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Abstract—We address the problem of codebook design for
sparse user detection in fast fading channels, where the fading
realization changes from channel use to next. In this scenario,
codebook design criteria based on quasi-static fading, and/or
channel state information at the receiver, become ineffective. In
this paper we suggest new code design principles for signature
coding in fast fading channels and provide examples of codes
that are built using these methods.

I. INTRODUCTION

In this paper we consider the problem of synchronous user
detection in non-coherent fading channels. In the basic setup
we have N users of which a small number will randomly
activate and try to indicate to a single receiver that they are
active. Typically this is achieved trough signature sequences,
where each active user is sending a sequence of n symbols. We
assume that these signature sequences are pre-distributed to the
users. The number of signatures is larger than the number of
orthogonal resources used, which leads to interference when
multiple users are simultaneously active.

There exists an extensive literature on design of signature
sequences, starting from early work on CDMA and
culminating in a rich theory of signature code design principles
both in synchronous and asynchronous scenarios [1], [2].

Recently Compressive Sensing inspired multiuser detection
algorithms (CS-MUD) for collision resolution of signatures
were suggested for example in [3], [4] and [5]. For most recent
developments we refer the reader to [6], [7] and [8].

The investigations in the literature are based on assuming
quasi-static channels, where each signature will be faded,
but the fading stays the same during the transmission of the
codeword, and/or on assuming that the channel coefficients are
known to the receiver [3], [9].

In practise, for example in mobile communication, the
channel under consideration may suffer from time or frequency
selective fading, which renders signature code designs based
on quasi-static fading unreliable.

In this paper we discuss signature code design for fast
fading channels. First we recall why in a quasi-static channel
minimizing the coherence [10] of the signature code leads
to good user detection performance. Then we consider the
signature coding problem in the most extreme fast fading
case, where each coordinate of the signature sequences faces
independent Rayleigh fading. We first show that classical
constant amplitude signature sequences do not work well in
fast fading channels. Then we introduce a new code design
criterion, the fading coherence, and provide error probability

bounds for codes that are designed by minimizing it, proving
an analogue to the quasi-static case.

In the rest of the paper we concentrate on code design for
fast fading channels. First we prove a connection between our
code design problem and a restricted classical spherical code
design problem. We then take advantage of this connection
and show how constant weight binary codes can be used as
signature codes in fast fading channels. Finally we simulate
the constructed codes in fast fading and quasi-static models
and see how minimizing fading coherence improves the
performance of a code in the fast fading channel.

II. CHANNEL MODEL

Throughout the paper we are considering a scenario, where
we have a set of users U indexed by i and each of them have
an individual signature code vector xi ∈ Cn. We will call
this set of vectors C ⊂ Cn a signature code designed for U
if each element xi ∈ C satisfies ‖xi‖2 = 1. The number of
users |U | = N � n. We assume that communication happens
in a perfectly synchronized manner in blocks of n time units
and that the transmission power r is equal for each user.

During a time frame of n units a random set of users A ⊂ U
is trying to indicate to a single receiver that they are active.
The combined signal at the receiver then is

yA =
∑
i∈A

√
nr (Hix

T
i )

T + v, (1)

where Hi ∈ diag(Mn(C)) presents fading and v is a length n
i.i.d CN (0, 1) vector representing noise. If all diagonal entries
in Hi are the same, we have quasi-static fading, while if they
are statistically independent, we have fast fading. The receiver
knows the channel statistics, but does not know the channel
realization Hi. After receiving yA, the receiver tries to detect
the set of active users A.

For simplicity we consider a scenario where during any time
frame there is a maximum of t active users. We assume that
the receiver uses a threshold decoder with threshold s, which
works as follows: If |〈yA,xi〉| ≥ s, the receiver declares user
i to be active, otherwise user i is declared nonactive.

Given a time frame of n time units and a single user i, an
error happens when either the decoder declares that user i was
not active, while it actually was (missed detection) or when it
was detected while it actually was not (false alarm).

Throughout the paper we talk about time units, but
obviously the communication can happen also in frequency
domain or in both.



III. SIGNATURE CODE DESIGN CRITERIA FOR FADING
CHANNELS

In the following we consider the user detection problem of
the previous section and analyze the probabilities of single
user missed detection and false alarm in quasi-static and fast
fading channels and derive upper bounds for the single user
detection error probability Pe(U, t). The resulting bounds will
hold for any of the U users as long as at most t of the U users
are active at any given time frame. Our bounds will reveal
how different channel models leads to different signature code
design criteria.

