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Abstract—We consider a novel method to improve the down-
link data rate of cell-edge users in a cellular system, which is
particularly well-suited for Heterogeneous Networks (HetNets).
The receivers are assumed to be able to cancel interference by
simultaneously processing at most two codewords. Receivers may
be served by either the closest cell or a neighboring cell; in the
latter case, the receiver cancels the interference from its own cell
transmission, and receives the other-cell transmission without this
interference. A distributed network utility optimization problem
is formulated to exploit this possibility. In a HetNet simulation,
where proportional fair network utility is maximized, we observe
significant gains for cell-edge users, accompanied by a moderate
gain for the network capacity.

I. INTRODUCTION

Interference limits the capacity of modern wireless com-
munication systems. For example, modern cellular communi-
cation systems such as 4G LTE are designed to operate with
frequency reuse 1. Allowing for hand-over margins, co-channel
interference from neighboring cells may require downlink
receivers at cell-edge to operate at Signal-to-Interference plus
Noise Ratios (SINRs) as small as -7dB [1].

Much current research attempts to mitigate the cell-
edge interference problem. Transmission technologies may be
improved by attempting multipoint transmission. Multipoint
transmission requires sharing accurate channel information
between coordinating base stations and user data sequences
may need to be transmitted from multiple points in the
network. Consequently, the price of implementing multipoint
transmission appears to be rather high.

As an alternative, the receivers may be improved, by using
Interference Rejection Combining (IRC) receivers, or more
advanced Interference Cancellation (IC) receivers. Baseline
IRC has been widely studied, and it indeed provides significant
gains for cell-edge users in conventional cellular settings,
especially when the base stations are deployed with a single
transmission antenna [1].

Extending from IRC to full-fledged IC holds much
promise. The best coding strategy known for a Gaussian
Interference Channel (GIC) is based on Han-Kobayashi rate
splitting [2], [3], where IC receivers are combined with cooper-
ative link adaptation by the transmitters. The transmitters split
their messages into two parts, one (the public part) intended
to be decodable at both receivers, the other (the private
part) intended to be decodable only at the intended receiver.
The receivers perform Serial Interference Cancellation (SIC),
first potentially jointly decoding the public codewords [3],

then canceling them before decoding their respective private
codeword.

Making practical use of interference cancelation in a large
wireless system is challenging, however. A viable method
is opportunistic IC, where a receiver cancels interference,
whenever it is possible [4]–[6]. Continuing along these lines,
it was shown in [7] that in a game-theoretic setting, where
Transmitter-Receiver (Tx-Rx) pairs have a strategy space con-
sisting of power control and interference cancellation, it is
sometimes beneficial for a selfish user to voluntarily reduce
its transmit power so that IC can be exploited.

In a cooperative setting, going past opportunism in IC
is beneficial. In [8], a distributed algorithm to provide rate
splitting transmissions in a cellular downlink network with
SIC-capable receivers was addressed. The ensuing algorithm
is complex, as the number of possible orders in which inter-
ference from multiple sources can be canceled grows hyper-
exponentially in the number of interference sources. To solve
the problem of hyper-exponential complexity, it was suggested
in [9] to concentrate on single-stage IC, where each receiver
can decode at most one interfering signal. A max-min power
control problem was addressed, finding the maximum SINR
that all receivers in the network of Tx-Rx pairs may enjoy.
The problem was shown to be NP-hard. In [10], this approach
is generalized to multistage SIC.

In this paper, we address coordinated network IC, i.e.
planned IC on the network level, in a downlink cellular
system. This is particularly promising in a Heterogeneous
Network (HetNet), where there are layers of base stations with
different characteristics—small cells have been deployed in the
coverage area of a macro cellular network to increase network
capacity. In HetNets, macro cells are often overloaded, whereas
small cells with limited coverage areas have a small number of
users. For this, 3GPP has studied biased cell selection methods,
so called cell-range extension [11], and corresponding muting
of macro cells, to balance the load between the macro and
small cell layers. Network IC provides an alternative way to
extend the coverage of small cells, namely by canceling the
cell-edge interference from the macro cells.

