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Optimization methods have revolutionized almost every field 
of engineering design, so why not user interface design? The 
author reviews progress and challenges in model-driven 
UI optimization, in which an optimizer utilizes predictive 
models of human perception, behavior, and experience to 
anticipate users’ responses to computer-generated designs. 

Optimization methods in user interface (UI) 
design is a long-standing topic in human–
computer interaction (HCI) research. Cur-
rently, user-centered design is largely 

focused on human creativity, sensemaking, empathy, 
and creation of meaning,1 but optimization meth-
ods have been explored as supplemental ways to help 
speed up the design cycle and improve design quality 
(for more information about computational UI design, 
see the sidebar). Unlike any other design method in 
HCI, optimization methods offer a greater-than-zero 
chance of finding an optimal design, and some exact 
methods even offer mathematical guarantees for solu-
tions.2 More importantly, if the design task and its 

assumptions are appropriate, the outcome represents 
the best achievable design. 

Optimization methods do not stop at searching for a 
single best design; they can also be used to explore the 
design space for alternative ideas. In addition, optimiza-
tion could promote a change in design culture by encour-
aging the explication, scrutiny, and accumulation of 
design knowledge that has tended to be tacit. However, 
progress has been slow. Scarcely 15 years ago, keyboard 
layout was the prime—and virtually only—application 
of optimization methods that had empirically demon-
strated benefits to end users. 

Model-based UI optimization refers to the use of com-
binatorial optimization methods to solve a UI design 
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APPROACHES TO COMPUTATIONAL 
USER INTERFACE DESIGN 

The concept of using computational methods 
instead of manual exploration to generate 

good designs was discovered more or less inde-
pendently in computer science, cognitive science, 
and human–computer interaction (HCI). The fol-
lowing are different approaches to computational 
user interface (UI) design.

TYPEWRITER LAYOUT AS A 
QUADRATIC ASSIGNMENT PROBLEM
Rainer Burkard and his colleagues worked on the 
optimization of typewriter layouts as early as 
1977,1 formulating it as a quadratic assignment 
problem (QAP). This finding was valuable be-
cause the problem could now be solved through 
efficient solvers known for QAP. However, the 
estimates of a typist’s time costs were not based 
on empirical data, which made the task easier to 
solve and the outcomes less valuable. Realistic 
input data for a typist’s motor performance was 
added a decade later.2

COGNITIVE MODELING AND OPTIMAL 
PERFORMANCE ENGINEERING
Stuart Card and his colleagues proposed the first 
simulations of a user for HCI in 1983 (GOMS).3 
Instead of guesswork or expensive studies, a 
designer could evaluate an interface by simulating 
how users perceive, think, and act when complet-
ing tasks. Subsequent models (such as ACT-R) 
extended this modeling to consider factors such  
as errors and learning. However, the models 
became difficult to use and extend. To aid prac-
titioners, mathematical simplifications (such 
as KLM and GLEAN) and interactive modeling 
environments (like CogTool and Distract-R) were 
developed, but these were not combined with 
algorithms that could generate designs. 

A decade later, Donald L. Fisher proposed that 
human factors researchers should not be satisfied 
with a good solution but seek the optimal solution 
using appropriate methods.4 However, because lit-
tle advice was given on central technical enablers 
such as optimization, applications were limited to 
parameter optimizations and simple mappings. 

UI DESCRIPTION LANGUAGES
Software engineers have studied UI description 
languages, formal abstractions of the UI and its 
properties, operation logic, and relationships to 
other parts of the system.5 These can be used to 
compile UIs in different languages and port them 
across platforms. However, because they lack a 
rich notion of the user, they are limited to transfor-
mations instead of generation for given user- 
related objectives. 

OPTIMIZATION USING 
DESIGN HEURISTICS
Design heuristics can be used as objectives 
and constraints to drive UI optimization. Peter 
O’Donovan and his colleagues formulated an 
energy minimization approach to the design 
of page layouts using heuristics like alignment, 
visual importance, white space, and balance.6 
This approach improves the visual appeal of 
optimized layouts. However, heuristics offer no 
link to end-user-related objectives such as task 
completion time or aesthetic perception. Resolving 
conflicts among multiple conflicting heuristics is a 
recognized issue.
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problem formulated as a search prob-
lem by using predictive models of 
human behavior and experience. 
The significant benefit of model- 
based UI optimization over previous 
approaches is that it can find and pro-
pose UI designs that are both visu-
ally appealing and verifiably usable. 
With model-based UI optimization, 
a webpage design can be automati-
cally generated so that users regard 
its items and colors as aesthetically 
pleasing,3 and a programmer can task 
an optimizer to design a full menu sys-
tem with hundreds of commands— 
complete with hierarchy, groups, and 

