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Abstract—A blind target detector using the time reversal Despite the practical needs to understand TR detection in
transmission is proposed in the presence of channel correlation. the presence of channel correlation, results in this doectre
We calculate the exact moments of the test statistics involved. The scarce. To address this challenge, we propose a blind TR-dete

derived moments are used to construct an accurate approximate tor that admit | lati truct bet TR
Likelihood Ratio Test (LRT) based on multivariate Edgeworth or that admits a general correlation sfructure betwee €

expansion. Performance gain over an existing detector is observe Channels. A closed-form approximation to the correspandin
in scenarios with channel correlation and relatively strong target likelihood ratio is proposed using the multivariate Edgetivo

signal. expansion. The approximation is constructed via the derive
Index Terms—Complex double Gaussian; time reversal; de- exact moments of the underlying statistics. Numerical &mu
tection; channel correlation; multivariate Edgeworth expansion tions show that the proposed detector outperforms the tetec
in [4] by exploiting the TR channel correlations.

. INTRODUCTION II. BLIND TIME REVERSAL DETECTION

T IME Reversal (TR) is a waveform transmission method we consider blind detection of a point target in the pres-
that focuses the transmitted energy in dispersiéhce of multipath scattering as studied in [4]. The detectio
medium — the channel [1]. It utilizes channel reciprocit;dansystem send€) probing signals in the spectral domain at
obtains the channel state information by sending a probigge frequencieso,, ¢ € [1, Q]. The sampling frequencies
signal. The backscattered signal is then time-reversed a{{d chosen such that each frequency bin is separated by
retransmitted. The TR signal is shown to be optimal in th@e coherence bandwidth of the channel and the spectral
sense that the transmission realizes a matched filter to §ignples are statistically independent. The multipath whian
propagation transfer function [1]. The concept of TR wagt ., induced by the scattering is modeled by a wide sense
originally developed for optical and acoustic applicatiand stationary process. We denote the channels experienced by
it has been recently introduced as a detection techniqueein the probing signal and the retransmission @s(w,) and
electromagnetic domain [2-4], where the target to be detleci, (), respectively. The channel response of the point target
is embedded in stationary random multipath scattering. is captured by a deterministic responeand the probing

In [2,3], the authors assumed that the multipath channel §fna| atw, is denoted ass(w,). Note that here we consider
the channel response signal can be ideally estimated usgp@enerm correlation structure betwe€p(w,) and C,(w,)
probing snapshots. However, the assumption of a perfeciisiead of statistical independence assumed in [4]. Asdtres
known channel or a noise-free signal may not be realisfigowledge of channel coherence time is no longer required. |
for practical systems due to, e.g., measurement noise- Esfich a scenario, the detector of [4] suffers performance, los
mation accuracy depends on the number of snapshots, whighwill be shown in Section IV.
is limited by the coherence time/frequency of the channel agter transmitting the probing signa¥ (w,), we write the
and the sampling rate of the system [3]. To avoid channﬁzéquency response as
estimation, the authors in [4] considered a blind TR detecto
that utilizes only the distribution of the multipath chatme Z(wq) = (T + Cp(wq)) S(wq) + Vp(wy),

The likelihood ratio test for the TR detector was de”Veﬂ/hereVp(wq) is the measurement noise which is distributed as

assuml_ng_statlsncal mdepen_dence betvv_een_the two CO_" BECUy zero-mean complex Gaussian random variable with Power
transmissions. However, this assumption is not valid if t

o - _ _ h§pectral Density (PSDy2. Hereafter, we denot&,(w,) ~
transmissions are within the coherence time of the mul‘upaéN(O o2) [5]. In this paper, we use a white probing signal
channel. Using existing detectors in such a scenario wiliae such ihgltS(w‘) = JVE/Q \,/vith a transmit powerE,. The '

q) — s S+

performance loss. received signalZ(w,) is then time-reversed or, equivalently,
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signal Str(w,) is subsequently transmitted and the channsimplicity, the frequency variables, is hereafter dropped.

response of the retransmission is calculated by Recalling equations (2)-(4), the joint PDF o&f and Y is
iven by [5] as fx.y(z,y) = op{—9w)/Q-1oM} | \pere

