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Abstract—We consider multi-antenna cooperative spectrum
sensing in cognitive radio networks, when there are multiple
primary users and/or multipath channels. A noise-uncertainty-
free detector that is optimal in the low signal to noise ratio regime
is analyzed. We derive the moments of the test statistics involved,
which lead to simple and accurate analytical formulae for the
key performance metrics. The approximative false alarm and
detection probabilities as well as receiver operating characteristic
are given in closed form. From the considered simulation settings,
performance gain over several known detection algorithms is
observed in scenarios with relatively low signal to noise ratio.

Index Terms—Cognitive radio; locally best invariant test;
moment-based approximation; multipath channels; multiple pri-
mary users; spectrum sensing.

I. INTRODUCTION

In Cognitive Radio (CR) networks, dynamic spectrum
access is implemented to mitigate spectrum scarcity. A sec-
ondary (unlicensed) user is allowed to utilize the spectrum
resources when it does not cause intolerable interference to
the primary (licensed) users. Spectrum sensing is the first key
step towards this dynamic spectrum access scenario.

Prior work on multi-antenna cooperative spectrum sensing
predominately employ the assumption of a single active prima-
ry user with one antenna, and a single-tap channel. Based on
this assumption, several eigenvalue based sensing algorithms
have been proposed recently [1–8]. The assumption of a single
primary user is made as the investigations in the literature have
mainly focussed on CR networks, where the primary users
are TV or DVB systems. The single-tap channel assumption,
which may fail to reflect the situations in highly frequency
selective channels, has been made for simplicity. The single
primary user assumption may not be viable in forthcoming
CR networks, where the primary system could be a cellular
network, and the existence of more than one primary users
would be the prevailing condition. Furthermore, in unlicensed
bands, several unlicensed systems, such as Wi-Fi, Bluetooth,
and DECT, may share the same band without coordination,
resulting multiple primary user scenarios [9]. Using existing
single primary user detection algorithms in these scenarios
will induce performance loss. Despite the need to understand
multipath multi-primary user detection with multiple sensors,
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the results in this direction are rather limited. A spherical test
based detection algorithm has been proposed for multi-primary
spectrum sensing in [10], and subsequently studied in [11].
Although this detector is the best known multiple primary
user detector, it is not the optimal one in the low Signal-to-
Noise Ratio (SNR) regime. Numerical evidence suggests that
the spherical test based detector does not perform particularly
well when the SNR is relatively low [11, 12]. Spectrum sensing
in the low SNR regime is both a practical and challenging
issue. For example, recent FCC regulations require that the
secondary devices must be able to detect signals with SNR as
low as −18 dB [13, 14]. However, no optimal low SNR spec-
trum sensing algorithm is known in the setting of multipath
multiple primary users.

To address this issue, in this paper we first map the problem
of spectrum sensing in a multipath and/or multi-primary user
scenario to a purely multi-primary user sensing problem. Then
we continue by analyzing a multiple primary user detector
that is optimal in the low SNR regime. We investigate sensing
performance by deriving closed-form moment expressions of
the test statistics of this low-SNR detector. Using the derived
moments, approximations to the false alarm probability, the
detection probability and the Receiver Operating Character-
istic (ROC) are constructed. The derived approximations are
easily computable and reasonably accurate. Numerical results
show the effectiveness of the proposed multiple primary user
detector over the existing one in relatively low SNR scenarios.
To the best of our knowledge the contributions of this paper,
regarding the performance of the considered detector, as sum-
marized in the four propositions (including the three lemmas)
are new.

The rest of this paper is organized as follows. In Section II
we map the problem of multi-sensor spectrum sensing in a
multipath multi-primary scenario to a purely multi-primary
one. Then we propose the optimal low SNR detector for multi-
primary user sensing. Performance analysis of the proposed
detection algorithm is addressed in Section III. Section IV
presents numerical examples to verify the derived results and
to compare the detection performance in diverse scenarios.
Finally in Section V we conclude the main results of this
paper.

II. PROBLEM FORMULATION

We consider a spectrum sensing scenario where there may
be P ≥ 1 primary users transmitting within the bandwidth
W so that the transmission sample duration is an integer
multiple of a minimum duration T ≤ 1/W . For primaries
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using Time-division Multiplexing (TDM), this sample duration
is the symbol interval, for Code-division Multiplexing (CDM)
primaries it is the chip duration, and for Orthogonal Frequency
Division Multiplexing (OFDM) primaries, it is the inverse
Fourier bandwidth. We further assume that there is a minimum
bandwidth of the transmissions of the primaries within W ,
corresponding to a sample duration smaxT .

There is a detector with K sensors trying to detect the
presence of the primary user(s). The channels between the
primary user(s) and the detector may be multipath channels.
The transmissions may or may not be asynchronous, and the
detector may or may not be synchronized to one or more of
the possible primary transmissions. The number of primary
users, and the multipath structure of these users, is not known
a priori to the detector. We assume that all possible sample
durations between T and smaxT that a primary user may use,
are known to the detector, and that the sample timing both
at the transmitter and receiver are subject to negligible clock
drifts.

A. Signal Model

After filtering, the received complex baseband signal at the
K sensors in the bandwidth of interest is

x(t) =
∑
m

P∑
p=1

sp,mhp(t−mTp + dp) + n(t) , (1)

where Tp = spT is the sample duration for transmitter p,
hp(t) is the convolution of the reception filter, the transmission
filter of p, and the vector of channel impulse responses
between p and the K sensors. The sum over m is over
the train of transmission samples. The differences in symbol
timing and propagation delay for the different transmitters are
characterized by the variables dp.