shortcuts—simply by listing its com-
mand names.4 

MODEL-BASED UI 
OPTIMIZATION 
Like a civil engineer whose objective 
is building a bridge with a certain 
capacity and tolerance, a designer 
can create a UI by defining how eas-
ily users should find their targets and 
how they should perceive it aestheti-
cally. Technically, this is based on the 
formulation of a design task math-
ematically using predictive mod-
els of human behavior as objectives. 
Figure 1 shows examples of designs 

generated with recent model-based 
approaches to UI optimization, 
including application menu design 
and menu system design,4 gestural 
input design,5 widget GUI design,6 
scatterplot design7, and web layout 
design.4 Figure 2 shows an overview 
of model-based UI optimization from 
a design team’s perspective.

UI DESIGN WITH AN 
OPTIMIZER IN THE LOOP 

Tools might encourage or enforce 
user interfaces that were highly 
usable, rather than today’s stance 
that tools should be neutral… .8

Skype Dropbox YouTube

Skype Photoshop Stopwatch

Maps Alarm

Settings App store News

Contacts Mail Browser

Phone Messages

Facebook

Recorder

(a)

(b)

(c)

(d) (e) (f)

FIGURE 1. Examples of designs generated with recent model-based approaches to user interface (UI) optimization: (a) application 
menu design, where the positions, colors, and sizes of icons are optimized for visual search, motor performance, color harmony, and 
minimum clutter; (b) menu system design, where a hierarchy of items is organized into a menu optimized for visual search time and 
consistency with other menus; (c) gestural input design, where commands are mapped to hand gestures to optimize for performance, 
individuation of fingers, and learnability; (d) widget GUI design, where widget groups, types, and positions are decided based on users’ 
motor capabilities; (e) scatterplot design, where aspect ratio, marker sizes, and transparency are optimized for maximum performance 
in tasks like correlation estimation by using perceptual models of brightness, contrast, and unit perception; and (f) web layout design, 
where the elements of a page are positioned, colored, and sized to optimize visual search time, motor performance, color harmony,  
and minimum clutter.
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A starting point for re-envisioning UI 
design with an optimizer in the loop is 
the realization that the standard “fire 
and forget” paradigm of optimization 
methods is irreconcilable with design 
practice. A designer cannot be asked 
to provide all inputs to an optimizer 
within a decimal point and come back 
later for an answer. Designers con-
stantly change the problem defini-
tion and the design space,9 and mix 
design sketching and evaluation with 
reflection and sensemaking, draw-
ing from tacit knowledge. How might 
design tasks be defined for a com-
puter, and how could the optimizer 
positively encourage the designer to 
adopt better designs without choking 
creativity?8 

To be used at all, optimization 
requires effort to define or redefine a 
task and assumptions. A considerable 
amount of information is needed to 
design a menu system, for example.4 A 
key concern, therefore, is which aspects 
of such work can be automated and 
which should be left to the designer. 

Figure 3 plots the automation con-
tinuum, exposing a tradeoff between 
the designer’s and the optimizer’s 
objectives. The design space, objec-
tives, and constraints that an opti-
mizer works with should be aligned 
with—or at least not conflict with—
the designer’s view of them. However, 
the designer might want to change this 
data often, especially in early design 
stages, which takes effort and could 
break the design flow. Though a design 
tool could hide some of the complexity 
of controlling an optimizer by infer-
ring inputs, its outputs could easily 
become misaligned with the design-
er’s objectives. 

MenuOptimizer and SketchPlorer, 
two initial optimizer concepts, explore 
the two extremes of this continuum.

MenuOptimizer
The full-control MenuOptimizer com-
bines many support functions and 
controls to assist a developer using Qt 
Designer—a widely used integrated 
development environment (IDE).4 A 
developer designs a menu as usual, but 
as command names are listed, Menu-
Optimizer proposes full menu systems 
on a Pareto plot, including hierarchi-
cal assignment of menu items with 
their various groupings into menus 
and shortcuts. While the designer 
edits the menus, MenuOptimizer also 
suggests local improvements, such as 
“Move this item here to improve user 
performance by 6 percent.” To this 
end, its objective function is based on 
a menu-selection-performance model 
and a heuristic for consistency, which 
tries to keep the design close to those 
of existing applications. An important 
goal in the development of the system 
was to make inputs to the optimizer 
fully visible but seed it with mean-
ingful defaults to save editing time. 
The designer can change design objec-
tives with sliders, change assumptions 

about users and their tasks via interac-
tive bar plots, change scores for consis-
tency by means of a table, and so on. 

