction
algorithms. However, some details about the underlying
symplectic geometry is needed.



The binary symplectic group Sp(2m, 2), is the group of all
binary 2m× 2m matrices that fulfill FΩFT = Ω, where

Ω =

[
0m Im
Im 0m

]
. (9)

The decomposition of Sp(2m, 2) in terms of subgroups
of block diagonal and upper triangular matrices has been
discussed based on row echelon reduction in [9], and based
on Bruhat decomposition in [10]. Consider the matrices

FD(P) =

[
P 0m

0m P−T

]
, FU (S) =

[
Im S
0m Im

]
, (10)

where P ∈ GL(m, 2) is an invertible binary m × m matrix,
P−T its inverse transpose, and S ∈ Sym(m, 2) a symmetric
m×m matrix. Any symplectic matrix can be decomposed as
a product of five matrices, two each of the form (10), and one
of the form

FΩ(r) =

[
Ir−m Ir
Ir Ir−m

]
, (11)

where Ir for 0 ≤ r ≤ m is the rank-deficient identity matrix
with the first r diagonal elements 1, and Ir−m = Im − Ir.
The matrices FΩ(r) interpolate between I2m for r = 0, and
Ω for r = m. Products of elements of the form (10) form a
subgroup

P = {FD(P)FU (S)‖ P∈ GL(m, 2), S∈ Sym(m, 2)}
(12)

which acts freely on the symplectic group both from right and
left, and yields the Bruhat decomposition of Sp(2m, 2). Here,
we are interested in unique parametrization of cosets of P .
We have

Proposition 2: The cosets of the binary symplectic group
Sp(2m, 2) with respect to the upper triangular subgroup P '
GL(m)o Sym(m) are uniquely characterized by a rank r =
0, . . . ,m, a symmetric r × r matrix Sr, and a rank r binary
subspace H in m dimensions. A coset representative can be
written as the product

F = FD(P)FU (S)Ω(r) . (13)

Here P ∈ GL(m) is H complemented to an invertible matrix,
as in (20), while S is an m×m symmetric binary matrix with
Sr in the upper left corner, and otherwise filled with zeros.

Proof: The proof is left out due to lack of space.
Consider the mapping (26) between the unitary

representation of the Clifford group in N dimensions,
and Sp(2m, 2), discussed in the appendix. For each binary
symplectic matrix in 2m dimensions, ϕ−1 gives a set of
preimages, which are unitary matrices in N dimensions. This
set can be generated from one unitary matrix by acting with
the Pauli group, and the center of the Clifford group. Taking
a representative of each of the unique cosets of Sp(2m, 2)
w.r.t. P , as discussed in Proposition 2, and taking one of the
unitary preimages, one gets a family of matrices parametrized
by r, H, and S. The columns of these matrices correspond to
the binary subspace chirps of (4), up to column rotations with
ik, thus the binary vector b is a column index. This structure

is directly related to the natural interpretation of BSSCs as
stabilizer states, which we leave out due to lack of space.

The binary chirps of (1) are a subset of BSSCs, related
to the Sp(2m, 2) cosets according to Proposition 2 with
r = m, while BSSCs come from considering all values
r = 0, . . . ,m. The underlying symplectic geometry is
responsible for the distance properties of BSSCs and binary
chirps, and the efficient yet simple reconstruction algorithm
in [3]. Accordingly, expanding Vchirp to VBSSC corresponds
to expanding from a set of cosets with r = m, to a set of
cosets covering all of Sp(2m, 2). This expansion of the chirp
codebook is thus the largest that can be done preserving the
underlying symplectic geometry. The symplectic structure can
be used for efficient reconstruction of binary subspace chirps.

III. RECONSTRUCTION ALGORITHMS

Given a noisy/corrupted version of a codeword, it is
of interest ot understand how to efficiently reconstruct the
original signal. Consider the signal model

y = w + n , (14)

where n ∈ CN represents noise. If the codewords were binary
chirps, the efficient algorithm from [3], [4] could be used to
identify S and b, with N (log2 N)

2 complexity arising from
computing O(log2 N) Walsh-Hadamard transforms.

When reconstructing a subspace chirp, one has to find the
rank r, the subspace H, the symmetric matrix Sr, and the
column index b. If r and H were known, the algorithm
from [3], [4] can be used to identify Sr and b. To simplify
reconstruction, we assume staged reconstruction, where r is
found first, followed by finding H.

A. Subspace Reconstruction
We first investigate some properties that follow from the

BSSCs being stabilizer states. From (25) we have that the
unitary matrix GF, parametrized by the symplectic matrix F,
consists of eigenvectors of the Pauli operator E(c) precisely
when the Pauli matrix E(cTF) is diagonal. Recalling that the
BSSCs w are columns of unitary matrices GF, we thus have
that wHE(c)w 6= 0 iff w is an eigenvector of E(c). Moreover,
the eigenvalues are ±1. To identify the binary subspace of a
BSSC, we concentrate on diagonal Pauli matrices E(0,b), for

which c =

[
0
b

]
.