The K-sensor detector selects ss to be the smallest common
multiple of the possible values of sp, and takes samples every
ssT seconds, resulting in

xn =
∑
m

P∑
p=1

sp,mhp
(
(nss −msp)T + dp

)
+ nn . (2)

Denoting hp,m = hp
(
(msp)T + dp

)
, we have

xn =

P∑
p=1

M∑
m=1

sp,nrp−mhp,m + nn , (3)

where rp = ss/sp is the number of independent transmission
samples transmitted by primary p per receive sample taken.
Here we have assumed causality so that there is an earliest
time that a sample affects the received signal, as well as a
maximum delay spread M . The channels from some primaries
may be shorter than this, in which case the corresponding
channel vectors vanish. Note that the number of multipath
components depends crucially on the pulse shapes used by
the transmitters, the receiver filter, and whether the detector
is synchronized to one or more of the transmitters. The signal
model covers all possibilities.

Stacking the MP transmitted samples sp,nrp−m to a vector
sn, the received vector can be written as

xn = Hsn + nn, (4)

where xn ∈ CK , and the K × PM matrix H =
[h1,1,h1,2, . . . ,h1,M ,h2,1, . . . ,hP,M ] represents the M -tap
channels between the P primary users and the K sensors.
Assuming proper receiver filtering, the K × 1 vector n rep-
resents additive complex Gaussian noise with mean zero and
covariance matrix σ2IK , where σ2 is the noise power.

We collect N observations from (4) to a K ×N (K ≤ N )
received data matrix X = [x1, . . . ,xN ] = HS, where
S = [s1, . . . , sN ]. We assume that the transmitted samples
sp,m are independent and follow a standard complex Gaus-
sian distribution. They are by definition independent from
the noise.1 This holds for TDM, pseudorandomly spread
CDM, and approximately for OFDM with a large number
of subcarriers. We further assume that the channel H is
constant during sensing i.e. deterministic channels, and is
subject to negligible inaccuracies arising from clock drifts.
Thus a channel model needs not be specified to carry out the
analysis in this paper. Our focus is performance analysis for
given channel realizations. Analyzing the average performance
over fading channels is beyond the scope of this work.

With these assumptions, the sample covariance matrix of
the signal part of X becomes2

HSS†H† ≈
∑
p

γp

M∑
m=1

hp,mh†p,m , (5)

where γp := E[sps
†
p] is the signal power of primary trans-

mission p. The approximation is due to the finite number
of samples and corresponding deviations from zero mean
of sums of symbols. Note that we do not need to assume
independence of the elements of the columns of S, i.e. of
the symbol vectors sn of different samples. To have (5), it
is sufficient to have independence between elements within a
symbol vector. For this it is sufficient that the detector does not
oversample. Accordingly, (5) holds in a multipath situation,
when consecutive sn may partially be cyclic shifts of each
other. Also, even if the transmissions apply cyclic prefixes,
(5) holds.

We find that the same covariance structure is present for
any M and P . To simplify notations, in what follows we
assume that M = 1, with the understanding that some of the
P primary users may equally well be in a multipath situation.
The resulting multiple primary user single-tap signal model
has been studied in [10, 11]. The considered signal model in
this subsection covers the important case where all the primary
users occupy the total band with bit rates connected by integer
numbers.

1The analytical results in this paper are also applicable in cases with
known signal correlation. For the ease of presentation, we assume independent
samples here.

2(·)† denotes conjugate-transpose.
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B. Sensing Problem

Now the problem of interest is to use the data matrix X to
decide whether there are primary users.3 By the assumptions in
the last subsection, the sample covariance matrix R = XX†

of the received data matrix follows a complex Wishart dis-
tribution, denoted by R ∼ WK (N,Σ). The corresponding
population covariance matrix calculated in the absence of
primary users, denoted by hypothesis H0, is

H0 : Σ := E[XX†]/N = σ2IK , (6)

and in the presence of primary users, denoted by hypothesis
H1, is

H1 : Σ = σ2IK +

P∑
p=1

γphph
†
p. (7)

The received SNR of primary user p across the K sensors
is SNRp := γp||hp||2/σ2. These characterize the interference
level close to the primary transmitter from a transmission of
the secondary system, the control of which is the target of
dynamic spectrum management. The differences between the
population covariance matrices (6) and (7) can be explored to
detect the primary users. Declaring wrongly H0, or declaring
correctly H1, defines the false alarm probability Pfa, and
the detection probability Pd, respectively. Since the sample
covariance matrix R is a Wishart matrix, it is sufficient
statistics for the population covariance matrix Σ [15]. For
different assumptions on the number of primary users P , and
on the knowledge of the noise power σ2, different test statistics
can be derived as functions of R.

When P ≥ 1 but not known a priori, the matrix∑P
i=1 γihih

†
i in (7) is positive definite. Thus, the notation

A � B is equivalent with A − B being positive definite,
the hypothesis test is

H0 : Σ = σ2IK (8a)
H1 : Σ � σ2IK , (8b)

where the noise power σ2 is assumed to be unknown. Essen-
tially, we are testing a null hypothesis Σ = σ2IK against all
the other possible alternatives of Σ, i.e. the hypothesis test
is blind to P . The corresponding GLR-optimal detector under
the hypotheses test (8) is based on the so-called Spherical Test
(ST)

TST :=
|R|(

1
K tr(R)

)K =

∏K
i=1 λi(

1
K

∑K
i=1 λi

)K , (9)

where | · | and tr(·) denote matrix determinant and
trace, respectively, and the ordered eigenvalues of R are
0 ≤ λK ≤ . . . ≤ λ1 <∞. In the context of spectrum sensing,
ST detection was first proposed in [10] and analyzed in [11].

Although the ST detector achieves good performance in
general, it is not the best detector in the low SNR regime.

3This collaborative sensing scenario and the subsequent formulations are
more relevant when the K sensors are in one device. For distributed
collaborating sensors, accurate time synchronization between devices and
communications to the fusion center become an issue given the limited
capability of the individual sensor.

