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Abstract—We consider multiple cluster scattering MIMO
channels, where the effective channel equals the product of n
complex Gaussian matrices. The considered channel model is
typical for picocell propagation environments. For this channel
model, we derive a closed-form lower bound of the ergodic mutual
information. The derived lower bound is asymptotically tight,
and is valid for an arbitrary number of clusters n − 1 and an
arbitrary number of antennas. The scaling law of the ergodic
mutual information is found, generalizing the known result for
the conventional MIMO channel model for which n = 1.

Index Terms—MIMO channel models; mutual information;
picocell environment; product of Gaussian matrices.

I. INTRODUCTION

TO extend coverage and increase network capacity, pic-
ocells are increasingly used for dense teletraffic areas

such as train stations, office buildings and airports. Picocellular
propagation is affected by a wide range of mechanisms, among
which an important characteristic is that the transmitted signal
propagates through a sequence of scattering clusters (layer-
s) until it reaches the destination. This multifold scattering
channel model is typical in modeling, for example, indoor
propagation between different floors [1, Chap. 13]. For multi-
antenna transceivers, the end-to-end channel is modeled as
a product of the multiple input multiple output (MIMO)
channels of each cluster. This multiple cluster MIMO channel
model has been considered in [2], and physical motivation for
this channel model can be found in [3, Sec. 3].

Despite the importance of understanding information-
theoretic quantities, such as the ergodic mutual information,
of multiple cluster scattering MIMO channels, results in this
direction are rather limited. Expressions for the ergodic mutual
information of single-cluster and two-cluster scattering MIMO
channels can be found in [4, Lemma 1] and [5, Eq. (9)],
respectively, which were studied in the context of multi-
hop MIMO relays. For an arbitrary number of clusters, the
corresponding result is unavailable due to the absence of
a computable formula for the singular value distribution of
multiple cluster channels. For large number of transceivers,
an asymptotic singular value distribution was proposed in [2].
This result, although of theoretical interest and formally valid
for an arbitrary number of clusters, turns out to be too
complicated for computational purposes.
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To address this issue, we derive a computable ergodic
mutual information lower bound for multiple cluster MIMO
channels, which is valid for finite number of transceivers as
opposed to the asymptotic result [2]. This lower bound is
obtained by making use of Weyl’s inequality as well as a
recent result on the finite-dimensional eigenvalue statistics for
products of complex Gaussian matrices. The derived lower
bound becomes tight as the signal-to-noise ratio (SNR) ap-
proaches infinity, and numerical results show its usefulness
for a wide range of SNR values. Based on the derived
result, we gain physical insight into the characteristics of the
considered channel model. In particular, the scaling behavior
of the ergodic mutual information has been found. The derived
scaling law is valid for any number of clusters, and generalizes
the known result for the conventional MIMO channel.

II. SYSTEM MODEL

Consider a MIMO system with a single source and destina-
tion, both equipped with K antennas. Information transmitted
by the source is conveyed to the destination via n − 1
successive clusters of scatterers. For analytical tractability,
each cluster is assumed to have K scatterers.1 The channels
between non-consecutive clusters are ignored, and there is no
direct link between the source and the destination.

The signal model of the MIMO system described above
reads

y =

√
γ

Kn
Pnx + w, (1)

where the K ×K matrix

Pn = Hn · · ·H1, (2)

represents the effective scattering channel between the source
and the destination, which equals the product of n independent
K × K matrices. An illustration of the considered signal
model can be found in Fig. 1, where each channel Hi is
assumed to be an i.i.d Rayleigh fading channel i.e. the entries
of Hi follow the standard complex Gaussian distribution and
are independent of each other. The i.i.d Rayleigh channels
require the so-called richly scattered physical environment,
where there exist a large number of statistically independent
reflected paths with random amplitudes [6, Chap. 7.3.8]. Thus,
there needs to have a rich scattering environment creating Hi,
and a rich scattering environment creating Hi+1. Between

1We note that this assumption may not hold in practice. However, even
with this assumption, certain insight and intuition on the problem of multiple
cluster MIMO channels can be gained.
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Fig. 1. Multiple cluster scattering MIMO channel with n− 1 clusters. The
number of antennas equals the number of scatterers per cluster.