For network IC, we apply single-stage IC receivers, i.e.,
the case that a receiver is capable of processing at most two
codewords using SIC. This is a logical possibility different
from legacy non-interference-canceling receivers, where only
the intended codeword may be processed, considering all
other transmissions as noise, and from receivers capable of
receiving Han-Kobayashi rate-split messages, which would



need to be able to deal with three codewords. Such a possibility
may be motivated in part by complexity considerations. We
part from [4]–[10] in that we consider a downlink cellular
network, and concentrate on the possibility that a receiver
may receive transmissions from multiple sources, i.e., base
stations. This is the setting of network MIMO and Collabor-
tative Multipoint (CoMP) transmissions [12]. Comparing to
CoMP, the difference here is that instead of transmission
directivity, we concentrate on the complementary direction of
selecting transmission rates while taking the IC capability of
the receivers into account. Thus, we consider collaborative
multipoint transmission, or soft handover, together with IC-
capable receivers in a cellular network.

We assume that all transmitters in the network operate with
full transmit power, and that users have been associated with
particular cells. A user may receive transmissions from its own
cell, as well as from a number of neighboring cells. If receiving
a transmission from a neighboring cell, the transmission in
its own cell is arranged so that the receiver can cancel the
interference from its own-cell transmission. For such a user,
the cell-edge has become inverted, so that the user is served
by a base station from the other side of the cell edge.

With these assumptions, we formulate a scheduling prob-
lem, where resources are allocated to users in the cell so that
a network utility is maximized. We show that this problem
is convex if the utility function is concave. The problem is
however of a high dimensionality, of the order of Nc(Nu+1)!,
where Nc is the number of cells, and Nu is the number
of users per cell. As a consequence of considering two-
stage IC receivers, each user may only receive transmissions
from the strongest and second strongest cells, which reduces
complexity. The problem allows for distributed formulations,
where optimizations for pairs of neighbors are iterated over.
However, even with such approaches, the dimensionality of the
problem is high, so heuristic approaches are needed even for
moderate Nu. We simulate the proposed cell-edge inversion
technique for load balancing in a HetNet scenario, and show
that it is capable of realizing significant gains for cell edge
users.

The remainder of the paper is organized as follows. In
Section II, the system model is presented, and the concept of
cell-edge inversion is introduced. In Section III, the network-
level resource optimization problem is discussed, along with a
distributed realization. Simulation results in a HetNet scenario
are presented in Section IV, and Section V concludes with a
discussion.

II. SYSTEM MODEL

A. Cell-edge Inversion

We assume a set of cells C, each served by a base station.
All base stations transmit with full power. For each cell c ∈ C,
the set of neighboring cells is Nc, and the set users who would
select c as their best cell is Uc. With interference cancellation,
each user v ∈ Uc can also receive transmission from a neighbor
cell c′ ∈ Nc after canceling the signal from c. Thus the network
may decide that v ∈ Uc, located at cell-edge in c, cancels the
signal from its strongest cell c, and data to v is transmitted
from the second strongest cell c′ received by v, instead of it
conventionally receiving its data from the strongest cell. Here,

this concept is called cell-edge inversion. We call c the primary
cell of such a user v, and the other cell an inversion cell.

Definition 1: A cell-edge inversion is a condition where
user v belonging to the coverage area of cell c receives a
transmission from neighboring cell c′. The transmission in cell
c is link adapted so that v may decode this transmission, and
cancel it before receiving the transmission from c′.

The transmission canceled by v needs not be intended to
v, but to any user u ∈ Uc. In this case it is said that the
transmission to supporter u supports the cell-edge inversion
of inverter v, which is inverting to cell c′. Note that in
order to reduce complexity we exclude the possibility that the
transmission canceled by v is to a user that has inverted from
another cell c′′ to c.

Each transmission can support multiple inverting users, and
each inverter could be supported by many potential supporters.

Definition 2: If the supporting transmission in cell c is to
the inverting user v itself, the user v is said to be in soft
handover (SHO).