For multiple primary users, a test statistics that is optimal in
detecting small deviations from H0 is based on

TJ :=
tr(R2)(
tr(R)

)2 =

∑K
i=1 λ

2
i(∑K

i=1 λi

)2 . (10)

This test statistics was first considered by S. John [16]. A more
rigorous derivation of (10) can be found in [17, Eq. (1.2–1.7)],
where the resulting test procedure is

TJ
H1

≷
H0

ζ, (11)

ζ being a threshold. It can be verified that the natural support
of TJ is [1/K, 1]. The criterion under which John’s detector
is derived is known as the Locally Best Invariant (LBI)
criterion [17, Eq. (1.1)]. For every σ2 and for every other test
T , there is a neighborhood of σ2IK such that TJ achieves no
worse performance than T does [17], although the radius of
this neighborhood is not known. Considering (6) and (7) it is
clear that John’s test is optimal when

∑P
i=1 γihih

†
i , measured

in a suitable norm, e.g. the sum of its eigenvalues, is small.
This effectively requires that the SNRs are low. Note that
eigenvalue decomposition is not needed for John’s detector
as opposed to most other eigenvalue based detectors. Finally,
it is worth noting that different detection techniques need to
be designed in a more general scenario of an arbitrary but
unknown noise covariance matrix. In this case, the detector
based on Roy’s statistics [18] turns out to be a good choice for
single-primary-user detection. For a similar scenario of arbi-
trary signal covariance matrix, the corresponding test statistics
may be derived following the lines of reasoning in [18].

III. PERFORMANCE ANALYSIS

In this section we derive closed-form expressions for the
moments of TJ under both hypotheses. Based on the derived
results, we construct approximations to the distributions of
TJ, which lead to analytical formulae for the false alarm
probability, the detection probability, as well as the receiver
operating characteristic.

A. False Alarm Probability

Firstly, we study the moments of TJ under H0, the first step
to which relies on the following lemma.

Lemma 1. Under H0 the random variable(∑K
i=1 λi

)2

is independent of the random variable

TJ =
∑K
i=1 λ

2
i

/(∑K
i=1 λi

)2

.

The proof of Lemma 1 is in Appendix A. Note that this
independence for the real Wishart case was proven in [21].
However, the method of proof there may not be applied to the
complex case, for which we have invoked a more generic ap-
proach based on the general polar coordinates transformation.
By virtue of Lemma 1, the m-th moment of TJ under H0 now
equals

E[TmJ ] = E

[(
K∑
i=1

λ2
i

)m ]/
E

[(
K∑
i=1

λi

)2m ]
. (12)
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An exact characterization of the m-th non-negative integer mo-
ment of TJ, denoted by Mm, is summarized in the following
result.

Proposition 1. The m-th non-negative integer moment of
random variable TJ under H0 is

Mm :=
C Γ(KN)

Γ(2m+KN)

∑
a1+···+aK=m

m!

a1! · · · aK !
×

∏
1≤i<j≤K

(2aj − 2ai + j − i)
K∏
i=1

Γ(2ai +N −K + i), (13)

where the sum is over all the non-negative integer solutions of
a1+· · ·+aK = m. Here Γ(·) defines the Gamma function and

the constant C =
(∏K

i=1 Γ(N − i+ 1)Γ(K − i+ 1)
)−1

.

The proof of Proposition 1 is in Appendix B. The sum over
the partition a1 + · · · + aK = m can be implemented by
normal sums as

∑m
a1=0

∑m−a1
a2=0 · · ·

∑m−a1−···−aK−2

aK−1=0 with aK
replaced by m−

∑K−1
i=1 ai in the summand. Note that for real

Wishart matrix, up to the second, fourth and sixth moment of
TJ under H0 can be found in [21], [25] and [26], respectively.
Our derived explicit moment expression of TJ (13) for complex
Wishart matrix is valid for an arbitrary non-negative moment.

Although in general the exact distribution of TJ seems
intractable to obtain, one could easily construct an approxima-
tive TJ distribution by matching its moments to some known
distribution with the same support. It is often the case that
for the same statistics the functional form of its distributions
in both real and complex cases remains the same [19]. For
the real Wishart case under H0, the exact TJ distributions
for K = 2, 3 hold the same polynomial form as the Beta
distribution [21]. Moreover, the Beta distribution was shown
to accurately model the distribution of TJ for arbitrary K [26].
Motivated by these facts, here we choose the Beta distribution
to approximate the TJ for complex Wishart case as well.
Accordingly we have

Proposition 2. For any sensor size K and sample size N , the
Beta approximation to the CDF of TJ under H0, based on the
exact two first moments in (13), is

FJ(y) ≈ 1−
B
(
K(1−y)
K−1 ;β0, α0

)
B(α0, β0)

, y ∈ [1/K, 1], (14)

where

α0 =
(KM1 − 1)(KM1 −KM2 +M1 − 1)

(K − 1)K(M2 −M2
1)

, (15a)

β0 =
(M1 − 1)(KM1 −KM2 +M1 − 1)

(K − 1)(M2
1 −M2)

. (15b)

Here, B(a, b) = Γ(a)Γ(b)
Γ(a+b) , B(x; a, b) =

∫ x
0
za−1(1 − z)b−1dz

defines the Beta function and the lower incomplete Beta
function, respectively.

The proof of Proposition 2 is in Appendix C. Note that
under H0 several asymptotic TJ distributions for real Wishart
matrices were established in [17, 27, 28], which may be gen-
eralized to the complex Wishart case. However, simulations

show that these approximations converge slowly w.r.t. N for
a fixed K [17, 27] and w.r.t. both K and N [28]. On the other
hand, the proposed approximation (14) for complex Wishart
matrices does not involve any asymptotic expansions in K or
N , thus its accuracy is not expected to be affected much by
the values of K and N . Simulations in Figure 1 of Section IV
support this argument.

