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Abstract—We consider sparse user detection in fading channels.
With Rayleigh flat fading, deep fades occur with relatively high
probability and it becomes challenging to provide highly reliable
user detection, irrespective of the chosen multiuser detection
algorithm. It has been proven that with a large number of
receive antennas, this problem can be overcome and both the
reliability and number of detectable users can be increased. In
this paper, we show that similar improvements can be achieved
by moderately increasing the number of transmit antennas at
the user terminals. With multiple transmit antennas, code design
becomes a problem. We provide a design criterion and show that
the detection probability can be considerably improved by using
the resulting well-balanced MIMO signature codes, especially in
the high-reliability regime.

I. INTRODUCTION

The motivation for this work is to reach Ultra-Reliable
Low Latency Communication (URLLC) [1] in a network with
contention based access. Reaching URLLC is challenging,
and it is well-known that in networks with scheduled
resources, receive and transmit diversity methods are
valuable for increasing reliability against uncertainties of
fading channels [1]. Achieving URLLC in contention based
access [2], [3] is an even more difficult task, however,
due to the uncertainty caused by random user activity.
Packet-level coding methods against random collisions have
been considered in [3], and the frequency domain diversity
arising from packet repetition has been analyzed in [4]. The
role of physical layer transmit and receive diversity methods in
contention based URLLC scenarios is not properly understood.

Here, we concentrate on the first step in contention based
access; user detection in non-coherent fading channels, and
consider physical layer code design. In the basic setup we
have N users of which a small number K � N will randomly
activate and try to indicate to a single receiver that they are
active. One method for this is to use signature sequences,
where each active user is sending a sequence of n symbols. We
assume that these signature sequences are pre-distributed to the
users, and that each user is synchronized with the receiver. The
number of signatures is larger than the number of orthogonal
resources used, which leads to interference when multiple user
are simultaneously active.

There exists an extensive literature on design of signature
sequences, starting from early work on CDMA and
culminating in a rich theory of signature code design principles
both in synchronous and asynchronous scenarios [5], [6].

Recently, Compressed Sensing Multiuser Detection
algorithms (CS-MUD) have been applied to the problem
[7]–[12]. The theory of compressed sensing has both

This work was funded in part by the Academy of Finland (grants 299916
and 319484).

suggested new signature code design principles and provided
strong detection guarantees.

However, if the users channels are Rayleigh faded and
unknown for the receiver, having highly reliable user detection
is quite challenging, irrespective of the used detection method.
Even in a scenario where there is only one active user there is
a relatively high probability that the channel of the user is in
a deep fade and the user is missed.

In such a scenario it becomes challenging to give good
recovery guarantees. In the literature, limitations on the
dynamic range of the fading coefficients [13, Thm. 2], [14,
Thm 6.1], [15] are imposed to make guarantees possible, or the
channel is assumed noiseless and a complex receiver structure
is used [14, Thm. 4.4].

Limitations on the dynamic range and problems with
receiver complexity can be avoided if the receiver has a large
number of antennas and the physical channels between the
receiver and the users are richly scattered. In [16] the authors
analyzed coherence based deterministic codes and threshold
detection. In this setting they found out that if the receiver
has a large number of receive antennas it is enough to use
length n = O(K) codes for detecting K users with high
probability. For comparison, in a single antenna scenario, the
best coherence based user detection guarantee for matching
pursuit type algorithms requires n = O(K2 log N

K ). This
bound is referred as the “square-root bottleneck” [17].

More recently, in [18] and [19], it was proven that with a
high number of receive antennas, a relatively low complexity
decoder and random codes can be used to guarantee recovery
with high probability when n = O

(√
K log N

K

)
. This

improves on the O(K), which is the best known guarantee for
any single antenna user detection method without noise [14,
Thm. 4.4]. These works suggest that, while Rayleigh fading
can be problematic in single antenna systems, it can be turned
into a benefit when we have additional receive antennas in a
rich scattering environment.

In this paper we investigate whether a similar effect can be
achieved in the case where the users have additional transmit
antennas, and if so, what kind of structure the signature codes
should have. The motivation for the problem is clear. As seen
earlier, large number of receive antennas is highly beneficial
for user detection. However, there are use cases where massive
antenna arrays can not be assumed, like vehicle-to-vehicle
communication. As we will later see, if each of the users
have nt transmit antennas the user detection capability of the
receiver gets amplified so that it performs almost like having
nr × nt, instead of nr receive antennas. Hence additional
transmit antennas allows us to operate closer to the massive
regime without actual massive antenna arrays.