Note that the soft handover considered here differs from
conventional soft handover in 3G systems, as the receiver does
not combine the transmissions from two cells, but decodes
them both, using interference cancelation. It is worth noting
that with ideal coding and modulation, the data rate supported
by such IC-SHO equals the rate achievable with perfect
maximum ratio combining of the transmissions from the two
cells. Also, it is interesting that the order of decoding does
not matter. If S and S′ are the received signal powers from
cells c and c′ at v, respectively, and I0 denotes noise and other
interference, which is considered Gaussian, we have
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Thus the communication rate achieved with IC-SHO- coincides
with the rate achieved, e.g., with perfect macro diversity space-
time coding. The difference is that in IC-SHO, the transmitting
base stations have only to coordinate the data rates used, and
the decoupling of the transmissions is left to the receiver.

B. Resources in a Cell

Each cell c has N = |Nc| neighbors. Resources used for
transmitting to its own cell users are characterized by the
intended receiver u ∈ Uc, and the N -dimensional vector v of
supported transmissions of inversions to the N neighbors. The

vector v takes values in ({0} ∪ Uc)
N

, where the entry vj = 0
indicates that no user in c uses a transmission in this resource
to support an inversion transmission from the jth neighbor of
c. Since each inverting v can receive a transmission from one
neighboring cell, each v may be present in v at most once.

Possible inversion configurations are thus characterized by
the set of vectors Oc where the elements are ordered N -
element subsets of a set consisting of Uc and N copies of
0. With U = |Uc| being the number of users in c, we have∑min(N,U)

n=0

(
N
n

)(
U
n

)
possible configurations in Oc.



For simplicity we assume that all resources in the cell are
identical. The information rate per unit resource that is used
when transmitting to u a transmission which is supporting
inversions v is thus

μuvc = min
u′∈{u}∪v\{0}

μu′c , (1)

where μuc is the information rate per unit resource that user u
can receive from cell c, when no IC is applied. The proportion
of resources in cell c that are intended to c’s own users,
supporting inversions v, is given by the scheduling weight
wuvc.

When a user is receiving an inversion transmission from
a cell c′, the information rate per unit resource is denoted
by μi

uc′ . The proportion of resources given in cell c′ to an
inverting user u from another cell is denoted by wi

uc′ .

The total rate of user u with primary serving cell c is thus

ru =
∑
v∈Oc

wuvcμuvc +
∑
c′ �=c

wi
uc′μ

i
uc′ . (2)

As we consider two-stage IC receivers, we shall only
consider inversion configurations in which a user inverts to
its second best cell. Only with multistage SIC, would it make
sense to receive a transmission from a base station which is
not one of the two best.

III. RESOURCE OPTIMIZATION PROBLEM

The objective of the network is to maximize system utility,
which is the sum of the user utilities. The user utility is char-
acterized by the function f = f(r), which we assume convex
and monotonically growing in the user rate r. For concreteness,
we consider conventional proportional fair utility [13]:

f(r) = log(r) . (3)

A. Constraints

The optimization is over the scheduling decisions in the
cells, characterized by the scheduling weights wuvc and wi

uc.
The scheduling decisions are restricted by

• resource constraints: For each cell c, all resources are
allocated at most once:

∑
u∈Uc

∑
v∈Oc

wuvc +
∑

u∈Uc′ ,c �=c′
wi

uc ≤ 1 . (4)

• support constraints: For each inverting user v, the
resource allocated by inverting cell ck should be
overlapped with a supporting resource allocated by
serving cell c, i.e.,

∑
u∈Uc

∑
v∈Oc|vk=v

wuvc ≥ wi
vck

. (5)

B. Distributed Algorithm

We consider infinitely divisible resources, so that we do
not have integer variables in the problem. Then the global
optimization problem is convex, but with a high number of
variables. The support constraints intertwine the decisions in
multiple cells. To cope with the complexity, we distribute the
algorithm so that each cell c decides on the resource allocation
of the users u ∈ Uc primarily served by itself. Each cell
allocates a fraction of its resources to its neighboring cells,
for neighbor-cell users that invert into the cell.

We consider a primal decomposition where all constraints
hold with equality. It is straightforward to see that with the
system model considered, the resource constraints (4) are ful-
filled with equality at a network utility maximum. Furthermore,
from (1) it follows that any configuration where the support
constraints (5) are not fulfilled with equality, can be mapped
to a configuration with the same inversion transmissions wi

vck
,

but with equality support constraints, and the same or better
network utility.