From the test procedure (11) and Proposition 2, the resulting
approximation to the false alarm probability, for a given
threshold ζ, equals

Pfa(ζ) = 1− FJ(ζ) ≈
B
(
K(1−ζ)
K−1 ;β0, α0

)
B(α0, β0)

, (16)

where ζ ∈ [1/K, 1]. Equivalently for any Pfa requirement a
threshold can be calculated by numerically inverting FJ(ζ)

ζ = F−1
J (1− Pfa). (17)

B. Detection Probability

We first study the moments of TJ underH1. For convenience
of the discussion we define the random variables

x :=
1

N2
tr(R2), y :=

1

N
tr(R), z :=

x

y2
. (18)

Clearly, z is the random variable of interest, TJ. Unlike the
case of H0, the equality (12) no longer holds under H1.
In order to estimate the moments of z it is not enough to
estimate the moments of random variables x and y separately,
estimating their correlation is needed. A standard technique in
this situation is the so-called ‘Delta method’ [29], which relies
on the Taylor expansions for the moments of random variable
z. Using the ‘Delta method’, in the following proposition
we propose simple and accurate estimates of the mean and
variance of z under H1, which involve the first two exact
moments and the covariance of random variables x and y.

Proposition 3. Denote the means of the random variables x,
y by µx, µy and the variances by νx, νy . The second order
approximation to the mean and the first order approximation
to the variance of the random variable z are given by

µz ≈
µx
µ2
y

− 2µxy
µ3
y

+
3µxνy
µ4
y

, (19)

and

νz ≈
νx
µ4
y

− 4µxµxy
µ5
y

+
4µ2

xνy
µ6
y

, (20)

respectively, where µxy denotes the covariance of x and y.
Here the quantities µx, µy , νx, νy and µxy are calculated, in
terms of the population covariance matrix under H1 (7), as

µx = tr(Σ2) +
1

N

(
tr(Σ)

)2
, (21a)

νx =
4

N
tr(Σ4) +

2

N2

(
4tr(Σ)tr(Σ3) +

(
tr(Σ2)

)2)
+

2

N3

(
2 (tr(Σ))

2 tr(Σ2) + tr(Σ4)
)
, (21b)

µy = tr(Σ), (21c)
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νy =
1

N
tr(Σ2), (21d)

µxy =
2

N
tr(Σ3) +

2

N2
tr(Σ)tr(Σ2). (21e)

The proof of Proposition 3 is in Appendix D. Note that the
higher moments or more accurate moment estimates of z can
be similarly obtained by following the proof of Proposition 3.
The basic procedure involves enumerating the higher moments
of R as functions of Σ, for example the second order
approximation to the variance would require up to the 6-th
moment of R. This enumeration procedure, although rather
tedious, is quite straightforward.

With the estimates of the mean (19) and variance (20),
closed-form distributions of TJ under H1 can be constructed.
Here we also choose the Beta distribution (41), since it has
the same support as TJ. An additional motivation comes
form the fact that for K = 2 the test statistics TJ becomes
a linear transform of the test statistics TST, whose exact
distribution under H1 holds the same polynomial form as the
Beta distribution [11]. Accordingly we have

Proposition 4. For any sensor size K and sample size N , the
Beta approximation to the CDF of TJ under H1, based on the
estimated two first moments (19) and (20), is

GJ(y) ≈ 1−
B
(
K(1−y)
K−1 ;β1, α1

)
B(α1, β1)

, y ∈ [1/K, 1], (22)

where

α1 =
(1−Kµz) ((µz − 1)(Kµz − 1) +Kνz)

(K − 1)Kµz
, (23a)

β1 =
(µz − 1) ((µz − 1)(Kµz − 1) +Kνz)

(K − 1)µz
. (23b)

The proof of Proposition 4 essentially follows that of Propo-
sition 2, and is thus omitted. Note that underH1, asymptotic TJ
distributions for real Wishart matrices are available in [17, 32],
which may be generalized to the complex Wishart case. How-
ever, besides being slowly converging, these asymptotic results
are only valid for some specific structures of the population
covariance matrix Σ. On the other hand, the proposed finite-
dimensional approximation (22) for complex Wishart matrices
is applicable for arbitrary Σ structures, e.g. arbitrary SNR
values, channel realizations and number of primary users.

From the test procedure (11) and Proposition 4, the resulting
approximation to the detection probability reads

Pd(ζ) = 1−GJ(ζ) ≈
B
(
K(1−ζ)
K−1 ;β1, α1

)
B(α1, β1)

, (24)

where ζ ∈ [1/K, 1].
The mapping between the false alarm probability and the

detection probability is referred to as the receiver operating
characteristic. As an immediate result of the closed-form
approximative false alarm probability (16) and detection prob-
ability (24), an analytical ROC expression for John’s detector
is obtained as

Pd = 1−GJ
(
F−1

J (1− Pfa)
)
. (25)

Note that the parameters α0, β0 in (15) and α1, β1 in (23)
are only elementary functions of the sensor size K, the sample
size N and the population covariance matrix Σ. Moreover, if
we further approximate the values of the parameters in (15)
and (23) to their respective nearest integers, both the false
alarm probability (16) and detection probability (24) reduce
to a finite sum of polynomials in the threshold ζ. Thus the
computational complexity of threshold calculation becomes
quite affordable for on-line implementations.

C. A Note on Approximation Accuracy

The proposed two-moment-based Beta approximations in
Propositions 2 and 4 correspond to the simplest form of
a general Jacobi polynomial approximation. In the general
framework, up to any n-th degree of Jacobi polynomials
matching the corresponding first n moments of TJ would be
used. Since the random variable TJ is of a finite support, the
Jacobi polynomial expansion for the distribution of TJ is exact
according to the Weierstrass approximation theorem [33].
Namely, when n goes to infinity the Jacobi polynomial ap-
proximation converges to the exact TJ distribution. In practise,
the choice of n reflects a trade-off between the approximation
accuracy and the implementation complexity. In light of the
good accuracy as shown in the next section, we consider n = 2
in this paper. The general n-moment-based approximation, in-
cluding the error analysis, can be easily obtained by following
the procedures in [26, 34].