If only one user is active at any given time the
problem reduces to a non-coherent MIMO communication
problem [20]. It is known that with proper code design one
can improve the probability of correct user detection beyond
single antenna signaturing. However, it is unclear if splitting
the power between the transmit antennas and using MIMO
signaturing is a good idea when more than one user can
be active at the same time. This problem can be seen as a
block sparse support recovery problem [21]. According to [21],
a block sparse structure does help in signal recovery, but
intentionally adding more variables to be recovered has a
negative effect on overall recovery performance.

Here we consider a scenario where the fading coefficients
have additional probabilistic structure. Furthermore, we are not
interested in estimating channels; we only want to detect user
activity. Following [16], we use the most simple threshold
detector and a code design based on coherence [21]. Our
results suggest that, with additional transmit antennas we
can typically recover more active users. In section IV-B we
show that already with two transmit antennas we can break
the square-root bottle neck and get recovery guarantees with
n = O(K3/2 lnN3/2+ε). As the same proof works also in the
case of additional receive antennas, we provide an extension
to [16] by proving that already a small number of receive
antennas allows us to partially overcome the square-root bottle
neck.

Our probabilistic analysis is performed for a specific class
of codes, which have been tailored for MIMO signaturing. The
structure of these codes allows us to prove probability bounds
and recovery guarantees. The codes are designed to minimize
the block coherence following [21]. However, in order to
fully benefit of the assumption that the fading coefficients are
Gaussian, we also introduce an additional condition that the
codebooks should be well-balanced in a specific manner.

Our results suggest that constructing well-balanced MIMO
signature codebooks, with good coherence might be a new
and interesting coding theoretic problem (see Section IV-A).
Comparing well-balanced to non-balanced MIMO signature
codes, simulations indicate an order of magnitude lower
detection errors in the URLLC domain.

II. SYSTEM MODEL

Throughout the paper we are considering a scenario, where
we have a set of users U indexed by i, each having nt transmit
antennas. We will call a set of matrices C ⊂ Mnt×n(C) a
signature code designed for U if each element Xi ∈ C satisfies
‖Xi‖2F = 1, and if |C| = |U| = N . Transmission from user i
is of form

√
nγXi, where γ is a constant that will be used to

vary the transmission power. We assume that communication
happens in a perfectly synchronized manner and in blocks of
n time units. We also assume that γ is equal for all the users.

During a time-frame of n units a random set A ⊂ U of
users is indicating activity by transmitting their code vector.
The base station will then receive

YA =
∑
i∈A

√
nγHiXi +W, (1)

where Hi are independent nr × nt random matrices with i.i.d
CN (0, 1) coefficients and W is an nr×n random matrix with
i.i.d CN (0, 1) coefficients. Here nr and nt are the number
of receive and transmit antennas, respectively. In this signal
model, γ acts as the single-user Signal-to-Noise Ratio (SNR).

At any given time there are at most K � N active users, and
under this condition the receiver tries to identify these users.
The receiver succeeds if it manages to recover exactly the set
of all active users A.

This problem can also be presented in the context of
compressed sensing. For nr = 1, (1) can be written in an
equivalent form as

YA =
√
nγXCH + W, (2)

where XC is an n × Nnt matrix, which consists of
concatenation of matrices XT

i so that the first nt columns
corresponds to the signature of the first user and so on. Here
H is a sparse length Nnt vector where the non-zero elements
are i.i.d CN (0, 1). With nt > 1 we have block sparsity; H
is divided into consecutive blocks of nt elements, and inside
each block either all the elements have non-zero value or all
are zero.

If there are |A| ≤ K active users, in the model (2) there
are non-zero elements in at most K blocks, and overall at
most ntK non-zero elements. This is the block sparse model
investigated in [21]. The problem of detecting which users
are active is equivalent to finding which blocks have non-zero
coefficients. This is the support recovery problem in the block
sparse model, but with the additional assumption that H
is not only block sparse, but also that the coefficients are
Gaussian. If nr > 1 and nt = 1 the channel model (1) can
be extended to an instance of the multi-channel compressed
sensing problem [14]. Hence in full generality our work can be
seen as a multi-channel block-sparse support recovery problem
under additional data about the fading distribution of the
coefficients.

We note that the recovery guarantees we will give later are
for at most K and not for exactly K active users. Furthermore,
while our bounds are probabilistic, they work for all sets with
at most K users and are not averages.

III. SUPPORT RECOVERY OF WELL-BALANCED MIMO
CODES

In this section we introduce the concept of well-balanced
MIMO signature codes and show how the small block
coherence of such codes allows us to get strong recovery
guarantees when using simple threshold decoder.

