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Abstract—Detecting the presence of signals in noise from
multiple sources is a fundamental problem in statistical signal
processing. In this paper, we consider multi-antenna signal detec-
tion when the noise covariance matrix is assumed to be arbitrary
and unknown. We address this problem in the context of cognitive
radio, where a multiple-primary-user detector is analyzed. This
detector is known as Wilks’ detector in statistics literature, which
was derived under the generalized likelihood ratio criterion.
We calculate the moments of Wilks’ detector, which lead to
simple and accurate approximate analytical formulae for the
false alarm probability, the detection probability and the receiver
operating characteristic. From the considered simulation settings,
performance gain over existing detection algorithms is observed
in scenarios with arbitrary and unknown noise correlation and
multiple primary users.

Index Terms—Cognitive radio; moment-based approximation;
signal detection; Wilks’ detector.

I. INTRODUCTION

A basic problem in statistical hypothesis testing is to infer
the presence or absence of signals embedded in noise under
different modeling assumptions. These assumptions, though,
may not often be met in practical scenarios. Consequently,
detection algorithms that are robust to deviations from the
presumed assumptions are of particular interest. In this pa-
per, we consider a deviation from the prevailing assumption
of perfectly known noise covariance. Namely, we focus on
the case when the noise covariance matrix is arbitrary and
unknown. We choose to study this problem in the context of
spectrum sensing in Cognitive Radio (CR) networks, although
the formulation and analysis in this paper are valid for other
applications such as sonar and radar detection.

In CR networks, dynamic spectrum access is implemented
to mitigate spectrum scarcity. A secondary (unlicensed) user
is allowed to utilize the spectrum resources when it does
not cause intolerable interference to the primary (licensed)
users. Spectrum sensing is the first key step towards this
dynamic spectrum access scenario. Prior work on multi-
antenna cooperative spectrum sensing predominately employ
the assumption of known noise covariance matrix. Based on
this assumption, several eigenvalue based spectrum sensing
algorithms have been proposed recently [1–10]. In contrast
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to feature detection, these eigenvalue based detectors do not
require any signalling information of the primary users. The
assumption of a perfectly known noise covariance matrix may
not be realistic for practical systems due to the time-varying
nature of the noise statistics. The time-varying noise can be
induced, for example, from the unpredictable interferences.
Using the existing detection algorithms [1–10] in such a
scenario will induce performance loss. In this paper the noise
covariance matrix is assumed to be arbitrary and unknown.
The true noise covariance matrix is estimated by periodically
updated noise-only observations. Detectors derived under this
assumption, a.k.a. the blind-noise-statistics detectors, are ro-
bust1 to modeling assumptions of the noise statistics. Despite
the practical importance of the blind-noise-statistics detectors,
results in this direction are rather limited. A heuristic detector
based on Roy’s statistics [11] was considered in [12, 13].
This detector was proposed under the assumption of a single
active primary user [12], see also (13b). The assumption of
a single primary user may fail to reflect the situations in
forthcoming CR networks, where the primary system could
be a cellular network, and the existence of more than one
primary users would be the prevailing condition. Moreover,
since the spectrum resources also include vacant unlicensed
bands, several unlicensed systems, such as Wi-Fi, Bluetooth,
and DECT, may share the same band without coordination,
giving a scenario where multiple primary users occupy the
same band.

To address this challenge, in this paper we consider a
detector for arbitrary and unknown noise covariance matrix in
the presence of multiple primary users. Under the Generalized
Likelihood Ratio (GLR) criterion, Wilks’ detector, which was
first proposed in statistics literature in [14], turns out to be
the blind-noise-statistics detector we are interested in. We
investigate its detection performance by deriving closed-form
approximations to the false alarm probability, the detection
probability as well as the Receiver Operating Characteristic
(ROC). The derived results are easily computable and rea-
sonably accurate. Simulations show the robustness of Wilks’
detector for arbitrary noise covariance matrix and in the
presence of multiple primary users. To the best of the authors’
knowledge the contributions of this paper, regarding the per-
formance analysis of Wilks’ detector summarized in the four
propositions including Lemma 1, are new.

The rest of this paper is organized as follows. After outlining
the signal model in Section II, we introduce the considered

1Here, robustness refers to sustained performance in the absence of knowl-
edge of noise covariance matrix. In statistics literature, however, robustness
typically means contermeasures against non-Gaussianity.
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blind-noise-statistics detector for multiple primary users in
Section III. Performance analysis of this detector is addressed
in Section IV. Section V presents numerical examples to verify
the derived results and to study the detection performance in
diverse scenarios. Finally in Section VI we conclude the main
results of this paper.

II. SIGNAL MODEL

Consider the standard model for K-sensor cooperative de-
tection2 in the presence of P primary users,

x = Hs+ n, (1)

where x ∈ CK is the received data vector. The K×1 vector n
is the complex Gaussian noise with zero mean and covariance
matrix Ψ; the K × P matrix H = [h1, . . . ,hP ] represents
the channels between the P primary users and the K sensors;
and the P ×1 vector s = [s1, . . . , sP ]

′ denotes the transmitted
signals from the primary users, which are commonly assumed
to follow an i.i.d zero mean Gaussian distribution and is
uncorrelated with the noise. This assumption, for instance,
is nearly valid for an OFDM signal in which each carrier is
modulated by independent data streams. We further consider
deterministic channels, i.e., the channel matrix H is assumed
to be constant during sensing process. Note that the focus
of this paper is performance analysis for a given channel
realization H and analyzing the average performance over the
statistics of H is beyond the scope of this work.