these two environments, all scattering happens through the K
scatterers in cluster i. These can be thought as K keyholes
between these two environments. If there is only one scatterer
in any of the clusters, the channel becomes a rank one keyhole
channel as discussed in [7]. Referring to [1], the model (1) can
be understood e.g. as the channel between floors in buildings,
where inside each floor there is an i.i.d scattering environment,
but between the floors there is restricted propagation through
K scatterers. In line with the convention of [2, 4, 8], the effec-
tive channel Pn is normalized by

√
Kn so that the total energy

of the normalized channel2 tr
(
E
[
PnP

†
n

]
/Kn

)
= K does not

depend on n. As a result, γ equals the average received SNR
per antenna. In model (1), the noise w follows the standard
complex Gaussian distribution with identity covariance matrix
E[ww†] = IK . Assuming that the effective channel Pn is only
known to the destination, the covariance matrix of the input
signal x is chosen to be E[xx†] = IK , where x follows the
standard complex Gaussian distribution. Note that the signal
model (1) is different from the multi-hop amplify-and-forward
MIMO relay network as for the latter a noise term needs to
be considered at each relay, leading to the signal model [8,
Eq. (4)]. Assuming noiseless relays [5, 9], the two models
become identical.

With the above notations, the mutual information in
nats/s/Hz of the multiple cluster scattering MIMO channel
reads

I(γ) = ln det
(
IK +

γ

Kn
PnP

†
n

)
=

K∑
i=1

ln
(

1 +
γ

Kn
λi

)
,

(3)
where ln(·) is the natural logarithm and det(·) denotes the
matrix determinant. Here 0 ≤ λK ≤ . . . ≤ λ1 <∞ are the
squared singular values of the matrix Pn, i.e. the eigenvalues
of the Hermitian matrix PnP

†
n.

III. FOR THE ERGODIC MUTUAL INFORMATION LOWER
BOUND

Evaluating the ergodic mutual information E[I(γ)] requires
the joint density of the ordered singular values or the arbitrary
singular value density (average spectrum) of the channel
matrix Pn. There are no computable closed-form expressions
for either of these for arbitrary n. However, utilizing an

2tr(·) denotes the matrix trace operation, and (·)† denotes the conjugate-
transpose.

inequality between the singular values (real spectrum) and the
eigenvalues (complex spectrum) of an instantaneous channel
realization Pn, combined with a recent result on the eigenvalue
density for multiple cluster MIMO channels, a lower bound
for E[I(γ)] can be constructed.

Denote the squared absolute value of the eigenvalues of
Pn as 0 ≤ |zK |2 ≤ . . . ≤ |z1|2 < ∞. Then the following
inequality

m∑
i=1

ϕ
(
|zi|2

)
≤

m∑
i=1

ϕ(λi), ∀m ∈ {1, . . . ,K}, (4)

due to Weyl [10], holds for functions ϕ(t) satisfying the
conditions
• ϕ(t) is an increasing function of t > 0;
• ϕ(et) is a convex function of t;
• ϕ(0) = lim

t→0
ϕ(t) = 0.

It can be easily verified that the function ln(1 + t) fulfills
the above conditions. Thus, a lower bound for the mutual
information (3) is obtained as

ILB(γ) =

K∑
i=1

ln
(

1 +
γ

Kn
|zi|2

)
(5)

≤
K∑
i=1

ln
(

1 +
γ

Kn
λi

)
= I(γ). (6)

Now the task is to calculate the expected value of ILB(γ).
To this end we invoke a recent result on the joint density of
yi = |zi|2, i = 1, . . . ,K in [11]:

p(y1, . . . , yK) = per

(
yj−1i

(Γ(j))
nwn (

√
yi)