From (25) we have that the unitary matrix GF

corresponding to a symplectic matrix of the form (13) consists
of eigenvectors of a diagonal Pauli matrix E(0,b), iff

bTHI = 0 . (15)

As HI has rank r, there are precisely 2m−r binary vectors
b fulfilling (15), and precisely 2m−r diagonal Pauli matrices
which stabilize a rank r BSSC. These matrices are, by
definition, commuting, and this set of matrices uniquely
determines the binary subspace HI , and thus the on-off pattern
of the BSSC. All solutions of (15) can be written in terms of
the dual subspace:

b = H̃Ix , (16)



where x ∈ Fm−r
2 . To identify HI in the absence of noise, it

is thus sufficient to find a set or m − r linearly independent
binary m-dimensional vectors b with

wH E(0,b) w = ±1 , (17)

spanning the stabilizing diagonal Pauli matrices (16).
An efficient way to find the 2m−r diagonal stabilizers

is by Walsh-Hadamard transform. From (23) it follows
that the diagonal Pauli matrices can by construction be
written as E(0,b) =

∑
d(−1)d

Tbede
T
d , where ed is the

2m-dimensional basis vector in the binary dimension d ∈ Fm
2 .

The needed inner products thus are

µ(w,b) = wH E(0,b) w =
∑
d

(−1)d
Tb|wd|2 . (18)

Here, wd is the element of w indexed by d. In the
right-hand side we recognize the binary description of the
Walsh-Hadamard transform of the elementwise absolute vale
of w, i.e. the on-off pattern. The WH-transform of the on-off
pattern is thus a dual on-off pattern, with 2m−r non-zero
elements, characterized by the dual H̃. A spanning set of
m − r positions b in the dual on-off pattern, together with
their eigenvalues µ(w,b) ∈ {±1} fully determine the on-off
pattern, i.e. the subspace where w is non-zero.

B. Reconstruction in the Presence of Noise

In the presence of noise, joint detection of rank r, subspace
H, and chirp content S,b is optimal. Given a rank hypothesis
r̂, subspace detection of Section III-A can proceed with minor
modifications. The WH-transform (18) of the on-off pattern
yields arbitrary real values. We sort these in decreasing order,
and find greedily the m − r̂ largest elements with linearly
independent b, together with estimates of their eigenvalues
µ(w,b) ∈ {±1}. These yield an estimate of HI , and an on-off
pattern for the rank. An on-off pattern for all rank hypotheses
can be computed with one Walsh-Hadamard transform only.
Then, to reduce complexity, the inner product of the estimated
rank-specific on-off patterns with the absolute value of the
received signal are computed, and K < m ranks with the
largest inner products are selected. Chirp-reconstruction of [3]
is performed in the candidate subspaces with different r, and
the estimated codeword closest to the received signal is chosen.

C. Reconstruction Complexity

In detecting Sr and b, using the algorithm of [3], the
complexity is O(N log2 N), coming from a WH-transform. In
the absence of noise, the subspace reconstruction algorithm of
Section III-A is still dominated by WH and sorting complexity,
where at most 2m−r largest values should be found from
N . Note that subspace decoding for all rank hypotheses can
be performed once one WH-transform and sorting operation
is done. Distance computation can be performed in O(N)
operations. Thus if greedy subspace estimation is applied, even
with an exhaustive search over rank hypotheses, the dominant
complexity comes from applying the chirp reconstruction
from [3], and is O(N log2 N).

Fig. 1. Block error rate vs. SNR for BSSCs and binary chirps with N = 32
and N = 256.

D. Performance

We have performed Monte-Carlo simulations for BSSCs and
BCs with N = 32 and N = 256, and receivers with K =
3, 4, respectively. For simplicity, we consider only an Additive
White Gaussian Noise (AWGN) channel (14), not a random
access scenario. One signature is chosen for transmission, and
the receiver should identify the transmitted sequence. In Figure
1, the estimated detection error rate is reported against the
average Signal-to-Noise power Ratio (SNR). It is remarkable
that BSSCs perform slightly better than BCs, despite having
higher cardinality. The reason is that while the codes have
the same minimal distance, BSSC transmissions with lower
rank have smaller number of neighboring codewords at the
minimum distance, and accordingly a lower error probability
than the full-rank transmissions. For BSSCs with N = 256,
we observe performance degradation at high SNR due to the
suboptimal receiver with K = 4.