We collect N independent observations from model (1) to a
K ×N (K ≤ N ) received data matrix X = [x1, . . . ,xN ]. By
the above assumptions, the (un-normalized) sample covariance
matrix3 R = XX† of the received data matrix follows a com-
plex Wishart distribution, denoted by R ∼ WK (N,Σ), with
the corresponding population covariance matrix calculated in
the absence of primary users, denoted by hypothesis H0 (null
hypothesis), as

H0 : Σ = E[XX†]/N = Ψ, (2)

and in the presence of primary users, denoted by hypothesis
H1, as

H1 : Σ = Ψ+

P∑
i=1

γihih
†
i . (3)

Here γi = E[sis†i ] defines the transmission power of the i-th
primary user and the received SNR of primary user i across
the K sensors is defined as4

SNRi =
γi||hi||2

tr (Ψ) /K
. (4)

These characterize the interference level close to the primary
transmitter from a transmission of the secondary system, the
control of which is the target of dynamic spectrum manage-
ment. We note that declaring wrongly H0 defines the false
alarm probability Pfa, and declaring correctly H1 defines the

2This scenario is more relevant when the K sensors are in one device.
For distributed collaborating sensors, accurate time synchronization between
devices and communications to the fusion center become an issue.

3(·)† denotes the conjugate-transpose operation.
4tr (·) denotes the matrix trace operation.

detection probability Pd. The hypothesis under H0 is often
referred to as null hypothesis.

III. TEST STATISTICS

The differences between the population covariance matrices
under H0 (2) and under H1 (3) can be explored to detect the
presence of primary users. With different assumptions on the
noise covariance matrix Ψ, and the knowledge of the number
of primary users P , various test statistics have been proposed
in literature.

A. When the noise covariance matrix is assumed to be
Ψ = σ2IK .

Here the noise from the K antennas is assumed to be
independent, and has a common power σ2. In this case,
the sufficient statistics is the sample covariance matrix R
of the received data matrix [15] and we denote its ordered
eigenvalues by 0 ≤ λK ≤ . . . ≤ λ1 < ∞.

In the presence of a single primary user, P = 1, the
hypothesis test is

H0 : Σ = σ2IK (5a)
H1 : Σ = σ2IK + γ1h1h

†
1. (5b)

Under this hypothesis test and when σ2 is assumed to be
known, the Largest Eigenvalue based (LE) detector

TLE = λ1 (6)

was derived under the GLR criterion [2]. The assumption
of known noise power, besides being impractical, leads to
detectors which may suffer severe performance degradation
due to noise power uncertainty [7, 10]. Under the assumption
of unknown noise power σ2, the test proposed under the GLR
criterion is the Scaled Largest Eigenvalue based (SLE) detector

TSLE =
λ1∑K
i=1 λi

. (7)

The SLE detector was first proposed in the context of spectrum
sensing in [3] and further analyzed in [4, 5]. Detection without
assuming any knowledge of certain parameter is often referred
to as blind detection. For example the SLE detector belongs
to the blind σ2 detection, which is more robust than the LE
detector to the noise power uncertainty.

In the presence of multiple primary users, when P ≥ 2 but
not known a priori i.e. blind P detection, the corresponding
hypothesis test is expressed as

H0 : Σ = σ2IK (8a)
H1 : Σ ≻ σ2IK , (8b)

where the symbol ≻ denotes positive definite. Under this
hypothesis test, the detector derived from the GLR criterion is
the Spherical Test based (ST) detector5

TST =
|R|(

1
K tr(R)

)K =

∏K
i=1 λi(

1
K

∑K
i=1 λi

)K
, (9)

5|·| denotes the matrix determinant operation.
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which is also a blind σ2 detector [6]. The spherical test
was formulated in [6] as a spectrum sensing algorithm and
the detection performance has been analytically addressed
in [7]. Although in general the ST detector achieves good
performance, it is not an optimal one in the low SNR regime.
A test statistics that is optimal in detecting small deviations
from H0 is John’s detector

TJ =
tr(R2)(
tr(R)

)2 =

∑K
i=1 λ

2
i(∑K

i=1 λi

)2 , (10)

which was studied in the context of spectrum sensing in [8].
The criterion under which John’s detector is derived is known
as the Locally Best Invariant (LBI) criterion. Unlike the GLR
criterion, the LBI criterion often leads to detectors that perform
particularly well in the low SNR regime. Besides the ST and
John’s detectors, another blind P detection is the Eigenvalue
Ratio based (ER) detector [9, 10],

TER =
λ1

λK
. (11)

The ER detector is not constructed from any decision-theoretic
consideration, such as the GLR or LBI criterion. In fact, it
performs substantially worse than the ST and John’s detectors
in both single and multiple primary user scenarios [7]. We
emphasize that the considered blind P detection i.e. the ST,
John’s and the ER detectors are also blind σ2 detectors, which
are robust not only to the number of primary users but also to
the noise power uncertainty. To complete the story, we note
that the cooperative Energy Detector

TED = tr(R) =
K∑
i=1

λi, (12)

which assumes σ2 to be known, is also a blind P detector. The
cooperative energy detector is often used as a benchmark de-
tector for performance comparisons [10], whose performance
is considerably degraded by a relatively small noise power
uncertainty. Finally, we note that for arbitrary and known P ,
the corresponding GLR detectors have been derived in [16].

B. When the noise covariance matrix is assumed to be arbi-
trary and unknown.

In this case the blindness of the detection is extended
in a new dimension. The resulting detectors belong to the
so-called blind Ψ detection6, which are robust to any modeling
assumptions on Ψ. This extension is partially motivated by
the existence but usually unknown noise correlation due to
e.g. antenna coupling or interferences in practical systems.
Instead of a perfectly known Ψ, here we assume to have, in
addition to the received data matrix X, another independent
noise-only observation matrix Z consisting of M samples from
the K sensors with M ≥ K. This noise-only observation
matrix Z can be obtained e.g. when absence of the primary

6Strictly speaking, the concept of blindness here is different from those of
blind σ2 or blind P , since an estimate of Ψ has been constructed from the
noise-only samples. In the context of this paper, blind Ψ refers to the fact
that no assumption on the structure of Ψ is made.

users is declared from an initial coarse sensing period. The
initial sensing can be performed in a database assisted manner.
Moreover, when the signals of interest are narrow-band and
located in a known frequency band, such as the case of
TV primary systems, the noise-only samples collected at a
frequency just outside this band can be justified as having
the same noise covariance characteristics. The time-varying
nature of the noise correlation can be coped with periodically
updating the measurement Z. The unknown noise population
covariance matrix Ψ can be estimated via the (un-normalized)
noise-only sample covariance matrix E = ZZ†, which, by
the assumptions in Section II, follows a complex Wishart
distribution i.e. E ∼ WK (M,Ψ). In this setting, the sufficient
statistics is the ‘whitened’ sample covariance matrix of the
form E−1R [15] and its ordered eigenvalues are denoted by
0 ≤ θK ≤ . . . ≤ θ1 < ∞.

