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Abstract— We consider high-dimensional multiuser MIMO
transmissions in Frequency Division Duplexing systems. For
precoding, the frequency selective channel has to be measured,
quantized and fed back to the base station by the users. In
5G New Radio (NR), a modular quantization approach has
been applied for this, where first a low-dimensional subspace is
identified for the whole frequency selective channel, and then
subband channels are linearly mapped to this subspace and
quantized. We analyze how the components in such a modular
scheme contribute to the overall quantization distortion. Based
on this analysis we improve the technology components in
the modular approach. We compare the improved quantization
scheme to the 5G NR standardized version by simulation in a
scenario with a realistic spatial channel model. The improvements
lead to a more than 25% improvement in spectral efficiency.

I. INTRODUCTION

Using very large antenna arrays at the base station (BS)
is highly beneficial when serving multiple users in downlink
communication [1], and massive MIMO communication is one
of the key components in the 5G New Radio (NR). However,
the performance of Massive MIMO downlink depends heavily
on high quality channel state information at the transmitter.
In a Frequency Division Duplex (FDD) system the channel
has to be measured by the users, quantized, and then fed
back to the BS. FDD MIMO finite feedback has been studied
intensively both in the single user [2], [3] and multiuser [4],
[5] context. When the number of transmit antennas Nt at the
BS is high, the complexity of the quantization and the amount
of feedback needed can be prohibitively high. This problem
becomes particularly difficult in a multiuser-MIMO (MU-
MIMO) setting, where it is known that the amount of feedback
should scale with the Signal-to-Noise Ratio (SNR) [4].

In [5] a modular approach was suggested to this problem,
which benefits from the fact that while the channel can vary
fast, the correlation between the antennas can stay stable for
relatively many samples. If an individual Nt × 1 channel
vector h is correlated, the majority of channel energy lives
in a low-dimensional subspace of CNt and therefore it is
sufficient to feed back the coordinates of the signal in this
subspace. With K the subspace dimensionality, this can be
done by selecting an Nt×K unitary matrix UK based on the
covariance matrix of h, and creating a K-dimensional effective
channel vector by c = UH

K(h). If UK is known to the BS, the
user can simply quantize c and feed back this data. The BS
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can then approximate the channel vector as UKc. If K � Nt,
this considerably reduces both quantization complexity and
feedback rate.

To use this approach the user also has to quantize and feed
back the basis matrix UK using some codebook CW. MIMO
covariance matrix, and covariance eigenspace quantization has
been considered in [6]–[9]. In [6], it was shown that preserving
orthogonality after feedback quantization is optimal. Accord-
ingly, matrix codebooks consisting of a collection unitary ma-
trices is considered. In contrast, [7]–[9] consider independent
vector quantization of the columns of UK , i.e. codebooks of
the form CW = CKw , where Cw is a codebook of Nt × 1
vectors. For a given quantization accuracy, the size of a vector
codebook is only

√
K times the size of a matrix codebook,

which significantly reduces quantization complexity. However,
when a vector codebook is used, orthogonality of the matrices
cannot be guaranteed. In [7], orthogonality is guaranteed by
sequence design, limiting the vector codebook size to Nt.

In order to have high descriptive power with manageable
complexity, high-resolution FDD feedback in 5G NR is based
on overcomplete vector quantization codebooks [8], [9]. This
enables high precision of describing the basis UK , at the cost
of a potential loss of orthogonality. With a non-orthogonal
basis, good effective channel quantization might not result into
good overall quantization.

In this paper, we provide an implicit method for feeding
back unitary matrices despite using high precision vector code-
books CKw . We may use precisely the same vector codebook
and the same number of feedback bits as [8], [9], but still
guarantee unitarity of the fed back matrices. We prove how the
overall quantization distortion of the channel decomposes into
two independent parts. One describes the error of quantizing
UK , while the other part is essentially the effective channel
distortion. This analysis also provides a new criterion for
quantizing UK in an optimal way. We also take a fresh look
on effective channel quantization and suggest quantization
bit allocation based on an intrinsic order. We simulate the
resulting quantization scheme in a realistic multiuser setup
and compare it to the standardized quantization scheme of [8].
The simulation results agree exactly with the developed the-
ory. Applying the identified quantization principles leads to
considerable throughput gains over [8]. Furthermore, if we
increase effective channel quantization accuracy using the
standardized quantization for the basis UK , the gains are only
nominal. Based on our analysis this can be attributed to the



non-orthogonality of the used W. In contrast, applying the
identified quantization principles, improved effective channel
quantization leads to considerable gain.