Zrr(wg) = (T+ CT(Wq))STR<wq) + Vir(wyg) g y X’}; nY) = m20% o3 (1=[p[?)
= X(wq)Y (wg)" + Vi (wg), Q) 9@y = lv—px"/ok + ly— | oy — 2R[p*(z -

px)(y* — pi)]/oxoy. GivenY, X is conditionally com-
where X(wg) = T + Cp(wq), Y(wg) = Str(we)” and plex Gaussian distributed with meany)y = px + p(y —
Vi (wy) ~ CN(0,02) is the measurement noise of the reny)ox /oy and Varianceg—g{ly = 0% (1 — |p[?). Denote
transmission. In blind TR detection, the chann@jgw,) and the real and imaginary parts oP by P; and P,. It is
Cr(wq) will not be estimated by the detector and are onlgtraightforward to show tha®; andP, conditioned ony” are
known by their statistical distributions. Therefore, abiesis  conditionally independent Gaussian with me&hy* x|y |,
test can be formulated as follows: in the null hypothelis < [y*juxy] and equal variance , [y|*/2. Therefore, the
the target is not present andi = 0; in the alternative conditional characteristic function @ givenY is expressed
hypothesisH,, |T'| > 0. as [5]

We assume the channelS,(w,;) and C,(w,) admit a s

bivariate zero-mean complex Gaussian distribution with a Uppy (tly) = Elexp {iR[t"PI} Y = y]
common PSDP,(w,). The correlation coefficientp.(w,) _ SR 1, 20412 6
between C,(w,) and C.(w,) is defined asp.(w,) = eXp{Z 9 pxy ] 40X|Y\y| 1 } ©)
E[Cp(wq)Cr(wg)*]/ Pe(wy). In practical systems, the channelrhe marginal PDF ot is given by
statistics can be estimated by taking snapshots of channel ) 5 9
samples and replacing the statistical expectation by thplsa fy(y) = 1/(roy) exp {~|y — py[* /oy } . )
mean. The measurement noigg(w,) and V;(w,) are inde- tpq characteristic function @ can be now obtained by direct

pendent of each other and the multipath channels. If we tgnc?ﬁtegration of (6) over the marginal PDF (7) as
the noise termv,.(w,) in (1)}, Zrgr(w,) is distributed as the

product of two complex Gaussian random variables with Up(t) = Gy (ty) fr (y) dy. ®)
C

X(wq) ~ CN(T, Pe(wy)), ve

- - Substituting (6) and (7) into (8), we obtain
Y(wg) ~ CN (kT\/E, K2 (Pc(wq)QS + 012;)) - G wpt) = exp{—|uy[}/03}/(n03)

X/ 1 + U§(|t|2 %[t* ]O'X ‘ |2
. . (7 1 ex — —— — 1 e
Let u;, o; (¢ € {X,Y}) refer to the mean and variance e p 41— |p|B)-1 P oy Y

2

g
of the corresponding random variable. By definiticti(w,) 2;‘: . Y
and Y (w,) are jointly complex Gaussian distributed with a +7[M;/y ] LR [t* (MX _ pUXMY> y*}} dy. 9)
correlation coefficient calculated as 9y oy

Applying [6, eqg. (3.323/2)] and integrating (9) over realdan

plwg) = E[(X(wq) — px)(Y(wg) — pyv)*]/(0x0v) imaginary parts of, we get
= P;(Wq) ) 4) lux 202 + |uy 2o,
V1+03Q/Pe(wg)Es Vplt) = Gy P - e 1
To clarify the considered problem, we introduce the random ox oy R 1oy pl R pyt]
variableP(w,) = X (wq)Y (w,)* and denote its corresponding + 2G(t))( It + G)((t) } ; (10)
PDF in the complex plane a&,_ (p1,p2;T). The LRT of the
blind TR detection is calculated by whereG(t) =1+ %02 (1 — [p[})|t]* — ioxoyR[t*p].

2 lo, (5) B. Joint PDF

L fp, (01,023 0) o
Based on (10), we now calculate the joint PPH p1, p2; 0)
with [y being a threshold. In the next section, we first derivender the null hypothesi#{y. WhenT = 0, ux = py = 0
the characteristic function of the produgt(w,). Based on and (10) is reduced tgp(¢) = 1/G(t). Applying the inverse
this, an exact expression is obtained far, (p1, p2;0) and an transform of characteristic function, the joint PDF beceme

asymptotic approximation is given fqfp, (p1, p2; T). 1 expl — iRl
fp(pl,pz;O):( /C xp{—iR[t"p}
te

27)? G(t)
IIl. CORRELATED TIME REVERSAL CHANNEL N
o . _ 2 2R[p*p] K 2|p| 1
A. Characteristic Function = ey Ko ), (11)