)
, (7)

where Γ(·) denotes the Gamma function, 0 ≤ yK ≤ . . . ≤
y1 <∞. In (7), the argument of the operator per(·) is a K ×
K matrix i.e. i, j = 1, . . . ,K. The operator per(·) denotes a
matrix permanent, i.e. for a K ×K matrix A = (ai,j),

per(A) =
∑
σ∈SK

K∏
i=1

ai,σ(i), (8)

where σ = σ(1), . . . , σ(K) is a permutation of the integers
1, . . . ,K, and the sum is over all the K! permutations SK .
In (7) the function

wn (
√
yi) = Gn,00,n

(
yi

∣∣∣∣ −
0, . . . , 0

)
(9)

stands for Meijer’s G-function, the general form of which is
given in (10) on top of the next page. Note that (7) is only
applicable to the case when the number of antennas equals the
number of scatterers per cluster. This is because each complex
Gaussian matrix Hi is assumed to be a square matrix in [11].
Generalizing (7) to the case of unequal number of scatterers
in each cluster seems difficult. Integrating the lower bound (5)
over the density (7) in the domain 0 ≤ yK ≤ . . . ≤ y1 < ∞,
the lower bound of the ergodic mutual information is obtained.
As indicated in [11], such integrations can be greatly simplified
by making use of a property of matrix permanent for order
statistics. Namely, it was proven in [12] that if a joint density
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Gm,np,q

(
x

∣∣∣∣ a1, . . . , apb1, . . . , bq

)
=

1

2πi

∫ c+i∞

c−i∞

∏m
j=1 Γ(bj + z)

∏n
j=1 Γ (1− aj − z)∏p

j=n+1 Γ(aj + s)
∏q
j=m+1 Γ (1− bj − z)

x−z dz. (10)

of ordered random variables 0 ≤ yK ≤ . . . ≤ y1 < ∞ is
written in the form per (hj(yi)), i, j = 1, . . . ,K, then the
corresponding unordered random variables, denoted by xj ,
j = 1, . . . ,K, are independent of each other with densities
hj(x), j = 1, . . . ,K. Clearly, for the joint density (7) the
resulting density functions of the unordered and independent
random variables are

hj(x) =
xj−1

(Γ(j))
nwn

(√
x
)
, j = 1, . . . ,K. (11)

Instead of dealing with random variables with non-trivial
correlation as specified by a matrix permanent, we are now
dealing with independent random variables. As such, the lower
bound of the ergodic mutual information E[ILB(γ)] can now
be calculated as

E [ILB(γ)] =

K∑
j=1

E
[
ln
(

1 +
γ

Kn
xj

)]
(12)

=

K∑
j=1

∫ ∞
0

ln
(

1 +
γ

Kn
x
) xj−1

(Γ(j))
nwn

(√
x
)

dx (13)

=

K∑
j=1

1

(Γ(j))n
Gn+2,1

2,n+2

(
Kn

γ

∣∣∣∣ 0, 1
0, 0, i, · · · , i

)
, (14)

where the last equality is obtained by [13, Eq. (21)] and using
the fact [14, Eq. (8.4.6.5)]

ln(1 + x) = G1, 2
2, 2

(
x

∣∣∣∣ 1, 1
1, 0

)
. (15)

Besides mutual information, the developed approximation
framework is also applicable to performance analysis of
MIMO multiple cluster scattering channels involving other
linear statistics3, such as the SNR distribution of space-time
block coded transmission [15] and the outage probability of
the MMSE receiver [16].

An important property of the derived ergodic mutual infor-
mation lower bound (14) is its asymptotical tightness when the
SNR goes to infinity. For γ → ∞, the lower bound becomes
exact

ILB(γ) = ln

(( γ

Kn

)K K∏
i=1

|zi|2
)

(16)

= ln

(( γ

Kn

)K K∏
i=1

λi

)
= I(γ), (17)

which is due to the fact that for any square matrix Pn

K∏
i=1

|zi|2 = |det(Pn)|2 =
∣∣det

(
PnP

†
n

)∣∣ =

K∏
i=1

λi. (18)

3The sum of functions of singular values of the form
∑K

i=1 f(λi), with
f(·) satisfying the conditions of Weyl’s inequality.