In the scenario of a single primary user, the corresponding
hypothesis test is

H0 : Σ = Ψ (13a)
H1 : Σ = Ψ+ γ1h1h

†
1. (13b)

Essentially we are testing the equality of the two population
covariance matrices Σ and Ψ against a rank-1 perturbation
alternative (13b) based on the received data and noise-only
observation matrices X and Z. In this scenario, a reasonable
test statistics to choose is Roy’s largest eigenvalue based
detector [11]

TR = θ1. (14)

Nadler et al. [12, 13] were among the first to consider Roy’s
detector in the spectrum sensing application.

Although Roy’s detector is a blind Ψ detector, it is not
blind in P . When the actual number of primary users is more
than one, Roy’s detector is expected to suffer performance
loss. Thus, it is of interest to extend the blindness of detection
to the practical scenario of multiple primary users. Following
the same line of reasoning in constructing (8), the hypothesis
test under the assumptions of arbitrary and unknown Ψ and
multiple primary users is

H0 : Σ = Ψ (15a)
H1 : Σ ≻ Ψ. (15b)

For this hypothesis test, the so-called Wilks’ detector [14]
turns out to be the corresponding GLR detector [17]

TW =
|E|

|R+E|
=

K∏
i=1

1

1 + θi
, (16)

where it can be verified that TW ∈ [0, 1]. The test procedure
for TW and TST is

T
H0

≷
H1

ζ, (17)

and for other detectors in Table I is

T
H1

≷
H0

ζ, (18)

where ζ is a threshold. Wilks’ detector is blind to both
Ψ and P , i.e., its performance is robust to the degree of



4

TABLE I
SUMMARY OF MULTI-ANTENNA SPECTRUM SENSING ALGORITHMS

assumptions Ψ = σ2IK with known σ2 Ψ = σ2IK with unknown σ2 arbitrary and unknown Ψ

single primary user TLE [1, 2] TSLE [3–5] TR [12, 13]

multiple primary users TED [10] TST [6, 7], TJ [8], TER [9, 10] TW

noise correlation as well as to the number of primary users,
which renders it the most robust detector under the framework
developed in this paper. In a similar setting, random matrix
theory based inference and estimation for generic deterministic
matrices and Toeplitz matrices have been discussed in [18]
and [19], respectively. These results do not rely on the ex-
istence of noise-only samples. Note that the applicability of
Wilks’ detection is not limited by the specific problem in CR
networks considered in this paper. The analysis in the next
Section can be also applied to areas such as sonar and radar
detection, whenever Wilks’ detector is involved.

For convenience, the detectors discussed within the frame-
work of this paper are summarized in Table I according to their
modeling assumptions. More detailed discussions regarding
Table I can be found in [20].

Finally we note that for the case of arbitrary and known Ψ,
the forms of the test statistics (6), (7), (9), (10) and (11) in
Section III-A remain the same and are directly applicable. The
only difference is that these test statistics are now functions
of Ψ−1R instead of R.

IV. PERFORMANCE ANALYSIS

In this section we derive analytical expressions for the
moments of Wilks’ detector under both hypotheses. Based
on the derived results, we construct simple yet accurate
closed-form approximations to the false alarm probability,
the detection probability, as well as the receiver operating
characteristic. These results are valid when the covariances
of received data matrix and noise-only observation matrix are
both non-singular.

A. False Alarm Probability

We first derive the exact moments of TW under H0, which
is summarized in the following proposition.

Proposition 1. Under H0, the exact m-th moment of random
variable TW is

Mm =
ΓK(N +M)ΓK(M +m)

ΓK(M)ΓK(N +M +m)
, (19)

where

ΓK(N) = π
1
2K(K−1)

K−1∏
j=0

Γ(N − j), (20)

and Γ(·) denotes the Gamma function.

The proof of Proposition 1 is in Appendix A. Note that the
corresponding moments for the real case can be found, e.g.
in [17, Eq. (14)]. The moments of TW do not depend on the

unknown noise covariance matrix Ψ under the null hypothesis.
Despite the fact that the problem of finding the exact TW
distribution under H0 has received much attention [17, 22–
28], this problem is not completely settled. For example,
the exact density representation [22] via the Meijer’s G-
function is, although of theoretical interest, too complicated for
computational purposes. Similarly, the Beta-type density rep-
resentations [17, 23] involve numerically determining a large
number of unknown coefficients, which limits their usefulness
in practice. A moment based heuristic curve fitting approach
was proposed in [24]. Moreover, when some of the parameters
are large an asymptotic expansion of Wilks’ test was derived
in [25]. In fact, explicit and exact density expressions are
available in literature only for K ≤ 4 [26]. Note that the above
a priori results are for real Wishart matrices. For complex
Wishart matrices, exact TW densities were derived for a few
limited cases, i.e. K = 2 and K = 3 in [27]. Since an exact
and computable distribution of TW seems intractable to obtain
for arbitrary parameter values, we will construct a simple yet
accurate approximative TW distribution by the moment match-
ing techniques [7, 29]. Contrary to the previously discussed
results, the proposed closed-form approximation is valid for
any K, N and M .

Motivated by the fact that the exact densities for K = 2 and
K = 3 in [27] hold the same polynomial form xi(1−x)j as a
Beta density, we choose the Beta distribution to approximate
the distribution of TW for general parameter values. An addi-
tional motivation is due to the fact the Beta random variable
has the same support as that of TW. Accordingly we have

Proposition 2. For any sensor size K, sample size N and
noise-only sample size M , the Beta approximation to the CDF
of TW under H0, based on the exact two first moments in (19),
is

FW(y) ≈
B(y;α0, β0)

B(α0, β0)
, y ∈ [0, 1], (21)

where

α0 =
M1(M1 −M2)

M2 − (M1)
2 , β0 =

(1−M1) (M1 −M2)

M2 − (M1)
2 .