Tox0OyC C
We first derive the characteristic functiopr(t) (¢t €
C) of the productP(w,) = X(wq)Y (wq)*. For notational

< Ip,(p1,p2;T) Ha
=11
q

wherep = p; +ips and ¢ = oxoy(1 — |p|?). Here, the
function Ky (-) is the modified Bessel function of the second

1The independent additive noidé.-(w,) can be included in the proposed kind [6' eq. (8.432/6)]. The second Equfal?ty of (11) is ohéai
Edgeworth approximation using similar derivations as in Bsitipn 1. by using [6, eq. (3.354/5)] and the definition A% (-).
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Next, we derive an asymptotic approximation to the joinvhere |a| denotes the largest integer less than
PDF fp(p1,p2;T) using the multivariate Edgeworth expan-
sion. The Edgeworth expansion was considered as an extensio
to the centrgl limit theprem e_md developed in th_e foomofa Aq, ., =E {(731 +iPy) "2 (P} +7322)’f}
moment series expansion weighted by the Gaussian PDFs [7]. ok
This method is especially useful when the random variable _ Z Zij <m — Qk) <k>E [Pm,j,ghpﬁzh}
of interest is approximately Gaussian and its moments are j h 1 2 )
easy to obtain. For the problem at hand, we can prove
that f»(p1, p2; T') converges to a Gaussian PDFas anduy  Summing ovel with | = j+2h, the coefficient of thé-th term
go to infinity. Motivated by this fact, we give the Edgewortrchieves (13). In the same manner, (13) can be also proved
approximation to fp(p1,po;T) based on the closed-formwhenm < 2k. u
expressions for the joint moments Bf and Ps. Following the procedures in [7], the Edgeworth expan-

Let W = (P - [1,7))/073, Whereup = [LXILL;— + poxoy sion fs(p17p2) of the jOint PDF fP(p17p2;T) can be rep-
and o2 = |ux|*0% + |py|?c% + 0% o%. The characteristic resented as
function of W reads 52

'(/)W(t) — eXp{—i?R [,UPLL*] /0'73}7/)77 (t/O"p) (12) fp(pl,pz,T) ~ ¢(p1ap2) + J;LJ ( ¢7 XV) (plapQ)v (14)
We denotedx = pux/ox anddy = py /oy and notice that \here ¢(p,, p,) is the bivariate Gaussian PDF with mean
as|dx| and|dy| go to infinity, (12) reduces toxp{—|t|?/4}, i = [up,, ip,)” and covariance matriR of P; and P.
which is the characteristic function of the standard compleygre X» With v = [11, 1] refers to the joint cumulant of

Gaussian random variable. Thus, the considered vaRai® p, andp,. These can be readily calculated by the mapping
agproxmately complex Gaussian with meaa and variance petween joint cumulants and moments, which are computed

op- . o _by propositions 1 and 2. It is noted that the expansion (14)
Before constructing the multivariate Edgeworth expansiqjteg up tosth order joint cumulants of?, and P, and

for fp(p1,p2;T), we need the following two propositions:  atches the firsts — 2) moments betweerP and the ap-

Proof: First consider the case > 2k,

j=0 h=0

Proposition 1. Let X = juy + Vy and Y = Pproximation (14). The ternL; (—¢;x.) (p1,p2) defines the
py + Vy, where Vx ~ CN(0,0%) and V3 ~ Cramér Edgeworth polynomial;(t1,t2; x,) with eacht;"¢5?
CN(0,02) with the correlation E[Vx V] = poxoy. replaced byH (p1,p2;v, R™")¢(p1,p2), whereH denotes the
Denote 4;; = {Vx,---,Vx,Vy,---,Vy} and B,; = multivariate Hermite polynomials [9]. The CramEdgeworth
y o~ polynomials L;(t1,t2; x,) can be generated by the formal

Vi, V&, Vs, - W5} The joint momentM,,, = identity between two power series [7]

m

t—j e J =~ ) o =1 = Xri2(t1,t2)

E[P™(P™)*] is given by ;Lj(tl,tQ,Xy)U = mZ:l poo (,,_1 (7‘5—2)')u ) ,

m+n t t
m m n n
M= 23 (D)) () wherex. (t1,12) = 2, . i 15
t=0 i=0 j=0

IV. NUMERICAL RESULTS
A. Approximation tofp(p1,p2; T)

In Fig. 1 we plot the approximated PDF (14) and compare
with the simulatedfr(p1,p2;T) assumingux = 2 + 2.54,
py = 214+ 18, ox = oy =1 andp = 0.3 + 0.3:.
Fig. 1 shows that the Edgeworth approximation achieves a
The proof of Proposition 1 is a direct application of thg@ood agreement with the simulation using ugtio order joint
moment theorem in [8], which is omitted here. cumulants ofP; andP,. The approximation is less accurate
near the origin since the functiofy (p1,p2;T) has a simple
singularity at the point0, 0).