II. SYSTEM MODEL AND PROBLEM SETTING

We consider a downlink MIMO channel, where a base
station with Nt transmit antennas transmits to M users. For
simplicity, we assume the users to have a single antenna. The
channel is modeled as

y = HHz + n, (1)

where H is an Nt ×M channel matrix, with the kth column
hk the conjugate channel vector of user k, z is an Nt × 1
vector containing the data, and n is an M ×1 vector of noise,
modeled as being white with i.i.d CN (0, 1) elements.

We assume that each of the users can measure their indi-
vidual channels hk perfectly and have an error free feedback
channel to the base station. The channels hk are assumed block
fading, i.e., constant during a communication instance. There
is a quantization scheme for hk, and a limited number of bits is
used for communicating quantized Channel State Information
(CSI) to the base station. Based on CSI, the BS will construct
single-user precoders ĥk which are quantized and normalized
versions of hk, stacks them to a matrix Ĥ. Assuming that
the BS applies equal power Zero Forcing (ZF) precoding with
power P , the received signals become

y =

√
P

M
HHĤ(ĤHĤ)−1Ax + n,

where x is a norm 1 M × 1 vector of data symbols for the
users, and A is a diagonal normalization matrix that forces the
columns of ĤH(ĤHĤ)−1A to have norm 1. For simplicity
we assume that ĤHĤ is invertible. The ZF-beamforming
vectors vi towards the users are the columns of the matrix
ĤH(ĤHĤ)−1A. User k then receives

yk = xk
√
P/MhH

k vk +
√
P/M

∑
j 6=k

xjh
H
k vj + nk.

From this we can calculate the Signal-to-Interference-and-
Noise Ratio (SINR) of user k as

γk =
P
M ‖hk‖2|h̃H

k vk|2
P
M ‖hk‖2

∑
j 6=k |h̃H

k vj |2 + 1
,

where we use the notation h̃k = hk

‖hk‖ . Assuming Gaussian
single user codebooks, we get a spectral efficiency lower
bound

Rk ≥ log2(1 + γk).

This directly suggests that a good objective for quantization
is to minimize the cross terms in the SINR expression and to
maximize the term |h̃H

k vk|2 [4].
The chordal distance between two vectors x and y is

d(x,y) :=

√
1− |xHy|2
‖x‖2‖y‖2

. (2)

It can be proven that |h̃H
k vk|2 ≤ 1− d(hk, ĥk)2, and

|h̃H
k vj |2 ≤ 2d(hk, ĥk)− d(hk, ĥk)2, when k 6= j . (3)

Thus if we manage to push d(hk, ĥk) towards zero, then the
spectral efficiency approaches log2(1 + P/M‖hk‖2), corre-
sponding to the spectral efficiency with perfect feedback and
zero forcing. Note that these bounds hold for any codebook
and for any channel and are therefore rather pessimistic. For
example, in [4] it is proven that with random quantization one
can guarantee that |h̃H

k vj |2 ≤ d(hk, ĥk)2.
Accordingly a single-user codebook Ĥ for quantizing h

would be good if min
ĥ∈Ĥ

{
d(hk, ĥk)2

}
is small. The expected

value of this is nothing but the quantization distortion with
respect to the chordal distance:

D(hk, ĥk) = Eh

[
min
ĥ∈Ĥ

{
d(hk, ĥk)2

}]
. (4)

Our goal is now to develop quantization schemes that would
minimize this distortion.

III. MODULAR SINGLE USER QUANTIZATION

If the single user channels hk can come from an arbitrary
distribution, their quantization and feedback can be highly
complex. However, if we can assume that the channels from
different antennas are correlated, it is possible to apply a
modular quantization approach and reduce complexity con-
siderably. The feedback method for 5G NR [8], [9] is based
on such an approach. As in 5G NR, we consider a situation
where multiple MU-MIMO communication channels (1) are
operated in parallel on subbands in the frequency domain, and
the the frequency selective channels of the users are correlated
between subbands.