(22)
Here, B(a, b) = Γ(a)Γ(b)/Γ(a+b), B(x; a, b) =

∫ x

0
za−1(1−

z)b−1dz define the Beta function and the lower incomplete
Beta function, respectively.

The proof of Proposition 2 is in Appendix B. Note that
an asymptotic TW distribution for real Wishart matrices can
be found in [28, Eq. (5.4)]. There may be a possibility to
extend this result to the complex Wishart case using the
tools in [28]. However, the corresponding complex analog
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is expected to possess similar undesired properties such as
being slowly converging and computationally intensive. On
the contrary, in the proposed Beta approximation (21) we
have established simple closed-form relations (22) between the
parameters α0, β0 and K,N,M in the complex Wishart case.

From the test procedure (17) and Proposition 2, the resulting
approximation to the false alarm probability, for a given
threshold ζ, equals

Pfa(ζ) = FW(ζ) ≈ B(ζ;α0, β0)

B(α0, β0)
, (23)

where ζ ∈ [0, 1]. Equivalently, for any Pfa requirement a
threshold can be calculated by inverting FW(ζ),

ζ = F−1
W (Pfa). (24)

B. Detection Probability

We first study the moments of TW under H1. Unlike the
case of H0, a tractable and exact formula for the moments
seems difficult to obtain. The existing exact moment repre-
sentations are either in terms of the matrix-valued hypergeo-
metric function [30, Eq. (1.2)] or the a sum over partition of
Zonal polynomials [31, Eq. (2.1)], the evaluation of which
is computationally prohibitive. For this reason, in the next
proposition we propose a simple but accurate approximative
moment expression of TW under H1. The key to establish this
result relies on the following lemma.

Lemma 1. For two independent K × K Wishart matrices
A ∼ WK (n,Σ) and B ∼ WK (m,Ω), the first two-
moment matching Wishart approximation to the sum A+B =
C ∼̇ WK (f,Θ) has the Degrees of Freedom (DoF) f and
covariance matrix Θ as

f =

(
ntr(Σ) +mtr(Ω)

)2
ntr2 (Σ) +mtr2 (Ω)

, (25)

Θ =
1

f
(nΣ+mΩ) , (26)

where the difference in the third moment is given by

e3 = f3tr
(
Θ3

)
+ 3f2tr (Θ) tr

(
Θ2

)
+ ftr3 (Θ)

+ftr
(
Θ3

)
− n3tr

(
Σ3

)
− 3n2tr (Σ) tr

(
Σ2

)
−ntr3 (Σ)− ntr

(
Σ3

)
−m3tr

(
Ω3

)
−3m2tr (Ω) tr

(
Ω2

)
−mtr3 (Ω)−mtr

(
Ω3

)
−3n2mtr

(
Σ2Ω

)
− 3nmtr (Σ) tr (ΣΩ)

−3m2ntr
(
Ω2Σ

)
− 3mntr (Ω) tr (ΩΣ) . (27)

The proof of Lemma 1 is in Appendix C. It can be easily
seen that when Σ = Ω the above approximation reduces to
the exact result [15, Th. 3.2.4], i.e. C ∼ WK (f,Θ) with
f = n+m, Θ = Σ, and e3 = 0. Note that a similar result on
approximating the distribution of the sum of Wishart matrices
by a single Wishart matrix was proposed in [33] with the same
equivalent covariance matrix (26) but a different degrees of
freedom as

f∗ =
tr
(
(nΣ+mΩ)2

)
+
(
ntr(Σ) +mtr(Ω)

)2
n
(
tr(Σ2) + tr2(Σ)

)
+m

(
tr(Ω2) + tr2(Ω)

) . (28)

Simulations performed in Section V-B indicate that the pro-
posed degrees of freedom (25) leads to more accurate moments
estimation of TW than (28) does. Using Lemma 1 we now
derive the corresponding approximation to the moments of TW
under H1, which is summarized in the following proposition.

Proposition 3. Under H1, an approximative expression for
the m-th moment of random variable TW is

Nm =
ΓK(M +m)ΓK(d−m) |Υ|−m

ΓK(M)ΓK(d) |Ψ|−m , (29)

where

d =

(
Ntr(Σ) + (M +m)tr(Ψ)

)2
Ntr2(Σ) + (M +m)tr2(Ψ)

, (30)

Υ =
1

d

(
NΣ+ (M +m)Ψ

)
. (31)

The proof of Proposition 3 is in Appendix D. With the
above moment expression, closed-form approximations to the
distribution of TW under H1 can be constructed by matching its
moments to some known distributions. Motivated by the fact
that for the univariate case, K = 1, the random variable TW
under H1 follows a Beta distribution [31], in the multivariate
case we also choose the Beta distribution to model TW.
Accordingly we have

Proposition 4. For any sensor size K, sample size N and
noise-only sample size M , the Beta approximation to the CDF
of TW under H1, based on the two first moments in (29), is

GW(y) ≈
B(y;α1, β1)

B(α1, β1)
, y ∈ [0, 1], (32)

where

α1 =
N1(N1 −N2)

N2 − (N1)
2 , β1 =

(1−N1) (N1 −N2)

N2 − (N1)
2 . (33)

The proof of Proposition 4 essentially follows that of Propo-
sition 2, and is omitted here. Note that under H1, asymptotic
TW distributions for real Wishart matrices are available in [30,
Eq. (4.4)] and [31, Eq. (3.3)], which may be generalized to the
complex Wishart case. However, simulations show that these
asymptotic results converge slowly with respect to sample
sizes N and M for a fixed sensor size K. These results may
not be able to capture the performance of Wilks’ detector in
practical scenarios when the sample size N or the noise-only
sample size M are relatively small. On the other hand, the
proposed approximation (32) for complex Wishart matrices
does not involve any asymptotic expansions in N or M , thus
its accuracy is not expected to be affected much by these
parameter values. Simulations in Section V-B support this
argument.