. , ¢ (®)
m—i/, m—J\x/ n—t+j\x n—t+i ﬂ- k
xpy~ (py )" (i +J) Hy " E : I |}E {At(z )BIEJ)} ’
TeQ k=1

where (-)( denotes theith element of the corresponding
vector,m defines a permutation of the integers .., ¢t and 2
is the set of allt! distinct permutations.

Proposition 2. The joint moments oP; and P, are

E[P"P3] M0 To further illustrate the accuracy of the approximation, in
E[P 1Py | Mm-1a Table | we tabulate the Mean Square Error (MSE) of the
_ =Jm : ) approximated PDF (14), defined #pl payere [ Fs(p1p2) —

E[PYPI Mom fr(p1,p2;T)|? dFp(p1,p2; T), Where fp and Fp are empir-

(k41 141) ical PDF and CDF ofP. In addition to the MSE calculated
where Jy, " , the element of thg¢k + 1)-th row and with the parameters used for Fig. 1, we also calculate the

(I + 1)-th column of matrixJ,,, is given by MSEs with both zxy and py having 3 dB decrease and
li/2) increase, respectively. The results show that the accufabge
IO D) 2 3 2 (m - 276) (k‘>7 (13) approximation (14) is improved as the magnitudes:ef and

" heo I =2h J\h py increase, which is in line with the analysis in Section IlI-B
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Fig. 1. Plot of two-dimensional PDFp (p1,p2; T) for px = 2 + 2.5, 03 0° oo 107 1ot
py =2.141.8i,0x = oy = 1andp = 0.340.3:. (a) approximation (14)
\g'gg SX T0§7and (b) simulation. The mean square error of approximation Eig. 2. Receiver operating characteristic for the propase@-C (5) and

' ’ LRT-1in [4] with relatively strong target signaBCR = 5 dB, SNR = 5 dB)

TABLE | with sample sizeQ = 5, denoted by 0’; and relatively weak target signal

(SCR = 0 dB, SNR = 0 dB) with sample siz& = 20, denoted by O'.

MEAN SQUARE ERROR OF APPROXIMATED DISTRIBUTION14) (@) pe = 0.1+ 0.4i and (b)po = 0.1 + 0.73
c — Y. . c — U. . .

Bx 1+ 1.25 2+ 2.5¢ 4+ 5i
1.05 + 0.9¢ 2.1+1.8i 4.2 +3.6d ,
M’g,; 58 x 10 % 996 X107 2.99 x10-° small channel correlation, the performance of LRT-C beme

worse than the LRT-I. This observation is consistent with th
Neyman-Pearson theorem [10], & (p1,p2;T) under this
This conclusion has been also verified with other paramefgndition is dominantly affected by the singularity poirtt a
combinations. origin and approximation error of (14) leads to a non-ttivia
deviation from this optimal detector. Meanwhile, highelues

of s only give a marginal improvement to the performance of

) _ _ LRT-C.
Here we consider a scenario where the point target has

a constant responsé = ¢'"/* and the multipath channels V. CONCLUSION
are of equal PSDP.(w,) = P. and equal channel cor- o )
relation pe(w,) = p. over the frequency bandéw }Q We proposed a blind time reversal detector that works in the
c\Wg) — Pe qSfq=1" ; ;
This assumption can be justified using Jakes' fading moddiéSence of correlated channels. Using Edgeworth expansio
with high-frequency samples. The signal-to-clutter ratud a S|mple_ and accura.te closed_—form gpprommaﬂon was_d_érlve
signal-to-noise ratio are defined 86R = 101og,, (|T?/P.) for the likelihood ratio test. Simulations show the supetyo

and SNR = 10logy, ( E,|T|? /(Qa?))), respectively, where of the ;l)ropos?d. LRT—COI detec;tor' |nI scenarios with arbitrary
E, = 1. The performance of the proposed LRT detector (g,Paan\e correlation and a relatively strong target respons
under channel correlation, denoted as LRT-C, is evaluattd w>'9"a'"
correlation coefficient, = 0.1 + 0.4i and 0.1 + 0.74. In
addition, we consider the cases where the target has avedyati REFERENCES
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B. Performance Comparisons