The exact false alarm probability and detection probability
can be written as a sum of the n-moment-based approxi-
mation and an error term. The error term is related to the
higher order polynomials left out from the approximation.
An explicit expression for the error term eαi,βi(ζ) of the
two-moment-based Beta approximation can be found, e.g.,
in [26, Eq. (6)]. Due to the complicated form of this error
term, analysis on its behavior seems difficult. However, in
the most interesting regions of low false alarm probability
Pfa(ζ → 1/K) and high detection probability Pd(ζ → 1),
the behavior of the error can be understood. Consider an
infinitesimal ε fulfilling 1/K < ε � 1, it follows along the
same line of reasoning in [11, Section III-C] that the leading
order term in eα0,β0

(ε) for low false alarm probability Pfa(ε) is
proportional to εβ0 and the leading order error in eα1,β1(1−ε)
for high detection probability Pd(1− ε) is εα1 . Typically, the
values β0 and α1 are positive and large. For example, (β0, α1)
equals (2393.0, 11.9), (1193.0, 10.5) and (593.02, 12.1) for
the parameters considered in Figure 3, Figure 4 and Figure 5
respectively. Thus, the corresponding errors for low false alarm
probability and high detection probability decrease quite fast.

IV. NUMERICAL RESULTS

In this section we first examine the accuracy of the de-
rived approximations to the false alarm and the detection
probabilities via Monte-Carlo simulations. Then we compare
the performance of John’s detector to some optimal noise-
uncertainty-free detectors in realistic sensing scenarios. Our
focus here is detection in the low SNR regime, which is a
practical and challenging issue. The considered values of the
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Fig. 1. False alarm probability: analytical (16) versus simulations. For K =
8, N = 50, 100 and 200, the approximation error is respectively 4.78×10−9,
1.35× 10−9 and 1.66× 10−9.
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Fig. 2. Detection probability (assuming three primary users with SNR1 =
−4 dB, SNR2 = −5 dB and SNR3 = −6 dB): analytical (24) versus
simulations. For K = 8, N = 50, 100 and 200, the approximation error
is respectively 1.45× 10−7, 4.54× 10−8 and 1.12× 10−8.

parameters K and N in this section reflect practical spectrum
sensing situations. The sample size N can be as large as a
couple of hundred whereas the number of sensors K is at
most eight due to physical constraints of the device size.

A. False Alarm Probability and Detection Probability

In Figure 1 we plot the approximative false alarm probabil-
ity (16) and the simulated false alarm probability as a function
of the threshold. To quantitatively show the approximation ac-
curacy we calculate the approximation error, measured by the
Cramér-von Mises goodness-of-fit criterion, of the proposed
false alarm probability (16) with respect to the simulations.
The Cramér-von Mises criterion is defined as∫

ζ

|F (x)− F̂ (x)|2dF (x), (26)
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Fig. 3. Instantaneous ROC: assuming one primary user with SNR1 = −4 dB
using K = 4 sensors and N = 400 samples per sensor. The eigenvalues of
Σ are [1.40, 1, 1, 1].

where F (x) and F̂ (x) defines a CDF function and its estimate,
respectively. In Figures 1 and 2 we assume uniform sampling
in ζ ∈ [0.125, 0.2] with a sampling size 106. The results,
summarized in the caption of Figure 1, show that the derived
analytical false alarm probability matches the simulations
well and the approximation errors are of the same order of
magnitude, as expected.

In Figure 2 we plot the derived analytical detection proba-
bility (24) versus simulations, assuming three simultaneously
transmitting primary users (P = 3) with SNR1 = −4 dB,
SNR2 = −5 dB and SNR3 = −6 dB. Without loss of general-
ity, we assume unit powers for the zero mean Gaussian signal
and noise. The entries of the channel matrix H, which are
fixed during sensing, are independently drawn from a standard
complex Gaussian distribution. The channel vector for each
primary user is normalized as ui = hi/||hi||. As a result, the
population covariance matrix Σ can be explicitly represented
as a function of SNRs, i.e. Σ = IK +

∑P
i=1 SNRiuiu

†
i .

With the same Σ, the simulated curve is plotted using 106

Monte-Carlo runs with the resulting approximation error as
shown in the caption of Figure 2. From Figure 2 it can be
observed that the derived detection probability (24) agrees
with the simulations well. Unlike the case for the false alarm
probability, here we observe that the approximation error
decreases noticeably as the number of samples N increases.
One intuitive reason is that for a fixed K the density of TJ is
more concentrated around its mean as N increases. As a result,
the Taylor series expansion (53) about the mean becomes more
accurate as represented by the first few terms. This fact leads
to refined estimates of the mean (19) and variance (20) under
H1 as N increases.

B. Detection Performance

We compare the detection performance of John’s detector
to some optimal detectors by means of ROC curves. Since
a ROC curve shows the achieved detection probability as a
function of the false alarm probability, it reflects the overall
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Fig. 4. Instantaneous ROC: assuming three primary users with SNR1 =
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Fig. 5. Instantaneous ROC: assuming five primary users with SNR1 = 0 dB,
SNR2 = −2 dB, SNR3 = −4 dB, SNR4 = −6 dB and SNR5 = −8 dB
using K = 4 sensors and N = 100 samples per sensor. The eigenvalues of
Σ are [2.55, 1.57, 1.25, 1.06]

detection performance for a given detector. Our focus here
is detection in the presence of multiple primary users, thus
we consider for comparison the ST detector [10, 11] which
is optimal for multiple primary user detection. In addition
the the Scaled Largest Eigenvalue based (SLE) detector [4–
8], TSLE := λ1/

∑K
i=1 λi, which is optimal in detecting

single primary user, is considered for comparison as well. For
the sake of clarity, we neither include the comparisons with
detectors that are non-optimal nor detectors that are sensitive to
noise power uncertainty [35] such as the energy detector [36].
For performance comparisons in these directions, the readers
are referred to [6, 7, 11].