From the test procedure (17) and Proposition 4, the resulting
approximation to the detection probability reads

Pd(ζ) = GW(ζ) ≈ B(ζ;α1, β1)

B(α1, β1)
, (34)

where ζ ∈ [0, 1].
The mapping between the false alarm probability and the

detection probability is referred to as the receiver operating
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characteristic. As an immediate result of the closed-form
false alarm probability (23) and detection probability (34), an
analytical ROC expression for Wilks’ detector is obtained as

Pd = GW
(
F−1

W (Pfa)
)
. (35)

Note that if we further truncate the values of the parameters
in (22) and (33) to their respective nearest integers, both the
false alarm probability (23) and detection probability (34)
reduce to a finite sum of polynomials in the threshold ζ.
Thus the computational complexity of threshold calculation
becomes quite affordable for on-line implementations.

C. A Note on Approximation Accuracy

The proposed first-two-moment-based Beta approximations
in Propositions 2 and 4 correspond to the simplest form of a
general Jacobi polynomial approximation [34]. In the general
framework, up to any m-th degree of Jacobi polynomials
matching the corresponding first m moments of TW would
be used. The first-two-moment-based approximation is often
referred to as the initial approximation [29]. According to
the general principle of moment-based approximation [29],
the choice of the initial approximation is decided by the
support of the test statistics of interest. Namely, when x ∈
(−∞,∞), x ∈ [a,∞), and x ∈ [a, b] (a, b being fi-
nite) the initial approximations are chosen to be Gaussian,
Gamma, and Beta distributions, respectively. These are the
simplest representative probability density functions for each
support [29]. The associated classical orthogonal polynomials
of these density functions are Hermite, Laguerre, and Jacobi
orthogonal polynomials, respectively. An important property
of moment-based approximation is that for test statistics of
finite support x ∈ [a, b], the approximation becomes exact as
the number of polynomials m goes to infinity. This result is
known as the Weierstrass approximation theorem [35], which
is formally stated as any square integrable function on a finite
interval can be expressed in an orthogonal Jacobi polynomial
basis. According to the Weierstrass’s theorem, the m moment
based approximation to TW becomes exact as the degree of
polynomials involved goes to infinity.

Clearly, the error of the moment-based approximation is
related to the higher order orthogonal polynomials left out
from the approximation. The functional form of the error term
can be found, e.g. in Eq. (6) of [34]. In light of this, the exact
Pfa(ζ) and Pd(ζ) can be written as a sum of the proposed Beta
approximation and an error term eαi,βi(ζ), i = 0, 1,

eαi,βi(ζ) =
m∑

n=3

Ai,n

n∑
p=1

p∑
q=1

Bi,p,q,nζ
αi+n−q(1− ζ)βi . (36)

The expressions for the constants Ai,n and Bi,p,q,n can be
found below Eq. (6) in [34]. Here, α0, β0 are defined in (22)
and α1, β1 are defined in (33). In the most interesting
regions of low false alarm probability Pfa(ζ → 0) and high
detection probability Pd(ζ → 1), the behavior of the error
can be analyzed. Consider an ϵ fulfilling 0 < ϵ ≪ 1, it
follows from (36) that the leading order term in eα0,β0(ϵ)
for low false alarm probability Pfa(ϵ) is proportional to ϵα0

(when p = q = n in (36)) and the leading order error in
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Fig. 1. False alarm probability: analytical (23) versus simulations for different
parameter values (K,N,M).

eα1,β1(1 − ϵ) for high detection probability Pd(1 − ϵ) is ϵβ1 .
Typically, the values α0 and β1 are positive and large. For
example, (α0, β1) equals (15.3, 75975.3), (4162.6, 6.6×106),
(28.3, 17395.8) and (7469.1, 2.0 × 106) for the scenarios
considered in Figure 5 and Figure 6 for relatively low and
low SNRs, respectively. Thus, the corresponding error for low
Pfa and high Pd decreases quite fast. Moreover, according to
Weierstrass’ theorem [35], the approximation in Proposition 2
becomes exact as the degree of polynomials m goes to infinity,
namely

FW(y) =
B(y;α0, β0)

B(α0, β0)
+ lim

m→∞
eα0,β0(y). (37)

The approximation in Proposition 4 is not, however, asymp-
totically tight as m goes to infinity due to the additional
approximation error from Lemma 1.

V. NUMERICAL RESULTS

In this section we first examine the accuracy of the de-
rived approximative false alarm and detection probabilities via
Monte-Carlo simulations. Then we compare the performance
of Wilks’ detector with several detectors in diverse scenarios.
The considered values of the parameters K, N and M in this
section reflect practical sensing situations. The sample sizes
N and M can be as large as a couple of hundred whereas
the number of sensors K is at most eight due to physical
constraints of the device size.

A. False Alarm Probability

In Figure 1 we plot the approximative (23) and simulated
false alarm probabilities as a function of the threshold. To
quantitatively show the approximation accuracy we tabulated
in Table II the numerical values of approximation error,
measured by the Cramér-von Mises goodness-of-fit criterion∫

ζ

∣∣∣P̃fa(ζ)− Pfa(ζ)
∣∣∣2 dP̃fa(ζ), (38)
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TABLE II
APPROXIMATION ERRORS OF FALSE ALARM AND DETECTION PROBABILITIES

(K,N,M) (4, 150, 100) (4, 100, 100) (4, 100, 150)

Pfa overall 7.51× 10−9 7.88× 10−9 2.99× 10−9

Pfa ≤ 0.1 9.13× 10−9 3.24× 10−9 1.26× 10−9

Pd overall 9.78× 10−9 1.19× 10−8 2.12× 10−8

Pd ≥ 0.9 7.20× 10−10 3.85× 10−9 3.01× 10−8

TABLE III
COMPARISON OF APPROXIMATION ERRORS: THE FIRST TWO MOMENTS

ρ = 0.3 ρ = 0.7

SNRs in dB −2,−3,−4 2, 3, 4 −2,−3,−4 2, 3, 4

when using the proposed DoF (25)
(
0.86h, 1.12h

) (
1.92h, 3.93h

) (
0.93h, 2.81h

) (
0.61h, 4.51h

)
when using Nel’s [33] DoF (28)