Assuming that support constraints (5) are fulfilled with
equality, we may remove the variables wi

vck
from the problem.

Then in the resource allocation problem of cell c, the derivative
of the cell utility fc =

∑
u∈Uc

f(ru) with respect to the
resource wuvc becomes

∂fc
∂wuvc

= f ′(ru)μuvc +
∑
vk

f ′(rvk)μ
i
vkck

(6)

where the sum is over the elements in the vector v, i.e. users
vk in cell c that invert to neighboring cell ck, supported by
the transmission wuvc to u, and getting rate μi

vkck
from the

cell-edge inverted transmission.

The resource optimization within cell c can be performed
based on cell-utility gradients of the type (6). To properly solve
the primal resource allocation within each cell, where resources
are given to other cells, the price of the resources has to be
taken into account. An infinitesimal increase in wi

vkck
incurs

an infinitesimal utility loss in cell ck due to the reduction of
resources available to serve the users in ck. We write formally

Πc′ = − ∂fc′

∂wc′
, (7)

where wc′ =
∑

u∈U ′
c

∑
v∈O′

c
wuvc is the sum of all resources

in c′ used for transmitting to its own users. This is a price for
cell c′ to give resources to inverting users from other cells.

From these, we can construct the gradient of the network
utility with respect to the resources in cell c, assuming that all
other constraints except the resource constraint (4) in c hold
with equality:

∂fN
∂wuvc

=
∂fc

∂wuvc
+

∑
ck|vk �=0

Πck . (8)

Here, fN =
∑

c fc. This can be used as a distributed gradient
or ascent algorithm to maximize the network utility.

It should be kept in mind that the proportionally fair utility
function (3) considered here, as well as many other utility
functions, is not bounded from below, and the network utility



TABLE I. SIMULATION PARAMETERS.

Macro transmit power PMacBS 43 dBm
Micro transmit power PMicBS 36 dBm
Carrier frequency fc 3.5 GHz
Antenna gains GMacBS 14 dBi

GMicBS 6 dBi
GUE 0 dBi

Bandwidth W 20 MHz
Noise Figure NF 9 dB
Thermal noise level N -174 dBm/Hz
Shadow fading std 8 dB

is not differentiable at any point where the rate of at least one
of the users vanishes.

Accordingly, Lipschitz continuity does not hold, and con-
vergence of gradient-based algorithms can be guaranteed only
if there is rigorous control of the absolute step length. The
change in the variables should be bounded to be finite. With the
utility function (3), the divergences of the gradient happen at
a zero-measure part of configuration space, where the network
utility is −∞. This singular subspace is avoided by algorithms
aiming at utility maximization.

To simplify the algorithm, we have used a version of nor-
malized steepest descent for the l1 norm [14]. In the resulting
algorithm, the resource with largest ∂fN

∂wuvc
is incremented, and

in each cell involved, the resource with smallest ∂fN
∂wuvc

is
reduced. The algorithm is distributed across the network so
that each cell updates its resource allocation periodically, and
no neighboring cells update at a given time.

An update in a cell c involves 1) allocating resources to
other cells based on requests, 2) calculating new derivatives
∂fN

∂wuvc
for all own cell resources, 3) reducing the weight w

of the resource with non-zero w and smallest derivative, and
correspondingly increasing the weight of the resource with
largest derivative, 4) signaling the changes in resource requests
to other cells 5) calculating a new price Πc for the resources
given to other cells, and signaling these to neighboring cells.

Proposition 1: If the initial point has ru > 0 ∀ u, and
an infinitesimal absolute step length is used, the algorithm
converges to the unique solution of the convex optimization
problem.
Proof: The initial point is outside the singular subspace. Each
update is based on full knowledge of the consequences of
the infinitesimal resource increment on the network utility.
Thus each update increases the network utility, the network
configuration does not enter the singular subspace, and the
algorithm is an ascent algorithm.
With a finite resource increment, one has to add a stopping
criterion to the algorithm.