A. Quasi-Static Channel

Let us now consider quasi-static fading channel, where each
signature sequence of an active user fades in an independent
way, but the fading is constant during the transmission of the
codeword. In the following we will shortly describe how small
coherence of the codebook C provides us guarantees for user
detection. This analysis is merely presented so that we can
contrast it to the fast fading scenario.

We assume that the signature code C satisfies

µ(C) = max
i6=j

(
〈xi,xj〉
‖xi|‖‖xj‖

)
= max

i 6=j
〈xi,xj〉 ≤ ε , (2)

where µ(C) is the coherence of the codebook C. This is a
classical signature code design criterion used already in early
works on CDMA communication systems [2] and later in
compressed sensing [10].

In the quasi-static fading model, the random matrix Hi in
the general channel model (1) can be replaced by a scalar. If
a subset of active users A ⊂ U is transmitting, the received
signal would be

yA =
∑
i∈A

√
nr hi xi + v, (3)

where each of the components of the noise vector v and
independent fading coefficients hi are i.i.d complex Gaussian
random variables with zero mean and unit variance.

In order to find the probability for missed detection and
false alarm, we have to understand the statistical properties of
|〈yA,xi〉|2.

In [11] we proved that the inner product 〈yA,xi〉 is a zero
mean Gaussian random variable with variance

g =
∑
xj∈A

nr|〈xj ,xi〉|2 + 1. (4)

Furthermore we found that if i 6∈ A then g ≤ 1+ tnr(ε)2 and
otherwise g ≥ ‖xi‖2nr + 1 = nr + 1.

By using this result we then proved that given a set of users
U , threshold s, hard activity limit t, a signature code C, and
assuming that s

(nr+1) < 1 and s
(nε2tr+1) > 1, the probability

of error for a single user is upper bounded by

Pe(U, t) < max

{
s e1−

s
(nr+1)

nr + 1
,
s e

1− s
(nε2tr+1)

nε2tr + 1

}
. (5)

In [11] it was also proven that for large values of r (5) can
be approximated as

Pe(U, t) < max
{
ftε2, fe1−f

}
, (6)

where f > 1 is a freely chosen parameter. Here we see that
the smaller the coherence ε is, the better the bound on error
probability becomes.

B. Fast Fading Channel

Let us now consider a scenario where the single user
channels are fast fading. Again we assume a set of user U
and corresponding signature code C.

If a set of users A ⊂ U is transmitting the receiver will get

yA =
∑
i∈A

√
nr(Hix

T
i )

T + v, (7)

where each of the Hi is an independent diagonal n×n matrix
with i.i.d CN (0, 1) random variables on the diagonal and v is
a length n i.i.d CN (0, 1) vector.

Let us consider how signature codes designed for the
quasi-static channel would work in this channel model.
Assume two users with signature sequences x1 = 1√

2
(1, 1)

and x2 = 1√
2
(−1, 1). For this code µ(C) = 0, and the code is

perfect with respect to the coherence. However, after fading,
x1 is

√
r(h1,1, h1,2), while x2 is

√
r(−h2,1, h2,2). All of the

hi,j are identical Gaussian random variables and hence the
faded versions of x1 and x2 are indistinguishable. It follows
that irrespective of the used decoder this code cannot be used
in the fast fading channel. On the other hand, if we were to
use a signature code with x1 = (1, 0) and x2 = (0, 1), it
would behave exactly like in the quasi-static channel and we
could separate the signals well. Both of the described codes
have coherence 0, but only the second one works in the fast
fading channel.

Can we now find a general code design criterion for fast
fading channels, that would separate these two codes and
would act like coherence does in the quasi-static channel?

Definition 1. Let x = (x1, x2, . . . , xn) and y = (y1, . . . , yn)
and define

[x,y] :=
√
|x1y1|2 + |x2y2|2 + · · ·+ |xnyn|2. (8)

Definition 2. Let us suppose we have a set of users U and
corresponding signature code C. We define

max(C) := max{[xi,xj ] | i, j ∈ U, i 6= j},

and call it the maximum of C.

Let us now assume that the signature code C satisfies
max(C) = ε, and that there exists a hard limit t for the activity.

We then have a result analogous to (4).

Lemma 1. Assume that A ⊂ U , xi ∈ C and yA is given by
Equation (7). We have that 〈yA,xi〉 is a zero mean Gaussian
random variable with variance

g =
∑
j∈A

nr[xj ,xi]
2 + 1. (9)



If i 6∈ A then g ≤ 1+ tnr(ε)2. Otherwise g ≥ [xi,xi]
2nr+1.

Proof. Additivity of the inner product gives us that

〈yA,xi〉 =
∑
j∈A

√
nr〈(Hjx

T
j )

T,xi〉+ 〈v,xi〉.