In order to see a clear picture of the impact of the number
of primary users P on the detection performance, we plot
various ROC curves assuming different values of P in realistic
scenarios with relatively low SNRs. In Figure 3 we plot

the ROC curves for the considered three noise-uncertainty-
free detectors in the presence of a single primary user with
SNR1 = −4 dB. In this case, the number of sensors and
samples per sensor is K = 4 and N = 400, respectively.
In Figure 4 we assume a scenario of three simultaneously
transmitting primary users with SNR1 = −4 dB, SNR2 =
−5 dB and SNR3 = −6 dB. The number of sensors is chosen
to be K = 4, and the number of samples per sensor is
N = 200. In Figure 5 we consider the case of five primary
users with SNR1 = 0 dB, SNR2 = −2 dB, SNR3 = −4 dB,
SNR4 = −6 dB and SNR5 = −8 dB using K = 4 sensors and
N = 100 samples per sensor. The analytical approximations
of the ROC curves are obtained by (25), where we assume
the channel matrix is independently drawn from a standard
complex Gaussian distribution and is kept constant during
sensing. For the specific channel realizations considered in
Figure 3, Figure 4 and Figure 5, the eigenvalues4 of the
population covariance matrix Σ are respectively [1.40, 1, 1, 1],
[1.54, 1.25, 1.02, 1] and [2.55, 1.57, 1.25, 1.06]. With the same
Σ, the corresponding numerical ROC is plotted. Note that as
the considered detectors are not functions of the noise power
σ2, without loss of generality, we set σ2 = 1 at the secondary
receiver.

In Figure 3 we observe that the SLE detector performs
better than the ST and John’s detectors in the presence of a
single primary user. This is intuitively clear since the SLE
detector is optimized for single primary user detection. In
the scenarios of more than one primary users, we see from
Figure 4 and Figure 5 that both the considered multiple
primary user detectors: the ST and John’s detectors outperform
the SLE detector, as expected. In addition, it is seen from
Figure 5 that the advantage of John’s detector persists even
in the presence of one primary user with a not-so-low SNR
(SNR1 = 0 dB). We also observe that the derived analytical
ROC expression (25) matches simulations well. To further
examine the relative performance of the competing ST and
John’s detectors, we compared their detection probabilities as
a function of number of primary users P in Table I shown on
top of the next page, where we set Pfa = 10−2. In order
to focus on the impact of P on the relative performance,
the SNRs of the primary users are all set at 0 dB with
K = 4 sensors and N = 50 samples per sensor. In Table I
the blue color indicates a higher Pd value of each column,
from which we see that as P increases the ST detector may
start to outperform John’s detector, though the differences are
relatively small. The intuitive reason shall be clear by now:
when P is large the probability is high that John’s detector may
depart from its optimality region, which is in the neighborhood
of H0 : Σ = σ2IK , leading to performance degradation.

Both the ST detector derived from the GLR criterion and
John’s detector derived from the LBI criterion are optimal
detectors in the presence of multiple primary users. In general
it is difficult to quantify the conditions, such as SNR values,
number of primary users, and channel realizations, under
which the ST detector outperforms John’s detector and vice

4For the considered detectors, the test statistics depend on Σ only through
the eigenvalues of Σ.
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TABLE I
DETECTION PROBABILITY COMPARISONS: K = 4, N = 50, PFA = 10−2 .

number of primary users P = 2 P = 4 P = 6 P = 8 P = 10

Pd, ST 0.8495 0.9970 0.9871 0.9616 0.9795

Pd, J 0.8700 0.9984 0.9913 0.9508 0.9651
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Fig. 6. Average ROC: assuming five primary users with SNR1 = 1 dB,
SNR2 = −3 dB, SNR3 = −7 dB, SNR4 = −11 dB and SNR5 = −15 dB
using K = 4 sensors and N = 100 samples per sensor.

versa. Despite this, some general understanding can be gained
based on the simulations performed and the results in [11]
(and references therein):
• The range of the SNR values within which John’s detector

performs better is quite wide: from low to not-too-large
SNRs.

• When the SNR values are very small, John’s detector may
perform substantially better than the ST detector.

• For high SNR values the ST detector may outperform
John’s detector, though in this case their performance gap
is likely to be very small.

We end this section by studying the average detection
performance over fading channel via simulations in Figure 6.
Contrary to the previous ROC curves generated for a fixed
Σ, here we plot average ROC curves over 104 realizations
of Σ. For each Σ = IK +

∑P
i=1 γihih

†
i , the channel matrix

H = [h1, . . . ,hP ] is independently drawn from a standard
complex Gaussian distribution corresponds to Rayleigh fading.
It is seen from Figure 6 that the relative performance of the
considered detectors remain the same as these in Figure 4 and
Figure 5 for multiple-primary-user detection.

The simulations show excellent performance for John’s
detector with N = 100 samples. The assumption of negligible
effect of clock drifts on the signal model (3) can be reassessed
in this light. If the clock drift of the transmitters and detectors
would be 20 parts-per-million, typical for hand-held devices
of today, the maximum timing difference arising within the
sample collection time would be 0.4% of the sample duration,
which is insignificant for most pulse shapes in use. Accord-

ingly, the signal model considered is viable in such scenarios.