(
2.04h, 3.95h

) (
4.89h, 11.07h

) (
5.61h, 12.93h

) (
4.90h, 8.72h

)

of the proposed false alarm probability (23) with respect to
the simulated one P̃fa. In addition to the overall error in the
support ζ ∈ [0, 0.16], we also calculated the error for low
false alarm probability Pfa ≤ 0.1 as motivated by IEEE 802.22
standard [36]. In the numerical evaluation of (38), we assume
a sampling size Ns = 106 for the overall error. For better
illustration, the sampling size for low false alarm probability
is counted as a proportion of Ns used up to Pfa = 0.1.
Figure 1 and Table II show that the derived analytical false
alarm probability (23) matches the simulations well and the
approximation errors are of the same order of magnitude for
different parameters. Moreover, it is seen that the overall errors
and the errors of the low false alarm probability are also
of the same order of magnitude, implying rather uniformly
distributed error across the support.

B. Detection Probability

Here we first examine the accuracy of the proposed mo-
ment expression (29). In Table III we calculated the relative
approximation errors7 of the particularly interesting first two
moments, where each entry (·, ·) denotes the relative errors
in per mill of the first and the second moment, respectively.
As a comparison, we also tabulated the relative errors of the
first two moments when using Nel’s DoF estimate (28). In
Table III the parameters are set (K,N,M) = (4, 100, 150) and
the number of primary users is assumed to be three. The entries
of the channel matrix H were independently drawn from
a standard complex Gaussian distribution. The exponential
correlation model [37]

Ψi,j = ρ|i−j|, ρ ∈ [0, 1), (39)

is chosen for the noise covariance matrix, where ρ specifies the
degree of noise correlation. Different combinations of degrees

7For a quantity a and its estimate ã, the relative error is defined as the
absolute value of (a− ã)/a.
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Fig. 2. Detection probability (assuming three primary users with SNR1 =
−2 dB, SNR2 = −3 dB, SNR3 = −4 dB and the degree of noise correlation
ρ = 0.3): analytical (34) versus simulations for different parameter values
(K,N,M).

of noise correlation and SNR values are considered in Ta-
ble III, where we observe that the approximative moments (29)
are more accurate when using the proposed DoF (25) than
Nel’s DoF (28).

We now study the accuracy of the derived approximative
detection probability (34). In Figure 2 we plot the approxima-
tive (34) and simulated detection probabilities in a scenario of
three primary users with SNR1 = −2 dB, SNR2 = −3 dB,
SNR3 = −4 dB and the degree of noise correlation ρ = 0.3.
For the specific channel realization considered in Figure 2,
the eigenvalues8 of Ψ−1Σ are [2.31, 1.41, 1.03, 1.00]. The
resulting approximation errors, calculated by the Cramér-von

8Roy’s and Wilks’ detectors depend on the population covariance matrix
Ψ−1Σ, induced from the sample covariance matrix E−1R, only through its
eigenvalues [15].
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Fig. 3. Performance comparisons: assuming one primary user with SNR1 =
−2 dB and (K,N,M) = (4, 100, 200). The noise correlation is set at ρ =
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Fig. 4. Performance comparisons: assuming three primary users with SNRs =
(−2,−3,−4) dB and (K,N,M) = (4, 100, 100). The noise correlation is
set at ρ = 0.2.

Mises goodness-of-fit criterion (38) with ζ ∈ [0, 0.10] and
a sampling size 106, are summarized in Table II. Similarly,
we consider both the overall error and the error in interesting
region of high detection probability Pd ≥ 0.9. The latter
consideration is motivated by IEEE 802.22 standard [36],
which requires that a secondary device must be able to detect,
with at least 90% probability, the presence of primary user.
From Table II we can see that the derived analytical detection
probability (34) is reasonably accurate and errors in the high
detection probability are not significantly different from that
of the overall cases.

C. Performance Comparisons

In this subsection the performance of Wilks’ detector is
compared with some existing detectors by means of ROC
curves. Since a ROC curve shows the achieved detection

probability as a function of the false alarm probability, it
reflects the overall performance for a given detector. As the
focus of this paper is blind Ψ detection, we consider for
comparison Roy’s detector (14) proposed in [12, 13]. In ad-
dition, we consider the ST detector (9) derived from the GLR
criterion [6, 7], which is a candidate detector in the presence
of multiple primary users. Comparisons with other non-blind
Ψ detectors in Section III-A are excluded. For the relative
performance among these detectors, the readers are referred
to [4, 7, 8, 20]. Here we also choose the exponential correlation
model (39) for the noise covariance matrix Ψ. Towards a
fair comparison9, the ST detector also needs to utilize the
available noise-only observations. To this end, we replace R
in the ST detector by the ’whitened’ sample covariance matrix
E−1R. This modification is motivated by the fact that E is the
maximum likelihood estimate of Ψ, and for a known Ψ the
ST detector becomes a function of Ψ−1R [15]. We assume
that the entries of the channel matrix H, which are fixed
during sensing, are drawn from a standard complex Gaussian
distribution. For each ROC curve, 106 realizations of data
matrix X are generated to construct the empirical test statistics
distributions under both hypotheses.

We start by studying the simple scenario of a single primary
user in Figure 3, where we set SNR1 = −2 dB, (K,N,M) =
(4, 100, 200) and ρ = 0.2. For the specific channel realization
considered in Figure 3, the eigenvalues of the induced popula-
tion covariance matrix Ψ−1Σ are [1.69, 1.00, 1.00, 1.00]. We
emphasize that the performance of Roy’s and Wilks’ detectors
depend on the parameter space, i.e. the values of K,N,M , H,
SNRs and ρ, only through the eigenvalues of Ψ−1Σ [15]. It
is seen from this figure that Roy’s detector performs best, and
indeed its usefulness in detecting a single primary user in the
case of arbitrary and unknown Ψ has been justified in [12,
13].