For simplicity, we assume that the single user channel on a
subband is h ∼ CN (0,R) with a symmetric positive semidef-
inite channel covariance matrix R, describing the wideband
characteristics of the channel. We have the singular value
decomposition R = UΛUH, where Λ is an r × r diagonal
matrix whose elements are the r non-zero eigenvalues of R,
and U is the tall unitary Nt×r matrix of the eigenvectors of R
corresponding to the non-zero eigenvalues. According to the
Karhunen-Loeve decomposition, the channel can be written as

h = UΛ1/2c, (5)

where c is an r × 1 vector with i.i.d CN (0, 1) coordinates.
The problem we are now considering is the following. Let

us assume that the covariance matrix R is fixed and we have
a budget of bits for feeding back wideband statistical data of
the channel pertaining to R, and a separate budget for feeding
back subband specific CSI pertaining to the coordinates c.
In the extreme case with unlimited wideband feedback, the
BS knows U and Λ1/2 perfectly. We will denote with Σ the
K × K diagonal matrix where on the diagonal are the K
largest values of the diagonal of Λ1/2 ordered from largest
to smallest. Furthermore we denote with UK the Nt × K
matrix consisting of columns of U ordered by the size of the
corresponding eigenvalues.

The modular channel quantization [9] process can now
be performed as follows. The user first feedbacks quantized
CSI about UK , and then, using the fed back wideband CSI



as a basis, feeds back information about subband channels
expanded in this basis.

Ideal subband quantization would proceed as follows. The
user first calculates the effective channel

c̃ = Σ−1UH
Kh (6)

for each subband. According to Equation (5), c̃ is a K-
dimensional i.i.d CN (0, 1) vector. The user quantizes c̃ to ĉ
using some Grassmannian quantization codebook Ĉ developed
for K-dimensional i.i.d Gaussian vectors modulo norm and
phase, and then sends this information to the BS. The BS can
construct an estimate of h as

ĥ = UKΣĉ. (7)

The key point of this modular approach is that it reduces the
dimension of the quantization problem considerably, as the
dimensionality of the subband quantization problem has been
reduced from Nt to K dimensions.

Note that the BS does not need to know either the overall
channel phase or the channel norm—the channel phase is
irrelevant, and information of the channel norm is subsumed
by separately transmitted Channel Quality Indication feedback.
Accordingly, the estimate ĥ is up to phase and norm. Further-
more, due to the unitarity of UK , good quantization on the
effective channel will result in good quantization on the actual
channel, as UK captures most of the energy of ĥ. We shall
make this intuition explicit in Section IV.

A. Wideband Quantization of Prior Art

For wideband feedback we assume that the BS and the users
share a vector codebook Ĉw for quantizing the Nt×1 columns
in UK , and a scalar codebook for quantizing the elements in
Σ [9]. After wideband CSI feedback, the BS has a matrix
W, which is a quantized version of UK , and Σ̂, which is a
quantized version of Σ.

The quantization process now proceeds as in (6,7) but
replacing UK with W and Σ with Σ̂. However, if the
codebook Ĉw is overcomplete, as for example in the high
resolution alternative of 5G NR [8], there is a high probability
that W is not unitary, and the connection between the channel
and effective channel quantization is partially broken. In the
following we will show how we can avoid this problem.

B. Orthogonalizing Vector Quantized Wideband Feedback

While conventionally wideband feedback is based on quan-
tizing the covariance matrix R = Eh[hhH] [7], or a normal-
ized version Eh[hhH]/Eh[‖h‖2] [9], we instead quantize

R̃ := Eh

[
hhH/‖h‖2

]
= UHΛU, (8)

and its singular value decomposition. The motivation for this
will be given in Section IV.

Let us now assume that we are aiming at K-dimensional
effective channel feedback. We will later prove that in order to
minimize the distortion, we should find an Nt×K dimensional
matrix W that would minimize projection distance

dp(W, R̃) := 1− Tr
(
WH

OR̃WO

)
, (9)

where WO is an Nt × K matrix whose columns form an
orthonormal basis of the space spanned by the columns of
W. As such, this matrix now satisfies WH

OWO = I. The
motivation for this criterion will be provided again in Section
IV.