V. CONCLUSION

In this paper, we investigated the performance of John’s
detector, which is a candidate for multi-sensor spectrum sens-
ing in the presence of multiple primary users and/or multipath
channels. John’s detector is optimal for detecting small devi-
ations of the covariance matrix from a matrix proportional
to identity. Analytical formulae have been derived for its
approximative false alarm probability, detection probability as
well as receiver operating characteristic. The derived results
are simple to calculate and yield an almost-exact fit to simu-
lations. From the simulation setting considered, performance
gain over several detection algorithms is observed when SNR
is relatively low. Considering the results of this paper, it
seems that John’s detector is a viable choice for spectrum
sensing when there are multiple primary users and/or multipath
channels.
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APPENDIX A
PROOF OF LEMMA 1

We state the following definition first.

Definition 1. Under H0, the joint density of the unordered
eigenvalues λi ∈ [0,∞) for the sample covariance matrix R
reads [19]

Λ(λ1, . . . , λK) :=
C

K!

∏
1≤i<j≤K

(λi − λj)2
K∏
i=1

λN−Ki e−λi ,

(27)

where C =
(∏K

i=1 Γ(N − i+ 1)Γ(K − i+ 1)
)−1

.

We now prove Lemma 1.
Proof: Consider the transform λi = ξ2

i , i = 1, . . . ,K
on the density (27), the resulting joint density of ξi, up to a
constant, equals∏

1≤i<j≤K

(
ξ2
i − ξ2

j

)2 K∏
i=1

ξ
2(N−K)+1
i e−ξ

2
i , (28)

and the random variable TJ now becomes

TJ =

∑K
i=1 ξ

4
i(∑K

i=1 ξ
2
i

)2 . (29)
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For reasons that will become clear later, we consider the
general polar coordinates transformation

ξ1 = ρ cosφ1 (30a)

ξi = ρ

i−1∏
j=1

sinφj

 cosφi, i = 2, . . . ,K − 1 (30b)

ξK = ρ

K−1∏
j=1

sinφj

 , (30c)

where ρ > 0, 0 < φi ≤ π, i = 1, . . . ,K − 2 and 0 <
φK−1 ≤ 2π. The Jacobian of this transformation is given
by [20, Theorem 1.25]

ρK−1

K−1∏
j=1

| sinφj |K−j−1

 . (31)

Consequently the joint distribution of ρ and ~φ =
(φ1, . . . , φK−1), up to a constant, is calculated to be

ρ2KN−1e−ρ
2

× g(~φ), (32)

where the function g(~φ) does not depend on ρ. Clearly, ρ
and ~φ are independent. Moreover, inserting (30) into (29) it is
seen that TJ does not involve ρ. Finally, by using the fact that
ρ2 =

∑K
i=1 ξ

2
i =

∑K
i=1 λi the proof of Lemma 1 is completed.

APPENDIX B
PROOF OF PROPOSITION 1

Before we prove Proposition 1 we need the following two
lemmas, the proofs of which are omitted and can be found
in [12].

Lemma 2. The expected value of the function
∏K
i=1 λ

2ai
i ,

where ai are non-negative integers, equals∫
[0,∞)K

(
K∏
i=1

λ2ai
i

)
Λ(λ1, . . . , λK)dλ1 · · · dλK =

C

K!

∑
π

∣∣Γ(2aπ(i) +N −K + i+ j − 1)
∣∣
i,j=1,...,K

, (33)

where π = π(1), . . . , π(K) defines a permutation of the
integers 1, . . . ,K and the sum is over all the K! permutations.

Alternatively, Lemma 2 may be established by simplifying
the tensor notation in [22, Theorem 2]. Note that Lemma 2 is
an extension to the Selberg type integrals considered in [23,
Eq. (17.6.5) and (17.8.1)].

Lemma 3. For positive integers bi the following equality holds

|Γ(bi + j − 1)|i,j=1,...,K =
∏

1≤i<j≤K

(bj − bi)
K∏
i=1

Γ(bi). (34)

Now we are in a position to prove Proposition 1.
Proof: By virtue of the independence (12), we can

consider the moments of the random variables
∑K
i=1 λ

2
i and(∑K

i=1 λi

)2

separately under H0. It is well known that the

linear statistics 2 tr(R) = 2
∑K
i=1 λi of (27) follows a chi-

squared distribution with 2KN degrees of freedom. Using
the moment expression for chi-squared distribution [24, Eq.
(2.35)], the 2m-th moment of

∑K
i=1 λi is obtained as

E

[(
K∑
i=1

λi

)2m ]
=

Γ(2m+KN)

Γ(KN)
. (35)

The next step is to calculate the moments of
∑K
i=1 λ

2
i . Using

the multinomial expansion(
K∑
i=1

λ2
i

)m
=

∑
a1+···+aK=m

m!

a1! · · · aK !

K∏
i=1

λ2ai
i (36)

and Lemma 2, we immediately have

E

[(
K∑
i=1

λ2
i

)m ]
=

C

K!

∑
a1+···+aK=m

m!

a1! · · · aK !
×∑

π

∣∣Γ(2aπ(i) +N −K + i+ j − 1)
∣∣
i,j=1,...,K

. (37)

For any given permutation π, it is observed that the sum over
a1 + · · ·+ aK = m in (37) is invariant under the permutation
π and since the number of possible permutations is K!, (37)
now equals∑
a1+···+aK=m

m!C |Γ(2ai +N −K + i+ j − 1)|i,j=1,...,K

a1! · · · aK !
.

(38)
Simplifying the above determinant using Lemma 3 with bi =
2ai +N −K + i, we have

E

[(
K∑
i=1

λ2
i

)m ]
=

∑
a1+···+aK=m

m!C

a1! · · · aK !
×

∏
1≤i<j≤K

(2aj − 2ai + j − i)
K∏
i=1

Γ(2ai +N −K + i). (39)

Inserting (39) and (35) into (12) completes the proof of
Proposition 1.