A. Well-balanced MIMO Signature Codes and Their
Coherence

In [21] block sparse recovery was considered for signal
detection, where the support (the active users) as well as the
fading coefficients are estimated. However, as support recovery
is an essential part of signal recovery, [21] can also be used
as a guideline for finding good methods for our task.

We will denote the spectral norm of A with ρ(A) =√
λmax(AA†). Here λmax(AA†) is the largest eigenvalue of

the positive-semidefinite matrix AA†. Given a signature code
C ⊂ Mnt×n(C) the concept of block-coherence of C [21] is
defined as µC = max

i 6=j
ρ(XiX

†
j ).

In [21] it was proven that minimizing the block coherence
does lead to good recovery guarantees. In our case we have
the extra assumption that the coefficients are Gaussian random
variables. As expected, we will see that minimizing the block
coherence is a good idea also in this case. However, exploiting
information about channel statistics leads to the additional
condition that codes should be well-balanced.



Definition 1. A MIMO signature code C ⊂ Mnt×n(C) is
called well-balanced if for every Xi ∈ C we have

XiX
†
j = ci,jUi,j , (3)

where Ui,j is an nt×nt unitary matrix and ci,j is a scalar. The
signature code will be called ε-well-balanced if |ci,i| = 1/nt
and |ci,j | ≤ ε for i 6= j.

Since all the eigenvalues of Ui,j have absolute value 1, for an
ε-well-balanced MIMO signature code C, we have that µC =
max
i6=j
|ci,j | ≤ ε. Thus we will refer to ε as the coherence of

the well-balanced code.

B. Error probability of support recovery for well-balanced
codes

Let us now suppose we have a set of users U and an
ε-well-balanced MIMO signature code C ⊂ Mnt×n(C). We
also suppose that the receiver uses a simple threshold decoder
with threshold s. The threshold decoder for a set of active users
A and channel model (1) works as follows. If ‖YAX†i ‖2 > s
the receiver decides that user i is active, otherwise user i is
nonactive. Our result will be stated in a scenario, where at any
given time there are at most K active users. We will denote
with Pe the probability that the receiver fails to recover the
support of the transmission correctly. This probability is given
in a form that holds for any subset A of U of size |A| ≤ K.

Before providing a bound for Pe in Theorem III we have to
understand the probabilistic structure of ‖YAX†i ‖2. Due to the
space restrictions we will skip the proofs of Proposition 1 and
Lemma 1.

Proposition 1. Consider the projection of the received signal
(1) to a codeword,

‖YAX†i ‖
2
F = gZ.

For any well-balanced code C, Z is a chi-squared random
variable with 2ntnr-degrees of freedom and g is a positive

constant. If i /∈ A, then g ≤
1
nt

+nKε2γ

2 , and g ≥
1
nt

+nγ/n2
t

2 if
otherwise.

Proposition 1 will be the key for providing error probability
bounds for support recovery of well-balanced signature codes.

In what follows, we will denote with p(i, false) the
probability that given any set A of active users with |A| ≤ K
and a threshold s, the threshold decoder detects user i as
active although it was not. On the other hand we will denote
with p(i,miss) the probability that the threshold decoder, with
threshold s fails to detect that the user i is active. One should
note that the found bounds work for any user i and set A.

Lemma 1. If i /∈ A and s
nr(nntε2Kγ+1) > 1 then

p(i, false) ≤

(
s e

1− s
nr(ntnε

2Kγ+1)

nr(ntnε2Kγ + 1)

)ntnr
. (4)

If i ∈ A and s
nr(nγ/nt+1) < 1 then

p(i,miss) ≤

(
s e1−

s
nr(nγ/nt+1)

nr(nγ/nt + 1)

)ntnr
. (5)

Now we are ready to provide an upper bound for the
probability that the threshold decoder with threshold s fails
to detect the correct set of active user A. This bound holds for
any set of active users A as long as |A| ≤ K.

Theorem 1. Consider an ε-well-balanced signature code C of
Definition 1, a threshold detector with threshold s, maximum
number K of active users and code size N . If s

nr(nγ/nt+1) < 1
and s

nr(ntnε2Kγ+1) > 1. Then the probability of erroneous
recovery of the set of active users is

Pe < K

(
s e(1−

s
nr(nγ/nt+1)

)

nr(nγ/nt + 1)

)ntnr
+N

(
s e

1− s
nr(ntnε

2Kγ+1)

nr(ntnε2Kγ + 1)

)ntnr
.

Proof. We have the set of active users A, |A| ≤ K. The
probability that the threshold decoder fails in detecting this
set of active users can be upper bounded as

Pe ≤
∑
i∈A

p(i,miss) +
∑
j /∈A

p(j, false).