Using matrix quantization codebooks of Nt × K matrices
W that would minimize (9) leads to typically high complexity
quantization. Instead we proceed as previously by quantizing
UK column by column using some vector quantization code-
book Ĉw. As a result the user has now an Nt × K matrix
W consisting of quantized norm 1 vectors. These vectors are
not necessarily orthonormal. We also assume that the data of
W will be fed back to the BS. However, now we assume
that both the users and the base-station have agreed on a
method to orthonormalize the vectors W. This will produce
a set of orthonormalized vectors which span the same space
as the columns in W. This method is independent of the
structure of W and is assumed to be shared at the same time
as the codebook Ĉw. Now the user and BS both perform this
operation, after which they both have matrices WO. Exactly
the same number of bits can be usd to feed back this matrix as
feeding back the original W. The matrix WO can now be used
in place of W for the rest of the quantization. However, as W
is transformed to WO it does not make sense to use quantized
singular values as wideband amplitudes. Instead we calculate

wideband amplitudes as σi =

√
wH

i R̃wi for each column wi

in WO, and then feed back quantized versions of these ele-
ments by using the same quantization scheme designated for
the original singular values. After this operation, BS and user
share the matrix WO and the quantized wideband amplitude
matrix Σ̂. Using these matrices, the subband feedback can be
performed as in Equations (6) and (7), replacing UK and Σ
with WO and Σ̂.

IV. QUANTIZATION DISTORTION WITH UNITARY W

In this section we provide analytical derivations for the
intuitive notions used. We consider modular quantization of
a single user channel h using the quantization codebook Ĉ
for the K × 1 effective channels, a fixed covariance feedback
matrix W satisfying WHW = I, and a quantized K × K
wideband amplitude matrix Σ̂. We denote the induced quan-
tization codebook for the Nt × 1 vector h by Ĥ = WΣ̂Ĉ :=
{WΣ̂ĉ | ĉ ∈ Ĉ}.

According to (2) and (4) we are interested in how well the
elements of Ĥ quantize h in terms of chordal distance. Hence,
in what follows we assume that all the codewords ĥ ∈ Ĥ
satisfy ‖ĥ‖ = 1.

Consider the projector map ΠW = WWH that maps the
elements of CNt to the space spanned by the columns of W.
We can now decompose h to a component lying in the W-
subspace, and to a component in the perpendicular subspace;

h = ΠWh + (I−ΠW )h ≡ h‖ + h⊥ . (10)

We use shorthand h⊥/‖h‖ = h̃⊥, h‖/‖h‖ = h̃‖ and
h/‖h‖ = h̃. With this notation we have that h

||h|| = h̃‖ + h̃⊥
and therefore〈

h̃‖ + h̃⊥, h̃‖ + h̃⊥

〉
= ‖h̃‖‖2 + ‖h̃⊥‖2 = 1. (11)



The proof of the following result is omitted due to space
constraints.

Lemma 1: Assume that h is a channel realization and that
ĥ is a quantized version selected from the codebook Ĥ. Then

1−
∣∣∣〈h̃, ĥ

〉∣∣∣2 = ‖h̃‖‖2
(

1−
∣∣∣∣〈 h‖

‖h‖‖
, ĥ

〉∣∣∣∣2
)

+ ‖h̃⊥‖2

Proposition 1: Given a random vector h and corresponding
quantization codebook Ĥ we have

Eh

[
min
ĥ∈Ĥ

{
1−

∣∣∣〈h̃, ĥ
〉∣∣∣2}] =

Eh

[
min
ĥ∈Ĥ

{
‖h̃‖‖2

(
1−

∣∣∣∣〈 h‖

‖h‖‖
, ĥ

〉∣∣∣∣2
)}]

+ dp(W, R̃).

Proof: For simplicity, we will disregard the minimum
term. By Lemma 1

Eh

[
1−

∣∣∣〈h̃, ĥ
〉∣∣∣2] = Eh

[
‖h̃‖‖2

(
1−

∣∣∣∣〈 h‖

‖h‖‖
, ĥ

〉∣∣∣∣2
)]

+ Eh

[
‖h̃⊥‖2

]
.