We tested this optimizer with com-
puter science students who were asked 
to design a menu system for a software 
design scenario. The students were 
able to design menus they found sat-
isfactory with significantly less effort 
(38 percent fewer clicks) than when 
they did not use the optimizer. They 
reported appreciating the optimiz-
er’s suggested improvements to the 
menus. However, they used very few 
aspects of the functionality for opti-
mizer control, and they complained 
that the controls were effortful and 
overwhelming. Objectives, for exam-
ple, were rarely changed. 

SketchPlorer
To better support an exploratory 
approach to design, we created 
SketchPlorer, a minimum-effort (or 
maximum- automation) concept.3 In 
contrast to MenuOptimizer, it does not 
require any additional input from the 
designer other than indicating which 
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FIGURE 2. Model-based UI optimization from a designer’s perspective. Predictive models 
(mathematical or simulations) are used in an optimizer to evaluate generated designs 
against designer-supplied objectives. The designer can steer and redefine the tasks inter-
mittently as results stream in. Initialization might require contributions from a computer 
scientist to define the task and an optimizer, as well as from a behavioral scientist to 
supply predictive models.
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elements are more important than 
others. It infers the design space from 
the way the designer places elements 
on a canvas and uses that conclusion 
to search the design space. 

Because the designer’s objectives 
are unknown, the optimizer produces 
numerous suggestions, some of which 
might match poorly. However, because 
these are presented directly on a side 
panel next to the canvas, they can eas-
ily be examined and those that are 
irrelevant can be ignored. To rapidly 
generate suggestions, SketchPlorer 
uses a resource-sensitive optimization 
strategy that quickly proposes solu-
tions using precomputed designs as 
starting points, or explores the candi-
date space more broadly if more time 
is available. 

We tested Sketchplorer with 10 pro-
fessional designers who were asked to 
design the wireframe sketch of a blog 
page. Eight of the designers used the 
optimizer’s redesign suggestions and 
said they could sketch ideas quickly 
with this feature. They also indicated 
that they appreciated the exploration 
functionality, with one participant 
stating that he liked the way it at times 
“turned [his] ideas upside-down.” 

While not a conclusive result, our 
experience with SketchPlorer shows 
the benefits of inferring a designer’s 
task and relying on his or her abil-
ity to quickly recognize good and bad 

designs from a larger set of visualized 
options, and to steer optimization 
with choices from such sets.

EVALUATING DESIGNS 
USING MODELS OF HUMAN 
BEHAVIOR AND EXPERIENCE
The adoption of optimization methods 
critically depends on the formulation 
of a design problem as a search prob-
lem and a definition of a “good” design. 
In this regard, UI optimization is an 
application of engineering optimiza-
tion for discrete design problems,10 
where a task consists of a finite set of 
candidate designs, an objective func-
tion, and constraints. Two challenges 
stand out. 

First, defining a search space (or 
design space) means defining the 
design variables that make up the 
design space. A design task is defined 
as the task of finding the best combi-
nation of design decisions. For exam-
ple, keyboard design is defined as the 
task of assigning letters to button slots 
to maximize typing speed. Given n let-
ters and n keyslots, the goal is to mini-
mize the average time cost of selecting 
letter l after k, weighted by the proba-
bility of that letter transition in a given 
language. In the simplest version of the 
keyboard layout design problem, the 
search space is on the order of 4 × 1026. 
A menu hierarchy, on the other hand, 
can be organized in about (2n)! ways. 

For 50 items, the size of the search 
space is 100! ≈ 10158. Constraints can 
be added to define feasible solutions 
and decrease the search space, such 
as “elements cannot overlap” or “ele-
ments must have a maximum size.” 

A decade ago, this field was lim-
ited to assignment problems (such as 
the quadratic assignment problem 
discussed in the sidebar). These prob-
lems can now be solved to a size of 
1038 via known, efficient exact meth-
ods like branch and bound.2 Beyond 
keyboards, recent work has looked at 
expanding assignment formulations 
to other design tasks involving placing 
elements on a surface, such as menus4 
and GUIs.3,6 The assignment prob-
lem has also turned out to be a viable 
approach to some gesture design prob-
lems where hand postures or transi-
tions are mapped to commands.5 

Beyond assignment tasks, our 
group is researching scheduling 
problems (for example, in notifica-
tion systems) and packing problems 
(for example, in designs of pervasive 
displays for public spaces). We are 
working to formulate the problem 
of selecting the functionality for an 
application in early stage design as an 
integer programming problem. Given 
a set of N possible functions that 
could be supported, we want to deter-
mine which subset strikes the best 
balance among usability, usefulness, 