Equation (9) then follows from the basic properties of
Gaussian random variables. The other claims are obtained by
analysing the minimization and maximization of (9).

A comparison of Equations (4) and (9) reveals that in the
fast fading channel (8) plays the same role as inner product
plays in the quasi-static channel. However, comparing the
condition g ≥ [xi,xi]

2nr + 1 from Lemma 1 and g ≥
|〈xi,xi〉|2nr + 1 = nr + 1 from (4) we can see a difference.
While by definition 〈xi,xi〉 is always 1 for elements in C,
[xi,xi] can have very different values and the bound in Lemma
9 might not be the same for all elements in C.

For example we have [ 1√
2
(1, 1), 1√

2
(1, 1)] = 1√

2
, while

[(1, 0), (1, 0)] = 1.

Definition 3. Let C be a signature code. We then define

min(C) := minx∈C{[x,x]}.

Let us now assume that the code C satisfies max(C) = ε,
and min(C) = α.

Before proceeding, we need the following result from [12].
Assume that χ2

k is a chi-squared random variable with k
degrees of freedom. When 0 < z < 1, we have that

p(χ2
k < zk) ≤ (ze1−z)k/2 (10)

and for z > 1,

p(χ2
k > zk) ≤ (ze1−z)k/2. (11)

We then have an analogues result as in (5).

Proposition 1. Given a set of users U , threshold s, hard
activity limit t and a signature code C, and assuming that

s
(nα2r+1) < 1 and s

(nε2tr+1) > 1, we have the following upper
bound for the probability of error for a single user

Pe(U, t) < max

{
s e

1− s
(nα2r+1)

nα2r + 1
,
s e

1− s
(nε2tr+1)

nε2tr + 1

}
. (12)

Proof. Let us first assume that i /∈ A. The probability for false
alarm is

p(|〈yA,xi〉|2 > s). (13)

According to Lemma 1 we know that 〈yA,xi〉 is a Gaussian
random variable z′, with variance σ. It can be written in an
equivalent form

√
σz, where z is complex Gaussian with zero

mean and unit variance. Hence we can see that the probability
in (13) is maximized when 〈yA,xi〉 is the random variable
with the largest variance. According to Lemma 1 we have
that

p
(
|〈yA,xi〉|2 > s

)
≤ p
(
(1 + tnrε2)|z|2 > s

)
.

The final result now follows from (11) as 2|z|2 is chi-squared
random variable with two degrees of freedom.

In a similar manner, if we assume that user i ∈ A we
have the following upper bound for the probability of missed
detection

p
(
|〈yA,xi〉|2 ≤ s

)
≤ p
(
(1 + αnr)|z|2 ≤ s

)
.

Equation (10), then gives us the final claim.

For large r, (12) can be approximated as

Pe < max

{
(ftε2)

(α2)
, fe1−f

}
, (14)

where f > 1 is a chosen parameter. We can now see that the
smaller the value of ε

α is the better the bound is.

Definition 4. Given a signature code C, the ratio

d(C) =
max(C)

min(C)
(15)

is the fading coherence of the code C.

When comparing (6) and (14) we can see that coherence and
fading coherence do play analogous roles in their respective
channel models.

A simple signature code design criterion for fast fading
channel is thus to find a set of vectors C ⊂ Cn where for
all xi ∈ C, ‖xi‖ = 1 and d(C) is as small as possible.

Example 1. Let us consider signature codes C1 =
{(0, 1), (1, 0)} and C2 = { 1√

2
(1, 1), 1√

2
(−1, 1)}. We then

have d(C1) = 0, but d(C2) = 1, which is in line with our
experience that C1 is a good code for fast fading channels
and C2 is bad.

IV. SIGNATURE CODES FOR FAST FADING CHANNEL

In the previous section we found a code design criterion for
signature codes in fast fading channels. We could also see that
when n = N = |C| the most simple signature code did work
and for such a code d(C) = 0. Let us now consider the code
design problem when N > n. Our goal is to find codes that
maximize the number of codewords |C| while keeping d(C) as
small as possible. This design problem seems to be quite hard
as the definition of the fading coherence d(C) is a quotient of
two dependent optimization parameters max(C) and min(C),
where max(C) should be minimized while min(C) should be
maximized.