It follows from (11) that

Eh

[
‖h̃⊥‖2

]
= 1− Eh

[
‖h̃‖‖2

]
= 1− Eh

[
Tr h̃h̃HΠW

]
= 1− Eh

[
Tr

(
WH hhH

‖h‖2
W

)]
Since the expected value commutes with trace and multiplica-
tion with constant matrices, we have that

Eh

[
Tr

(
WH hhH

‖h‖2
W

)]
= Tr

(
WH

(
Eh

[
hhH

‖h‖2

])
W

)
.

The final result then follows straightforwardly.
Corollary 1: We have the following upper and lower bounds

for the overall distortion

dp(W, R̃) ≤ Eh[min
ĥ
{d(ĥ,h)2}]

≤ Ec[min
c∗
{d(c∗, c)2}+ dp(W, R̃)],

where c∗ ∈ Σ̂Ĉ and c = WHh.
This result proves that the size of dp(W, R̃) provides

an absolute lower bound for quantization distortion, when
using the wideband feedback matrix W. It also suggests that
minimizing it is a good criterion for selecting the matrix W.
Furthermore we see that if we assume that W is unitary and
dp(W, R̃) is small, then good effective channel quantization
results into good quantization in the actual channel.

V. QUANTIZATION METHODS

It is natural, and shown in Corollary 1 that we should
find a good quantization method for the effective channel
c = WHh. Unfortunately the statistics of c depend on W
and Σ̂. However, according to Equation (5) a fair working
hypothesis is c ≈ Σ̂c̃ where c̃ is an i.i.d. K × 1 CN (0, 1)
vector. Taking this as granted we have reduced the 32-
dimensional quantization problem to a K-dimensional prob-
lem of quantizing vectors of independent Gaussian random

variables with different variances σ̂i2. Quantization of i.i.d.
channels is well under control [2], [3]. In the following we
present a suggestion for overall low-complexity wideband and
effective channel quantization. For comparison we present the
method suggested in the 5G NR standard [8].

In order to highlight the differences between the approaches
we present in both cases the whole modular quantization chain.
As a starting point we assume a fixed vector quantization
codebook Cw for producing the covariance feedback matrix
W, and another fixed codebook for the wideband amplitudes
Σ̂. We can, for example, use options from [8]. For simplicity
we assume that K = 8.

For the effective channels, quantization codebooks Ĉ that
act on individual coordinates directly will be used. A general
codeword of Ĉ can be written as ĉ = (ĉ1, . . . , ĉ8), where
ĉi is freely selected from a coordinate codebook Ci. The
advantage of this approach is that we can use large codebooks,
while quantization complexity stays limited as it can be
performed coordinate by coordinate. Note that as overall phase
is irrelevant, one may rotate the vector such that a chosen
coordinate ci is real positive.

A natural codebook for each coordinate is one where each Ci
is quantizing a CN (0, 1) random variable. However when the
BS reconstructs the channel by WΣ̂c̃, coordinates correspond-
ing to larger values of σ̂i have a larger effect on the overall
distortion. Hence we should use variable-size codebooks Ci for
different coordinates. This leads to rather hard bit allocation
problem. We consider three different granularities with 24, 26
or 28 bits for the quantization of the whole vector.

1) Standarddized Feedback [8]: As a starting point the user
finds the covariance matrix R and then finds the covariance
feedback W and Σ̂ by quantizing U8 and Σ8 from Equation
(6). Then there are two possible options for finding the effec-
tive channel. This can be done either directly, c̃ = Σ̂−1WHh,
or by using pseudoinversion:

c̃ = Σ̂−1(WHW)−1WHh.

Irrespectively of the chosen method, the effective channel
quantization then continues as follows.

Bit allocation for effective channel coordinate quantization
is based on an extrinsic order of the coordinates, i.e., based on
the size of the corresponding σ̂i. As we are not interested on
feeding back constant multiplicative terms, we first divide all
the other coordinates with the coordinate corresponding to the
largest σ̂i. No bits are needed for quantizing this reference
coordinate. Then for the next m = 5, 6, 7 coordinates we
quantize the amplitude with codebook {1,

√
0.5} and use 3-

bit uniform phasing quantization. For the last 8 − (m + 1)
coordinates we allocate 0 amplitude bits and 2 bits for uniform
phase quantization.