IV. CONCLUSION

We have constructed families of Binary Subspace Chirps in
N = 2m dimensions. These expand families of binary chirps
to sequences where some elements may vanish. BSSCs have
scaled fourth-root-of-unity elements in a non-zero subspace,
characterized by an invertible binary m×m matrix. We have
constructed a reconstruction algorithm BSSCs, based on an
interpretation as stabilizer states. By Monte-Carlo simulation
in an AWGN-channel, we have observed that BSSCs
outperform Binary Chirps, despite the larger cardinality with
the same minimum distance. In future work, we shall explore
the underlying geometrical reasons for this, and address
reconstruction in a multiple access scenario.

APPENDIX

A. Schubert Cells

Binary subspaces can be described in terms of Schubert
cells. Denote r-dimensional subspaces over Fm

2 as H ∈
G(m, r, 2) = GL(m, 2)/GL(r, 2). All subspaces can be
grouped into Schubert cells CI . Here I ⊂ {1, . . . , r} is an
ordered set of r indices with in < ij if n < j. The Schubert
cell can be represented as the set of m× r matrices

HI =
[
hi1 · · · hir

]
, (19)



where the first non-zero element in hi is the ith element, and
all matrix elements hinij = 0 for ij 6= in. The other matrix

elements are free. There are
(
m
r

)
different Schubert cells,

and in cell CI , the number of elements is |CI | = 2
∑r

n=1 in−n.
For each r-dimensional subspace HI , there is a dual

m − r-dimensional subspace H̃I , for which HTH̃ = 0, and
similarly, for each Schubert cell CI ⊂ G(m, r, 2) there is a
dual cell C̃I ∈ G(m,m − r, 2) which consists of these dual
subspaces. There is a one-to-one mapping between the set of
dual Schubert cells {C̃I}|I|=r and the set of m−r dimensional
Schubert cells {CI}|I|=m−r. This mapping is realized by
inverting the order of rows and columns in H̃.

We denote IA as the m × |A| matrix with the columns of
the m×m identity matrix indexed by the ordered set A.

B. Invertible Matrices Representing Subspaces

An m × r matrix HI ∈ CI can be complemented to an
m×m invertible matrix

PI =
[
HI IĨ

]
. (20)

Note that the P-matrices are unique for a given rank r, but
some P may represent subspaces of several ranks.

The inverse of P can directly be written in terms of the
dual matrix. For the transpose of the inverse we have

P−T =
[
II H̃I

]
. (21)

Conjugate action with the anti-diagonal matrix Pad maps P−T

to a matrix representing the dual cell:

P̃ = PadP
−TPad =

[
HĨ II

]
, (22)

where HĨ = PadH̃IPad,m−r is the unique element in CĨ
equivalent to the dual H̃I . The anti-dagonal matrices in the
respective dimensions inverts the row and column orders.

C. Pauli Group

The Pauli (Heisenberg-Weyl) group in N = 2m dimensions
can be represented by the semidirect product of the N2 unitary
matrices

E(a,b) = i−aTbσa1
x σb1

y ⊗ . . .⊗ σam
x σbm

y ≡ E(c) , (23)

and the center ik. Here σx, σy, σz are the 2D Pauli matrices,
and

c =

[
a
b

]
, a ∈ Fm

2 , b ∈ Fm
2 . (24)

D. Mapping Between Symplectic and Clifford Groups

The binary symplectic group Sp(2m, 2) is isomorphic to
the outer automorphism group of the Pauli group:

GH
F E(c) GF = ±E

(
cTF

)
, (25)

i.e. for each symplectic binary matrix F there exists a unitary
transform GF in N = 2m dimensions which takes the Pauli
group element corresponding to binary vector c to the element
corresponding to cTF, up to a sign. For details, see [9].

The full automorphism group of the Pauli group can
be created as the semidirect product of the matrices (25)
representing Sp(2m, 2) a and the Pauli group itself. Expanding
with a center, one gets the Clifford group acting in N
dimensions. We thus have a group homomorphism

ϕ : CliffN 7→ Sp(2m, 2) , (26)

where the preimage of each element of Sp(2m, 2) is defined
up to the Pauli group times some additional central elements.
We shall be interested in the inverse images G = ϕ−1(F)
of certain subgroups of symplectic matrices. This mapping of
symplectic matrices to unitary matrices was discussed in [9].
Block diagonal matrices of the form (10), parameterized by
an invertible matrix P correspond to the unitary permutations

GD(P) : ev 7→ evP . (27)

The upper triangular symplectic matrices FU (S) in (10) map
to unitary diagonal matrices with fourth-root of unity entries,

GU (S) = diag
(
ivSv

T mod 4
)

. (28)

Finally, symplectic group elements of the form (11) correspond
to r-fold tensor powers of 2×2 Walsh-Hadamard matrices H,

GΩ(r) = H⊗r ⊗ I2m−r , (29)
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