IV. SIMULATION RESULTS

To assess the performance of cell-edge inversion, we have
performed simulations with a simple heterogeneous network
model. We have an hexagonal grid of 12 omnidirectional
Macro BS with Inter-Site Distance (ISD) 1 km. In each macro
cell, there are three micro BSs, placed close to corners of
the cell, at a distance 0.3 ISD from the macro BS. There are
120 UEs dropped uniformly and at random in the network,

Fig. 1. Example instance of BS and UE deploment. Triangles: Macro BS.
Circles: Micro BS. Dots: UEs.

except that there is a maximum of 10 UEs per cell. Wrap-
around boundary conditions are applied. An instance of such
a deployment is depicted in Figure 1. The path loss model

L = 37.6 log10 d+ 128.1 + 20 log10 fc (9)

from [15] is used in simulations, where d is measured in kilo-
meters. Shadow fading and flat Rayleigh fading are applied.
Some crucial simulation parameters can be found in Table I.

UEs perform cell selection based on received signal power,
so that the best cell c is the one with the strongest signal.
Communication rate is estimated by R = log2(1 + γ/λ),
where γ is the SINR of the transmission, and λ = 2dB is
an implementation loss. A non-optimized distributed algorithm
with a step length of 0.0005 has been used to optimize the
cell-edge inversion.

Simulation results resulting from resource allocation op-
timization in 100 instances of the deployment model can be
found in Figures 2 and 3, based on information collected from
serving 12 000 UEs. The experimental Cumulative Distribution
Function (CDF) of the user rate after proportionally fair
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Fig. 2. CDFs of user spectral efficiency (user rate/system bandwidth),
proportionally fair scheduling with full cell-edge inversion, with SHO, and
with conventional hard handover.
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Fig. 3. Zoom to the lower end of the user spectral efficiency CDF.

network utility maximization is reported. Results for full cell-
edge inversion have the legend “Inversion”, IC-SHO results
have the legend “SHO”, and the vanilla system, where no
multicell coordination is performed, has the legend “HHO”.
We observe that IC-SHO provides nice gains by improving
the rate of some 70% of the users, and full inversion provides
further gains for these users. In Figure 2 we observe that these
gains come with nearly negligible losses for users in good
channel states. Figure 3 provides a zoom-in to the experience
of cell-edge users. For the users at the 5th percentile of the
CDF, often considered as typical cell-edge users, the gains
from IC-SHO and cell-edge inversion are significant.

The numerical gains observed in this scenario can be found
in Table II. It is interesting to observe that with both IC-
SHO and full cell-edge inversion, significant gains in cell-edge
performance can be achieved without decreasing the mean
throughput, in fact both IC-SHO and full inversion provide
a small gain in cell throughput.

V. CONCLUSION

We have explored the potential of using serial interference
canceling receivers in downlink cellular systems. User equip-
ment are enabled to cancel transmissions in their strongest
cell, and receive transmissions from second strongest cells
after the interference from the strongest cell is canceled. As a
consequence, in situations where own-cell transmissions suffer
from strong interference and the interference is dominantly
from one neighboring cell, the user is able to receive a
transmission with a high data rate. If the transmission in both
cells are to the same user, IC-enhanced soft handover happens,
otherwise, we have full-fledged cell-edge inversion.

We studied optimizing a network utility over all cell-edge
inversion possibilities, where transmissions from the two best
cells are considered for a user. With a convex utility function,
the optimization problem is convex, but it is of very high
dimensionality. We devised a distributed algorithm based on
resource pricing between cells.

The proposed method is well suited for heterogeneous
networks, where load asymmetries between large and small
cells are the dominant problem in radio resource management.
Simulation results in a heterogeneous network show significant

TABLE II. GAINS FROM CELL-EDGE INVERSION.

IC-SHO Inversion
mean user rate 3% 2%
cell-edge (5%) rate 25% 69%

gains from both IC-SHO and cell-edge inversion, when pro-
portionally fair network utility is maximized. It is remarkable
that the almost 70% gains for the rates of the cell-edge users
come with a small gain also in the mean data rate of the
users. From this we conclude that considering the possibilities
allowed by SIC, and turning part of the interference to useful
signal, opens up significant possibilities for improving resource
fairness among users in heterogeneous networks.
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