In the code design we can limit ourselves to codebooks
where the coordinates of the codewords are non-negative
numbers, which we denote with Rx≥0. This follows as any
codebook C can be replaced with another codebook C ′,
where each coordinate of the codewords in C have been
replaced by its absolute value. According to Definition 1 we
then have that d(C) = d(C ′) and obviously |C| = |C ′|.
In order to further simplify our problem we will relax the
code design criterion and forget the condition that all the
codewords of C should have norm 1. With these assumptions
for any relevant codebook C we have an other codebook C1/2,
which is obtained from C by taking a square-root of each
of the coordinates of the codewords. With a similar notation,



we also have a codebook C2, where each coordinate of the
codewords is squared. If we consider a set of codebooks with
N codewords and non-negative coordinates, then the mappings
C 7→ C1/2 and C 7→ C2 are bijections.

Given a codebook C we can define

m(C) =
maxi6=j〈xi,xj〉
mini ‖xi‖2

. (16)

We are interested on this measure as for any codebook C ⊂
Rnx≥0 we have that

d(C) =
√
m(C2), (17)

which can be seen directly from Definition 1. This reveals that
if we find a codebook C with N codewords, which minimizes
the value m(C), then the codebook C ′ = C1/2 is the codebook
which minimizes the value of d(C ′) for any N codeword
codebook C ′.

While m(C) is already a more familiar measure than d(C),
it is still a quotient of two parameters and finding a codebook
minimizing m(C) can be difficult. However, in some cases we
can reduce the problem of minimizing m(C) into the simpler
problem of minimizing (2).

We say that an N codeword codebook C is extremal with
respect to m if there does not exist a codebook C ′ with N
codewords satisfying m(C ′) < m(C). Extremal codebooks
with respect to d and µ are defined similarly.

Lemma 2. Consider an extremal codebook C that minimizes
m(C). If the pair of vectors (a, b) = argmaxi 6=j〈xi,xj〉 gives
the extremum of the numerator in (16), this pair also yields
the extremum of the denominator: ‖xa‖ = ‖xb‖ = mini ‖xi‖.

Proof. We express the vectors in terms of normalized ones as
xi = six̃i, with ‖x̃i‖ = 1. Now

m(C) =
maxi6=j sisj〈x̃i, x̃j〉

mini s2i
. (18)

Assume the negation of the claim: sa > mini si and/or sb >
mini si. By reducing sa and/or sb such that we get sa = sb =
mini si, the denominator in (18) remains the same, but the
numerator shrinks, thus m(C) shrinks. This is a contradiction,
as the set of vectors was assumed extremal. Accordingly the
claim holds.

We can then prove the following.

Proposition 2. Given an extremal codebook C, that minimizes
m(C), an equivalent codebook C ′ exists, for which ‖x′i‖ = 1,
∀ x′i ∈ C ′, and µ(C ′) = m(C ′) = m(C).

Proof. Assume that (a, b) = argmaxi 6=j〈xi,xj〉. Again,
redefine xi = six̃i, with ‖x̃i‖ = 1. For all pairs of vectors
xi 6= xj we thus have

sisj〈xi,xj〉 ≤ sasb〈x̃a, x̃b〉. (19)

Also, according to Lemma 1, for all vectors xi we have

si ≥ sa = sb .

For any i 6= a, b, reduce the scale to be s′i = sa. This does not
change the denominator of m(C). Also s′i ≤ si. The left-hand
side of (19) thus may become smaller, but the numerator of
m(C) does not change. Accordingly, all si can be chosen
equal, si = s, without changing m(C). After this is done,
both the numerator and denominator of m(C) scales as s2.
The scale is irrelevant, and can be chosen to be s = 1.

We say that an N codeword codebook C is Rx≥0-extremal
with respect to m if there does not exist a codebook C ′ ⊂
Rnx≥0 with N codewords satisfying m(C ′) < m(C). Similarly,
we define Rx≥0-extremal codebooks with respect to d and µ.

Given that there exists an N codeword Rx≥0-extremal code,
which minimizes fading coherence d we have the following.

Corollary 1. Let us supppose that C ⊂ Rnx≥0 is an N

codeword codebook. Then C1/2 is an N codeword codebook
and √

µ(C) = d(C1/2).

If C is Rx≥0-extremal with respect to µ, then C1/2 is extremal
with respect to d.

Proof. The first result is immediate. Let us now assume that C
is extremal with respect to µ. We also assumed that there exists
an N codeword Rx≥0-extremal codebook C ′, that minimizes
m(C ′). Furthermore, according to Proposition 2 we must have
that m(C ′) = m(C) = µ(C), or otherwise C would not be
Rx≥0-extremal with respect to coherence. It then follows from
(17) that C1/2 must be Rx≥0-extremal with respect to d and
d(C1/2) =

√
µ(C).

This result proves that any codebook C ⊂ Rnx≥0 having
small µ(C) provides a good candidate C1/2 for the fast fading
channel. Furthermore among such codebooks we can find all
the extremal codebooks that minimizes the fading coherence.