We now investigate the interesting case of multiple pri-
mary users. We first consider a scenario of three primary
users in Figure 4, where SNRs = (−2,−3,−4) dB with
(K,N,M) = (4, 100, 100) and ρ = 0.2. For the specific
channel realization in Figure 4, the eigenvalues of Ψ−1Σ
are [1.82, 1.53, 1.21, 1.00]. It is seen from Figure 4 that
Wilks’ detector performs better than Roy’s detector. This is as
expected since the former is designed for multiple P detection
when Ψ is arbitrary. We further consider a case of five primary
users with relatively low and low SNRs in Figures 5 and 6.
The consideration of low SNRs scenario is motivated by
the fact that the recent Federal Communications Commission
regulations require that the secondary devices must be able to
detect signals with SNR as low as −18 dB [38, 39]. In both
figures, we set K = 8 and ρ = 0.2. In the upper subplots in
Figures 5 and 6, we choose SNRs = (−2,−3,−4,−5,−6) dB
with (N,M) = (120, 80) and (N,M) = (120, 120),
respectively. In this case, the eigenvalues of Ψ−1Σ are
[2.06, 1.56, 1.36, 1.15, 1.09, 1.00, 1.00, 1.00]. In the lower
subplots in Figures 5 and 6, we choose SNRs =

9Strictly speaking, comparing the performance of blind-noise detectors with
the ST detector may not be fair since the latter does not require the noise-only
samples. However, this comparison does help quantify the performance loss
when the noise-only samples are utilized in a heuristic manner.
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TABLE IV
IMPACT OF N AND M ON DETECTION PROBABILITY OF WILKS’ DETECTOR

N +M = 105 N = 1× 104 N = 3× 104 N = 5× 104 N = 7× 104 N = 9× 104

Pd assuming Pfa = 0.1 0.9690 0.9998 0.9999 0.9998 0.9678

Pd assuming Pfa = 0.01 0.7956 0.9933 0.9982 0.9930 0.7893
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Fig. 5. Performance comparisons: assuming five primary users with SNRs =
(−2,−3,−4,−5,−6) dB and (K,N,M) = (8, 120, 80) in the upper
subplot, and SNRs = (−16,−17,−18,−19,−20) dB and (K,N,M) =
(8, 3 × 104, 2 × 104) in the lower subplot. The noise correlation is set at
ρ = 0.2.

(−16,−17,−18,−19,−20) dB with (N,M) = (3 ×
104, 2 × 104) and (N,M) = (3 × 104, 3 × 104), re-
spectively. In this case, the eigenvalues of Ψ−1Σ are
[1.04, 1.02, 1.01, 1.01, 1.01, 1.00, 1.00, 1.00]. From Figures 5
and 6, we see that Wilks’ detector outperforms Roy’s detector,
as expected. Note that the observations in Figure 3 to Figure 6
regarding the relative performance of Roy’s and Wilks’ detec-
tors are in line with those of [40, 41]. Comparing Figure 5
with Figure 6, we see that an increase of noise-only samples
M enlarges the performance gap between Wilks’ and the ST
detectors, which indicates that the former is more efficient
in using the noise-only samples than the latter does. This
is intuitively clear since Wilks’ detector was derived from
a decision-theoretic criterion i.e. the GLR criterion whereas
the modified ST detector utilizes the noise-only samples in a
heuristic manner. Note that our intensive simulations show that
both Roy’s and Wilks’ detectors perform substantially better
than the ST detector when ρ > 0.2.

Finally, we study the relation between N and M on the per-
formance of Wilks’ detector in Table IV. A low SNR scenario
with three active primary users is considered, where we set
SNRs = (−16,−17,−18) dB, K = 4 and ρ = 0.2. The total
number of samples is assumed to be 105, i.e. N +M = 105.
For the specific channel realization considered in Table IV, the
eigenvalues of Ψ−1Σ are [1.04, 1.02, 1.00, 1.00]. Two cases
corresponding to Pfa = 0.1 and Pfa = 0.01 with N varying
from 1× 104 to 9× 104 have been considered. The numerical
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Fig. 6. Performance comparisons: assuming five primary users with SNRs =
(−2,−3,−4,−5,−6) dB and (K,N,M) = (8, 120, 120) in the upper
subplot, and SNRs = (−16,−17,−18,−19,−20) dB and (K,N,M) =
(8, 3 × 104, 3 × 104) in the lower subplot. The noise correlation is set at
ρ = 0.2.

results obtained in both cases seem to indicate that equally
divided received data samples and noise-only observations lead
to a higher detection probability for Wilks’ detector.

VI. CONCLUSION

In this paper, we studied the performance of Wilks’ detector,
which is a blind-noise-statistics detector in the presence of
multiple primary users. Using the moment matching tech-
niques, simple and accurate closed-form expressions have been
derived for its key performance metrics. Simulations show
the robustness of Wilks’ detector in scenarios with multiple
primary users and arbitrary and unknown noise correlation. In
such scenarios, Wilks’ detector is a viable choice for spectrum
sensing.
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APPENDIX A
PROOF OF PROPOSITION 1

Before proving Proposition 1 we need the following defini-
tion.
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Definition 1. The density function of a Wishart matrix R ∼
WK (N,Σ) reads

f(R) =
|Σ|−N

ΓK(N)
|R|N−K

e−tr(Σ−1R). (40)

We now prove Proposition 1.
Proof: Recall the definition of random variable

TW =
|E|

|R+E|
∈ [0, 1], (41)

where R ∼ WK (N,Σ) and E ∼ WK (M,Ψ). Under
H0 it holds that Σ = Ψ. Using Definition 1 and the fact
that R and E are independent, the m-th moment of TW is
calculated as shown on top of the next page, where now
E′ ∼ WK (M +m,Ψ). Since the Wishart matrices R and
E′ have the same covariance matrix Ψ and dimension K, the
sum R+E′ also follows a Wishart distribution [15, Th. 3.2.4],
i.e. R+E′ ∼ WK (N +M +m,Ψ). Now using the result for
moments of the determinant of complex Wishart matrices [21]
we have

E[|R+E′|−m
] =

|Ψ|−m
ΓK(N +M)

ΓK(N +M +m)
. (45)

Inserting (45) into (44) completes the proof of Proposition 1.