Using Proposition 1 we have upper bounds for the terms
p(i,miss) and p(j, false) that are independent of i and j.
Further we know that there are at most K terms in the first
sum and at most N in the second.

The error probability expression in Theorem 1 can be
simplified to

Pe < K

(
s e

nr(nγ/nt + 1)

)ntnr
+N

(
s e

1− s
nr(ntnε

2Kγ+1)

nr(Knntε2γ + 1)

)ntnr
.

Let us now set s = fnr(ntnKε
2γ + 1), where f > 1 is a

freely chosen constant. With this choice of s we automatically
satisfy the second condition in Theorem 1. The first condition
holds if

fnr(nntKε
2γ + 1)

nr(nγ/nt + 1)
< 1, (6)

and we have the following corollary.

Corollary 1. If there are at most K active users, the
probability of error for recovering the correct support is upper
bounded by

Pe < K

(
ef(Kntnε

2γ + 1)

(nγ/nt + 1)

)ntnr
+N

(
fe1−f

)ntnr
. (7)

where f > 1 is a freely chosen parameter.

We note that condition (6) does not limit the use of our
bound at all as in order to make the first term of the right side
in (7) smaller than one we have to satisfy condition (6).

For large values of γ Equation (7) can be approximated as

Pe < K
(
fKen2

t ε
2
)ntnr

+N
(
fe1−f

)ntnr
. (8)

This reveals how minimizing ε leads to strong recovery
guarantees. If on the right side of the equation we select f
large enough to push the rightmost term towards zero, then ε
has to be small enough so that the term on left will be small
as well.

Remark 1. If we analyze the error probability of a fixed code
with coherence ε, Equation (8) reveals the effect of additional
receive antennas. Assuming we have selected f and K in such
a way that

(
fKen2

t ε
2
)ntnr

< 1 and
(
fe1−f

)ntnr
< 1, then in

(8) additional receive antennas will push the error probability
towards zero exponentially.

Adding transmit antennas has a similar effect to the error
probability. However, as fKen2

t ε
2 includes the term n2t , the

effect of additional antennas should be compensated with
smaller ε2 or smaller K. Furthermore, changing the number
of transmit antennas requires changing the code. Hence we



can not guarantee that N and ε2 will remain the same when
we increase the number of transmit antennas. In Section IV-B
we will see that despite these issues using additional transmit
antennas is beneficial and the effect is indeed similar to that
of additional receive antennas.

IV. MIMO SIGNATURE CODES FROM MUBS

In the previous section we found out how small coherence
of an ε-well-balanced MIMO signature code provides good
recovery guarantees. However, this analysis did not directly
answer whether it is better to use one transmit antenna or more.
In this section we consider two families of signature codes.
One for one transmit antenna and the other for two, and show
that with two transmit antennas we get better performance.
The coherence of the used single antenna codes is close to the
Welch bound. Asymptotically Welch bound is in class Θ( 1√

n
).

Our analysis therefore reveals that even if a single antenna code
reaches this bound it can not have as good recovery guarantee
as our simple two antenna code does.

A. Construction of well-balanced codes

Unitary matrices Xi ∈Mn(C) are called mutually unbiased
bases (MUBs) if the matrix of absolute values of row inner
products satisfies |XiX

†
j | = 1/

√
n, where 1 is the all-ones

matrix. It is well-known that in power-of-two dimensions n =
2k there exist n+1 MUBs, and this number is maximal. In this
paper we will work with the maximal collection of Kerdock
MUBs [23]. We will denote Cn the set of n(n+ 1) unit norm
vectors that are formed by the rows of the Kerdock MUBs.
Such code is trivially a ε-well-balanced signature code for the
case nr = nt = 1 with coherence ε = 1/

√
n.

We are most interested in a true MIMO scenario in which
nt, nr > 1. For the case nt = 2 we will construct a
ε-well-balanced signature code Cn,2 ⊂ M2×n(C) as follows.
For each xi ∈ Cn/2, we will denote

Xi :=
1√
2

(
xi 0
0 xi

)
∈ Cn,2.

It is readily verified that Cn,2 is a ε-well-balanced MIMO
signature code with coherence ε = 1/

√
2n and size |Cn,2| =

n/2(n/2 + 1). In general, if nt is a power of two then
Cn,nt ⊂ Mnt,n can be constructed similarly using signatures
xi ∈ Cn/nt .