Effort Misalignment

Full control
Designer controls
objectives and constraints,
and steers optimization

Full automation
System infers
objectives and constraints,
and steers optimization

Automatic redesign
suggestions

Sketching
canvas

High

Low

SketchPlorerMenuOptimizer

Real-time
suggestions on
redesigns on a
Pareto front

All objectives
and constraints
must be given
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FIGURE 3. Automation continuum. Interactive design tools using optimizers must automate some aspects of design work but leave 
others to the designer. This introduces a tradeoff between the designer’s and the optimizer’s objectives (center). The full-control concept 
MenuOptimizer (left) requires objectives and constraints to be specified upon any change in a designer’s task. SketchPlorer (right) 
follows a minimum-effort optimization approach: the computer infers some aspects of the design task and suggests multiple redesigns 
assuming different design objectives.
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learnability, and commercial con-
siderations. Many other design tasks 
remain to be defined in a similar way 
and are linked to known problems in 
computer science.

Second, defining a meaningful 
objective function remains a signifi-
cant challenge. With few exceptions, 
these functions consist of multiple 
subobjectives. Figure 4 illustrates 
an example of single- and multiple- 
objective results using the Sketch-
Plorer optimizer.3 Note that there are 
no surface-level heuristics used here; 
instead, we used simulations and 
mathematical models of how users 
might perceive, experience, and react 
to a layout. 

It is preferable to use models of 
human behavior and experience that 
directly predict design objectives (for 
example, usability or aesthetics) or cor-
relate with them instead of heuristics. 
A model is basically a function that 
maps a design in the design space to an 
objective value relating to end users. 
The goal is for the model to predict user 
performance and experience. It should 
also permit rapid execution in code. 

Typical model types are re gres sion 
models like Search-  Decision- Pointing 
(SDP)4 and stochastic models like the 
Kieras–Hornof visual search model,3 
but there are also neural simulations, 
such as saliency maps. The challenge 
in this sort of modeling is that it should 
predict real behavioral tendencies for 
any design in the design space. A model 
must therefore reflect some relatively 
universal psychological tendencies. As 
HCI research has proposed only a few 
general laws of this type,1 we need to 
turn to behavioral science, social sci-
ence, neuroscience, and biomechanics.

Our approach is to relax the mod-
eling requirements: instead of trying 
to build a comprehensive user model 

or a set of design heuristics, each case 
recruits models from a pool of basic 
models based on which objectives are 
most important. The studies men-
tioned above draw from mathe matical-  
and simulation-based models of human 
visual perception, attention, memory, 
learning, motor control, biomechanics, 
and choice. 

However, in cases where models are 
incomplete, invalid, or unavailable, 
objective functions can also express 
if-then rules such as design heuristics 
(for example, “The state of the system 
must be visible to users”). However, 
using multiple heuristics introduces 
the problem of weighing multiple inde-
pendent subobjectives in an objective 
function against each other. This can 
be done empirically, algorithmically 
using tuning methods, or manually.

After the objective function is 
defined, familiar com binatorial opti-
mization methods such as branch- 
 and-bound2 or black-box methods 
(such as ant colony optimization4) can 
search this set much more efficiently 
than a human designer can. The choice 
depends on the designer’s needs. 
Exact methods offer mathematical 

guarantees for solutions but require 
analysis of the objective function for 
revealing simplifications and links to 
known tasks in the optimization lit-
erature. Black-box methods, in con-
trast, can attack any design problem 
but require empirical tuning of the 
para meters and offer no guarantees. 
Among the black-box methods used 
for interface design are simulated 
annealing, genetic algorithms, and 
ant colony optimization. 

BEYOND KEYBOARDS
Perhaps the most significant obstacle 
to progress in this space has been mod-
eling, not algorithms. Thanks to an 
increasing pool of models, we can now 
optimize some of the most common 
types of UIs. 

Menu design is a classic topic 
in HCI. It was mathematically for-
mulated in the 1980s, but is now an 
instance of the well-known assign-
ment problem wherein commands are 
assigned to a vertical array to min-
imize selection time and maximize 
familiarity. Extending this to menu 
systems demands hierarchical assign-
ment and consideration of what makes 

Visual search onlyColor clutter only

Color harmony only

All objectives
Grid quality only

(a) (b)