APPENDIX C
PROOF OF PROPOSITION 2

Proof: The transform x = (K−1)z+1
K on a standard

Beta density zα−1(1 − z)β−1/B(α, β), z ∈ [0, 1] leads to
a generalized Beta density

fGB(x) :=
Kα+β−1

B(α, β)(K − 1)α+β−1

(
x− 1

K

)α−1

(1−x)β−1,

(40)
having the same support x ∈ [1/K, 1] as that of TJ. By
definition, the CDF of this generalized Beta is calculated as

FGB(y) :=

∫ y

1/K

fGB(x) dx = 1−
B
(
K(1−y)
K−1 ;β, α

)
B(α, β)

. (41)

The next step is to obtain the parameters α and β of (41)
as functions of the moments of TJ (13) by moment matching.
Specifically, since the m-th moment of a standard Beta random
variable equals E[zm] = (α)m/(α + β)m, where (α)m =
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Γ(α + m)/Γ(α) defines the Pochhammer symbol, the m-th
moment of the generalized Beta random variable is obtained
by binomial expansion as

E[xm] =
1

Km

m∑
i=0

(
m

i

)
(K − 1)i(α)i

(α+ β)i
, (42)

where
(
m
i

)
denotes the binomial coefficient. In particular, by

matching the first two moments in (42) to the moments of
TJ (13) we have

M1 =
αK + β

(α+ β)K
, M2 =

(αK + β)2 + αK2 + β

(α+ β)(α+ β + 1)K2
. (43)

From the above equations the parameters α, β, denoted by α0

and β0, are solved as in (15). This completes the proof.

APPENDIX D
PROOF OF PROPOSITION 3

Proof: The proof is divided into two parts. First, we
prove the equalities in (21), with which we then establish the
estimates of (19) and (20) via the ‘Delta method’. For the first
part we need up to the 4-th moment of the sample covariance
matrix R under H1. By definition, the n-th moment of R can
be represented as

E

[
n∏
k=1

Rik,jk

]
=

∂Φ(Θ)

∂θj1,i1∂θj2,i2 . . . ∂θjn,in

∣∣∣∣∣
Θ=0

, (44)

where Φ(Θ) := E
[
etr(RΘ)

]
= |Σ|−N |Σ−1 −Θ|−N denotes

the moment generating function of R under H1 with the i, j-
th entry of the Hermitian parameter matrix Θ being θi,j . It
was proven in [30] using properties of permutation group
representations that (44) admits the following combinatorial
structure

∂Φ(Θ)

∂θj1,i1∂θj2,i2 . . . ∂θjn,in

∣∣∣∣∣
Θ=0

=

n∑
i=1

Nn−i+1Ai−1, (45)

where the scalar Ai is a sum of distinct terms of the form∏n
k=1 Σik,jπ(k)

with an index distance5 i, where π defines
a permutation of integers 1, . . . , n. This combinatorial struc-
ture (45) was first observed in [31], where up to the 4-
th moment of R were calculated. Utilizing these moment
expressions and the property of matrix trace operation6

tr (Dm) =
∑

i1,...,im∈{1,...,K}

di1,i2di2,i3 · · · dim,i1 , (46)

the equalities in (21) can now be proven. Here we prove only
the relatively involved cases of (21b) and (21e) as shown on
top of next page, other equalities in (21) can be easily obtained
in a similar manner.

With the derived moments and covariance of x and y, some
estimates of the moments of z can now be established via
the ‘Delta method’ [29]. Specifically, consider the bi-variate
Taylor series expansion (53) of the function z(x, y) = x/y2

5The index distance is defined as the minimum index permutations (re-
stricted to row-to-row or column-to-column permutations) required such that
a term

∏n
k=1 Σik,jπ(k)

is permutated to the canonical form
∏n

k=1 Σik,jk .
For example, the index distance of the term Σi1,j3Σi2,j4Σi3,j2Σi4,j1 is 3.

6Here D a K ×K matrix with i, j-th entry di,j .

in the neighborhood of the means of x and y. The partial
derivatives of non-zero value at (µx, µy) in (53) are calculated
as

∂z

∂x

∣∣∣∣
x=µx,y=µy

=
1

µ2
y

,
∂z

∂y

∣∣∣∣
x=µx,y=µy

= −2µx
µ3
y

, (54a)

∂2z

∂x∂y

∣∣∣∣
x=µx,y=µy

= − 2

µ3
y

,
∂2z

∂y2

∣∣∣∣
x=µx,y=µy

=
6µx
µ4
y

. (54b)

Inserting (54) into (53) and taking the expectation of (53), the
second order approximation to the mean of z is obtained as

µz ≈ z(µx, µy) +
1

2!

(
6µx
µ4
y

E
[
(y − µy)2

]
+

(
− 2

µ3
y

)
2E [(x− µx)(y − µy)]

)
(55)

=
µx
µ2
y

− 2µxy
µ3
y

+
3µxνy
µ4
y

, (56)

and similarly, calculating the variance of (53) considering up
to the linear terms, the first order approximation to the variance
of z reads

νz ≈
(

1

µ2
y

)2

V [x− µx] +

(
−2µx
µ3
y

)2

V [y − µy] +

2

µ2
y

(
−2µx
µ3
y

)
µxy (57)

=
νx
µ4
y

− 4µxµxy
µ5
y

+
4µ2

xνy
µ6
y

, (58)

where V[·] denotes the variance operation. This completes the
proof.
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νx =
1

N4
E
[(

tr(R2)
)2]− µ2

x (47)

=
1

N4

∑
a,b,c,d∈{1,...,K}

E [Ra,bRb,aRc,dRd,c]− µ2
x (48)

=
1

N4

∑
a,b,c,d∈{1,...,K}

(
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where by repeated use of the property (46) and after some manipulations the equality (21b) is established.
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where by repeated use of the property (46) and after some manipulations the equality (21e) is established.
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