APPENDIX B
PROOF OF PROPOSITION 2

Proof: For a Beta random variable with density function

fB(x) =
1

B(α0, β0)
xα0−1(1− x)β0−1, x ∈ [0, 1], (46)

the CDF and the m-th moment are given by

FB(y) =

∫ y

0

fB(x) dx =
B(y;α0, β0)

B(α0, β0)
, (47)

and

E[xm] =

∫ 1

0

xmfB(x) dx =
(α0)m

(α0 + β0)m
, (48)

respectively. Here, (α)m = Γ(α + m)/Γ(α) defines the
Pochhammer symbol. In particular, by matching the first two
moments of a Beta random variable in (48) to those of TW
in (19) we have

M1 =
α0

α0 + β0
, M2 =

α0(α0 + 1)

(α0 + β0)(α0 + β0 + 1)
. (49)

From the above equations the parameters α0 and β0 are solved
as in (22). This completes the proof.

APPENDIX C
PROOF OF LEMMA 1

Proof: The idea of the proof is to solve the unknown
parameters f and Θ of the Wishart matrix C as functions
of the known parameters n, m, Σ and Ω of the Wishart
matrices A and B by moment matching. We start with
matching the first moment. By definition, for any Wishart
matrix A ∼ WK (n,Σ) we have Σ = E [A] /n, thus

fΘ = E [C] = E [A] + E [B] = nΣ+mΩ, (50)

from which the relation (26) is established. Now we move
on solving the degrees of freedom f by matching the second
moment E

[
C2

]
. Since we need a scalar equation in f , we

naturally consider the matrix trace operation on E
[
C2

]
. Using

the fact that tr
(
E
[
C2

] )
= E

[
tr
(
C2

) ]
and the following

result [32] for moments of a complex Wishart matrix A ∼
WK (n,Σ),

E [Ai,jAk,l] = n2Σi,jΣk,l + nΣi,lΣk,j , (51)

we have

E
[
tr
(
C2

) ]
=

∑
i,j∈{1,...,K}

E [Ci,jCj,i] (52)

=
∑

i,j∈{1,...,K}

(
f2Θi,jΘj,i + fΘi,iΘj,j

)
(53)

=f2tr
(
Θ2

)
+ ftr2 (Θ) . (54)

On the other hand, by the independence of A, B and
invoking (51) again, the right-hand-side of (52) is calculated as
shown on the next page. Inserting the established relation (26)
into (54) and equating it with (57), after some manipulations,
the degrees of freedom f is solved as in (25). In a similar
manner, the difference in the third moment (27) is eatablished
by repeatedly use of (51) and the following result [32] for
moments of a complex Wishart matrix A ∼ WK (n,Σ),

E [Ai,jAk,lAm,n] = n3Σi,jΣk,lΣm,n + n2
(
Σi,nΣk,lΣm,j

+Σi,jΣk,nΣm,l +Σi,lΣk,jΣm,n

)
+n

(
Σk,jΣi,nΣm,l +Σk,nΣm,jΣi,l

)
.

This completes the proof.

APPENDIX D
PROOF OF PROPOSITION 3

Proof: Recall that under H1 we have R ∼ WK (N,Σ),
E ∼ WK (M,Ψ) with Σ ̸= Ψ. By Definition 1 and the
independence of R, E, the m-th moment of TW is calculated
as

E[Tm
W ] =

∫
R,E≻0

|R+E|−m |Σ|−N |Ψ|−M

ΓK(N)ΓK(M)
|R|N−K ×

|E|M+m−K
e−tr(Σ−1R)e−tr(Ψ−1E)dRdE

=
ΓK(M +m)

ΓK(M) |Ψ|−mE[|R+E′|−m
], (58)

where now E′ ∼ WK (M +m,Ψ). By Lemma 1 the sum of
R and E′ can be approximated by a single Wishart as

R+E′ ∼̇ WK (d,Υ) , (59)

where d and Υ are calculated as in (30) and (31), respectively.
Using the result for moments of determinant of complex
Wishart matrices [21] we have

E[|R+E′|−m
] ≈ |Υ|−m

ΓK(d−m)

ΓK(d)
. (60)

Inserting (60) into (58) completes the proof of Proposition 3.
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E[Tm
W ] =

∫
R,E≻0

|R+E|−m |Ψ|−N |Ψ|−M

ΓK(N)ΓK(M)
|R|N−K |E|M+m−K

e−tr(Ψ−1R)e−tr(Ψ−1E)dRdE (42)

=
ΓK(M +m)

ΓK(M) |Ψ|−m

∫
R,E≻0

|R+E|−m |Ψ|−N |Ψ|−M−m

ΓK(N)ΓK(M +m)
|R|N−K |E|M+m−K ×

e−tr(Ψ−1R)e−tr(Ψ−1E)dRdE (43)

=
ΓK(M +m)

ΓK(M) |Ψ|−mE[|R+E′|−m
], (44)

∑
i,j∈{1,...,K}

E [Ci,jCj,i] =
∑

i,j∈{1,...,K}

(
E [Ai,jAj,i] + E [Ai,j ]E [Bj,i] + E [Bi,j ]E [Aj,i] + E [Bi,jBj,i]

)
(55)

=
∑

i,j∈{1,...,K}

(
n2Σi,jΣj,i + nΣi,iΣj,j + nmΣi,jΩj,i +mnΩi,jΣj,i +

m2Ωi,jΩj,i +mΩi,iΩj,j

)
(56)

= n2tr
(
Σ2

)
+ ntr2 (Σ) + 2nmtr (ΣΩ) +m2tr

(
Ω2

)
+mtr2 (Ω) . (57)
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