Selection time only

FIGURE 4. Results from (a) single- and (b) multiple-objective optimization in webpage 
design using the SketchPlorer optimizer. A meaningful webpage layout can only be 
designed when all objectives are considered together.
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a hierarchy consistent and how users 
navigate such hierarchies.4 On the 
other hand, interactive graphical lay-
outs must also consider the size and 
horizontal position of elements, along 
with their grouping and types. Deter-
mining how to do this has extended 

the domain to widget layouts and web-
pages.3,6 Our ongoing work looks at 
information visualizations, address-
ing them via perceptual optimization 
(see Figure 1). Scatterplot design has 
been formulated as the task of choos-
ing the design para meters (marker 
size, aspect ratio, and so on) to maxi-
mize user performance in tasks such 
as correlation estimation.7

Optimization can also provide solu-
tions to some difficult problems emerg-
ing in interface technology. Consider 
in-air gestures, for example. Although 
the human hand has numerous degrees 
of freedom for motion, it is not yet clear 
how to map these motions to input in 
a way that is ergonomic, usable, and 
learnable. We recently developed an 
optimizer for gesture sets, defining a 
gesture as a transition from one pos-
ture to another and minimizing the 
movement time, accuracy, and learn-
ing costs involved (see Figure 1).5 

Key questions to explore are 
whether optimized designs are actu-
ally usable, and if so, how they com-
pare with those of human-designed 
interfaces. Empirical evidence is only 

emerging and centers on two topics: 
keyboards and GUIs. The two-thumb 
keyboard KALQ showed a 34 percent 
improvement over baseline (Qwerty) 
after training.11 The K5 multilingual 
keyboard (see Figure 1) yielded a 24 
percent improvement over Qwerty 

on a touchscreen device.12 An opti-
mized mapping of n grams to a piano 
keyboard allowed a trained typist to 
type at rates comparable to the high-
est rates achieved with the Qwerty 
keyboard.13 For graphical interfaces, 
a design differentiated by SUPPLE for 
a motor-impaired user (see Figure 1) 
showed a 26 percent improvement 
in speed and a 73 percent decrease in 
errors from a manufacturer’s default.6 
In the realm of application menus, 
an optimized design was superior in 
selection time and perceived color har-
mony to the Windows Phone default 
design.3 Although it performed worse 
in terms of clutter perception, this was 
predicted by the models underlying 
the optimized design. This example 
illustrates a key benefit of model-based 
approaches: they make empirically 
verifiable predictions that might steer 
the improvement of models. 

REDESIGNING DESIGN
Perhaps the most startling propo-
sition made here is that essential 
aspects of design—which has been 
considered a very nuanced, tacit, and 

dynamic human activity1,9—might be 
expressed formally and attacked algo-
rithmically, even with a designer in the 
loop. Algorithms that design UIs can 
be intuitive and easy to use in design 
tools, encouraging the adoption of 
better designs and making designers 
aware of the involved tradeoffs. 

The wider implications of this 
development can only be speculated. 
Optimization will enable novices to 
create good designs without a pro-
fessional designer in the loop. In the 
MenuOptimizer study, for example, 
computer science students were able 
to design satisfactory menu systems 
by simply typing in command names 
and choosing a design from the opti-
mizer. However, designers also stand 
to benefit from the ability to improve 
low-level interface design. This might 
not only improve quality but also free 
up resources to focus on the “uncom-
putable“ aspects of design—creative 
problems involving incomplete or con-
tradictory knowledge, a large num-
ber of stakeholders who differ in their 
opinions, and severe constraints.1 

Perhaps most importantly, for the 
first time in the history of UI design, 
researchers can talk about optimiza-
tion as an engineering discipline, dis-
cussing the optimality of a design or its 
sensitivity to assumptions. What does it 
mean for this field when a design team 
can prove that their design is 5 percent 
better than a competitor’s? What if opti-
mizers can show that there is no feasible 
solution to a problem? In this scenario, 
computational and engineering sci-
ences will play a much greater role in UI 
design than ever before. 

Many challenges arise. How 
well can we capture design 
problems formally? We can 

OPTIMIZATION WILL ENABLE NOVICES 
TO CREATE GOOD DESIGNS WITHOUT A 
PROFESSIONAL DESIGNER IN THE LOOP.
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now address some classic topics such as 
assignment and packing, but what are 
some other common problems in com-
puter science? How far can we push the 
envelope in modeling human behav-
ior? Although the work described here 
has been successful with basic sensory- 
motor models and is expanding to cog-
nitive aspects, there is still a long way 
to go to address the physical, social, 
and cultural factors of interaction that 
are key to emerging topics like AI, the 
Internet of Things, and social media. 
Finally, which aspects of design should 
be automated and which should be left 
to the designer? Carelessly designed 
tools will lead to deskilling and avoid-
ance of responsibility, thereby under-
mining the potential benefits of opti-
mization. If such problems are solved, 
the wider implications of this approach 
are intriguing. 
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