However, this approach has limitations. It could be that
while the codewords of C have all norm 1, the same might not
be true for the codewords of C1/2. Hence, if we want to have
equal power codebooks for the fast fading channel, we can
not use this result directly. This argument also suggests that if
we like to have maximal separation in the fast fading channel,
we might want to use codewords with unequal powers.

A. Code Construction From Constant Weight Binary Codes

In the previous section we saw that codes with non-negative
coordinates and small coherence are a promising source of
codes for fast fading channels. An example of such codes can
be produced from binary codes G ⊂ {0, 1}n.

Lemma 3. Let us suppose we have a constant weight w binary
code G with Hamming distance m. We then have that C =
1√
w
G is a signature code where

µ(C) =
w − dm/2e

w
= m(C) (20)

and

d(C) =

√
w − dm/2e√

w
. (21)



Proof. Every codeword in C has norm 1. Furthermore, by
direct calculation we find that, given two elements xi,xj ∈ C
with Hamming distance m, 〈xi,xj〉 = w−dm/2e

w . We can also
directly see that C2 is C after normalization. The last equation
then follows from (17).

This result induces a code design problem in the binary
domain. In order to minimize (21) we should minimize the
cross-correlation of the codewords, just like in the code design
for frequency hopping [13] or optical channels [14]. However,
the additional division with the weight in (21) does change
the problem slightly.

Example 2. A simple length n constant weight code consists
of all the weight w binary sequences. The Hamming distance
for such codes is always 2. According to (21) we should use
as small weight as possible. With w = 2 we can have

(
n
2

)
codewords and d(C) = 1√

2
. A code based on Steiner triple

system [15] gives us a length 25 code C1 with 100 codewords,
weight 3 and d(C1) =

1√
3

.

The theory of constant weight codes is rich and there exists
number of constructions. By considering longer codes we can
decrease the value of d(C) and according to (14) support
larger number of users. However, compared to the classical
coherence, the decay of fading coherence is considerably
slower.

V. SIMULATIONS

Our work suggests that minimizing fading coherence of a
code leads to good performance in the fast fading channel
when using classical matched filter (MF). In the following we
will test this hypothesis and simulate the performance of a
Steiner system based code C(25, 3, 2) from Example 2 and
compare it to a randomly generated code with ±1 coordinates
and 100 codewords. The fading coherence of C(25, 3, 2) is
1√
3

, while the fading coherence of the random code is 1.
In the simulations we assume that the receiver knows

that there are exactly K active users. The receiver uses
matched filtering and calculates |〈yA,xi〉|2 for every index
i. The indices returning the K largest values are considered
active. In the fast fading channel we also consider a receiver
optimized for fast fading: We first take the absolute value of
the coordinates of yA and then calculate |〈ỹA,xi〉|2 for the
corresponding vector ỹA. We call this Absolute Value Matched
Filtering (AV-MF). If pk denotes the probability for correctly
recovering k users, the single user error probability is

pO = 1− 1

K

k∑
i=1

k pk.

When using classical MF decoder the code C(25, 3, 2)
performs well in the quasi-static channel, outperforming the
random ±1 code. This can be attributed to the fairly good
classical coherence of C(25, 3, 2). In the fast fading channel
C(25, 3, 2) provides considerable gain against the random ±1
code, which could be predicted by the considerable difference
in the fading coherences of these codes. When using the

Fig. 1. Comparison of the codes in the quasi-static (QSF) and fast fading
(FF) channels with SNR 20 dB

AV-MF receiver in the fast fading channel, the performance
of C(25, 3, 2) improves considerably.

We can now see a trade-off. With the classical MF decoder
C(25, 3, 2) performs well in the quasi-static channel, while
providing passable performance in the fast fading channel.
Thus C(25, 3, 2) can be decoded with the MF in varying
channels and without knowing the fading distribution exactly.
However, if we know that the channel really is fast fading,
we can reap the diversity gain by using the AV-MF receiver.
Note that the performance of C(25, 3, 2) could be improved
in quasi-static fading by adding phase differences to the
codeword coordinates. The benefits of this could be reaped by
a conventional MF decoder. If an AV-MF decode were used
in quasi-static fading, improvements from phase differences
would not be visible.

VI. CONCLUSIONS

In this work we developed a code design criterion for fast
fading signature coding. We analyzed the geometric structure
of such codes and derived an example code. The code did
provide considerable gain in the fast fading channel, when
compared to a code with constant amplitude. Furthermore,
it did also have reasonable performance in the quasi-static
channel. Our approach provides a simple code design criterion,
which was proven to work also when we used more specialized
receiver.
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