2) Orthogonalized wideband precoding (OWP): We start
quantization from R̃ and find the matrix W based on this
matrix. We then use the shared orthogonalization method from
Section III-B to produce WO, and find wideband amplitudes

σi =

√
wH

i R̃wi and quantizing these we get Σ̂. The effective
channel is then found by c̃ = Σ̂−1WH

Oh. For effective channel
quantization we use an intrinsic order. First we normalize the



effective channel vector, and then quantize all coordinates with
one bit amplitude quantization using codebook {0.208, 0.462}.
Assuming perfect phase quantization, these provide optimal
amplitude quantization for Rayleigh fading variables with
average energy 1/

√
8, see [10]. We denote the quantized

amplitude value of the ith coordinate with ai. The user then
compares σ̂iai to each other and divides all the coordinates
with the phase of the coordinate corresponding to the largest
value of σ̂iai.

After this the user allocates phase bits for phase quantization
of the coordinates based on the sizes of σ̂iai, not just based
on σ̂i as when using extrinsic order. No bits are needed for
quantizing the phase of the coordinate with largest σ̂iai. Then
4 phase bits are allocated to the m−1 next largest coordinates,
and 2 phase bits to the last 8 − m coordinates, where m =
3, 5, 7.

The user feeds back the amplitude information using extrin-
sic order, so that the base station will know which quantized
amplitudes ai correspond to which vector of W0. Then phase
information is transmitted in any agreed order.

The basic idea underlying this bit allocation is that while
typically the coordinates with largest σ̂i have the largest
true amplitude σi|ci|, this does not happen always. With the
intrinsic order we allocate more phase bits for the coordinates
having the largest impact on overall quantization distortion.

VI. SIMULATIONS

We evaluate performance in a scenario where an Nt = 32
antenna BS serves M = 4 single antenna users. The channel
between a user and the BS on subband s is hs. A user
constructs the sample covariance R or R̃ by averaging over
the subbands, quantizes this, and then quantizes hs on each
subband. Based on the feedback, the BS performs ZF on each
subband, as described in Section II. The two feedback schemes
from Section V are compared; the standardized scheme was
simulated with and without pseudo-inversion. The quantization
codebooks for W and Σ are from [8].

In the simulations, QuaDRiGa V2.0.0 [11] was used to
generate MIMO channel correlations with 3GPP 38.901 UMa
NLOS settings. The BS was assumed having Uniform Planar
Array (UPA) with 32 = 8×2×2 antennas (horizontal x vertical
x polarization). After frequency selective channel generation,
user channels were normalized to a SNR.

Average single user spectral efficiency given an SNR is
plotted in Figure 1. Simulations corroborate the theoretical
principles discussed above. OWP provides a gain of more than
25% against the standardized versions. Using pseudoinversion
with the standardized approach gives nominal gain. Increasing
the effective channel quantization granularity does improve
the performance of OWP considerably, while doing so with
the standardized version provides little gain. While we here
demonstrate the results only with M = 4 users, similar results
can be observed with higher numbers of users.

VII. CONCLUSIONS

We have addressed wideband and subband quantization in
a modular quantization scheme. Analyzing the separation of

Fig. 1. Spectral efficiency with 4 users: Orthogonalized wideband precoding
(OWP) versus Standard with pseudoinversion (PI) and without pseudoinver-
sion (no PI) compared to single user SISO AWGN performance.

feedack to wideband and subband parts, we found quantization
objectives for optimal modular quantization. We show con-
siderable performance improvement in a MU-MIMO scenario
with a high number of antennas, when these principles are
applied. Orthogonalization of wideband feedback makes it
possible to further increase quantization accuracy by improv-
ing subband quantization accuracy, while if orthogonalization
is omitted, improving subband quantization seems useless. In
future work we shall analyze the degree to which wideband
feedback is a performance bottleneck, and investigate bit
allocation between wideband and subband feedback.
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