Remark 2. Constructing well-balanced codes for a single
antenna is a conventional code design problem. In this case
one is interested on codes with small coherence or large
size. The problem is well-studied from the context of sequence
design [24], and there exist several bounds. In the MIMO
context the idea of using MUBs for constructing codes for
single user non-coherent MIMO has appeared in [20], but
the user detection problem was not considered. Using MIMO
spreading sequences in coherent CDMA MIMO has appeared
in [25] and as mentioned block coherence has been discussed
in the context of compressed sensing in [21]. However none
of these works considered the random access problem in
quasi-static fading channels and as far as we know there is no
previous work on well-balanced MIMO signature codes.

Remark 3. For n = 8, we have |C8,2| = 20 and coherence
ε = 1/4. The underlying set of single antenna signatures also
achieves the orthoplex bound [26] proving that for coherence
1/4 this is the largest possible set of diagonal well balanced

codes. However, in this case we are aware of a well-balanced
code with the same coherence, but of size 28. Thus, one can
go beyond the diagonal constructions that we are using in this
paper.

B. Asymptotic performance analysis

Let us now consider a scenario, where the receiver has
a single antenna, but the transmitters have an option to
select between using one or two antennas. To simplify the
comparison, we assume that there is no noise. The signaturing
methods we compare are from the previous section. For the
single transmit antenna case we have a signature code Cn with
n(n + 1) elements and coherence ε1 = 1/

√
n. For the two

transmit antennas we use the code Cn,2 with n/2(n/2 + 1)
elements and coherence ε2 = 1/

√
2n. In order to have a fair

comparison, we select the same number N of codewords from
both codes. For a single transmit antenna, (8) reads as

Pe < K

(
fKe

n

)
+N

(
fe1−f

)
, (9)

whereas for the two transmit antenna case we have

Pe < K

(
2fKe

n

)2
+N

(
fe1−f

)2
. (10)

By analysing the conditions which f must satisfy so that we
can asymptotically guarantee support recovery of at most K
users, we find that for a single transmit antenna we must have
at least K = O( n1/2

lnN1/2 ). With two transmit antennas we can
set f = lnN and achieve correct support recovery already
when K = Θ( n2/3

(lnN)2/3+ε
). It follows that we can guarantee

support recovery when n = O(K3/2 lnN3/2+ε).
We note that the single antenna code suffers from the

square-root bottleneck [17] that limits the recovery capability
of coherence based greedy methods. However, with two
transmit or receive antennas we can break this limitation.

C. Simulated performance

In the previous section our asymptotic analysis suggested
that using additional transmit antennas and well-balanced
codes gives better recovery guarantees. In this section we are
testing this by a simulation. We compare the performance of
the well-balanced codes C512,2 and C512,4 with single transmit
antenna code C512 for 2 and 4 receive antennas. For a reference
we also measured the performance of C512 with a single receive
antenna.

In order to demonstrate the benefits of codes being
well-balanced we also included the performance of
non-balanced 2-transmit antenna code D512,2 and a
non-balanced 4-transmit antenna code D512,4 that were
constructed as follows. Starting with MUBs in 512 dimensions,
we select consecutive rows of such MUBs to create signatures
Yi ∈M`×512. Then D512,` consists of |C512,`| such signatures.

Since the actual code sizes are massive, we have selected
the size of the user population to be N = 5000, so that we
can study the performance of the codes in the ultra-reliability
region. The SNR is set to 20dB.

For the simulations we assume to know the number of
active users K, and exhaustively find the K highest values of
‖YAX†i ‖F . If pk denotes the probability to correctly recovering



k users, then the single transmission error probability is
measured by

pO = 1− 1

K

k∑
i=1

k pk.
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Fig. 1. Comparison of well-balanced codes with non-balanced codes.

From the simulations we can see that, as expected, using
more transmit antennas does provide considerable gain. In all
cases with the same diversity degree, we see that it is more
beneficial to increase the number of receive antennas than
transmit antennas, as is indicated by the bounds in Theorem 1.
Overall, we see a remarkable gain in the supported number of
users, when transmit and receive diversity is used for signature
coding. The gain from using a well-balanced multi-antenna
signature is considerable. Especially in the high-reliability
regime, a well-balanced code can provide an order of
magnitude smaller error probability than a non-balanced code
with similar block coherence.

V. CONCLUSION

In this paper, we introduced the notion of ε-well-balanced
MIMO signature codes for user activity detection. For such
codes, we could provide detection guarantees for larger sets
of active users than is possible with corresponding single
antenna techniques. The effect is especially pronounced in
the high-reliability regime. We point out that our work
demonstrates that multiple transmit antennas are beneficial in
the specific case of coherence based codes and a threshold
decoder. In future works, we will study code constructions and
bounds of ε-well-balanced MIMO signature codes, and their
performance under more advanced CS algorithms.
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