IV. ERGODIC MUTUAL INFORMATION SCALING LAW

The scaling law for the ergodic mutual information at the
high SNR regime can be understood using the derived results
and the associated asymptotic tightness property. Specifically,
for γ → ∞, a simpler expression for the ergodic mutual
information is obtained by integrating (17) over (11) to obtain

E[I(γ)] = nK

(
K∑
i=1

1

i
− c− 1

)
+K ln

( γ

Kn

)
, (19)

where c ≈ 0.5772 is Euler’s constant defined as

c = lim
K→∞

(
K∑
i=1

1

i
− ln(K)

)
. (20)

Thus, the per antenna ergodic mutual information scaling law
for high SNR is obtained as

µn = lim
K→∞

E[I(γ)]

K
= ln(γ)− n, (21)

where we have used the definition of Euler’s constant (20).
The derived large SNR scaling law (21) indicates that the per
antenna ergodic mutual information scales as ln(γ)−n, and is
a decreasing function of the number of clusters. Simulations
performed in Section V show the usefulness of the proposed
large SNR ergodic mutual information scaling law.

For the conventional MIMO channel model n = 1, the
finite-SNR ergodic mutual information scaling law, in our
notations, reads [17, p. 591]

ln(γ)− 1 +

√
1 + 4γ − 1

2γ
+ 2tanh−1

1√
1 + 4γ

, (22)

where tanh−1(·) is the inverse hyperbolic tangent function.
Since

lim
γ→∞

√
1 + 4γ − 1

2γ
+ 2tanh−1

1√
1 + 4γ

= 0, (23)

we thus recover the result for n = 1 in [17] for large SNR.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, the derived lower bound (14) for the er-
godic mutual information is compared to the ergodic mutual
information obtained through Monte-Carlo simulations for
various numbers of clusters n − 1 and scatterers per cluster
K. Each simulation curve is obtained by averaging over 106

independent channel realizations.
In Fig. 2 we consider a scenario of 3-cluster scattering

MIMO channels i.e. n = 4 with the number of scatterers per
cluster being K = 2, 4, and 8. We plot the ergodic mutual
information E[I(γ)] in nats/s/Hz as a function of the received
SNR in dB. It is seen that the ergodic mutual information
increases as the number of scatterers (transceiver antennas)
K increases. This behavior is in line with the conventional
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Fig. 2. Ergodic mutual information of multiple cluster scattering MIMO
channels assuming 3 clusters (n = 4). In all cases, the number of antennas
equals the number of scatterers per cluster.
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Fig. 3. Per antenna ergodic mutual information of multiple cluster scattering
MIMO channels assuming K = 8 with different numbers of clusters n−1. In
all cases, the number of antennas equals the number of scatterers per cluster.
For n = 1 the analytical curve is obtained from the exact ergodic mutual
information formula derived in [17]. For n = 2, 3 the analytical curves are
obtained from the derived ergodic mutual information lower bound (14).

MIMO channel model n = 1, where increased spatial diver-
sity (richness of the scattering) improves the ergodic mutual
information [17].

In Fig. 3, a scenario involving a fixed number of scatterers
per cluster K = 8 is considered with the number of clusters
n − 1 being 1 and 2. In addition, the conventional MIMO
channel model n = 1 has been considered. In order to verify
the derived scaling law (21), we plot the per antenna ergodic
mutual information in nats/s/Hz/antenna as a function of the
received SNR in dB. It is observed that for a fixed SNR the
ergodic mutual information decreases as the number of clusters
increases. This observation is in agreement with the analytical
scaling law (21). We also observe that the derived scaling law
captures the behavior of the ergodic mutual information well
at high SNR. As expected, we see from both figures that the
derived lower bound (14) approaches the true value as the

SNR increases.

VI. CONCLUSION

Multiple cluster scattering channel models are useful in
modeling the picocell propagation environment. For such a
channel model, we derived an analytical lower bound for the
ergodic mutual information. The derived lower bound becomes
tight as SNR goes to infinity, and is close to the true value for
finite SNR. We also derived an ergodic mutual information
scaling law for the high SNR regime, which is valid for
arbitrary number of clusters. The derived scaling law implies
that the ergodic mutual information of multiple cluster MIMO
channels decreases as the number of clusters increases.
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