
40 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 1 7 / $ 3 3 . 0 0 © 2 0 1 7 I E E E

COVER FEATURE OUTLOOK

User Interface Design
with Combinatorial
Optimization
Antti Oulasvirta, Aalto University

Optimization methods have revolutionized almost every field
of engineering design, so why not user interface design? The
author reviews progress and challenges in model-driven
UI optimization, in which an optimizer utilizes predictive
models of human perception, behavior, and experience to
anticipate users’ responses to computer-generated designs.

Optimization methods in user interface (UI)
design is a long-standing topic in human–
computer interaction (HCI) research. Cur-
rently, user-centered design is largely

focused on human creativity, sensemaking, empathy,
and creation of meaning,1 but optimization meth-
ods have been explored as supplemental ways to help
speed up the design cycle and improve design quality
(for more information about computational UI design,
see the sidebar). Unlike any other design method in
HCI, optimization methods offer a greater-than-zero
chance of finding an optimal design, and some exact
methods even offer mathematical guarantees for solu-
tions.2 More importantly, if the design task and its

assumptions are appropriate, the outcome represents
the best achievable design.

Optimization methods do not stop at searching for a
single best design; they can also be used to explore the
design space for alternative ideas. In addition, optimiza-
tion could promote a change in design culture by encour-
aging the explication, scrutiny, and accumulation of
design knowledge that has tended to be tacit. However,
progress has been slow. Scarcely 15 years ago, keyboard
layout was the prime—and virtually only—application
of optimization methods that had empirically demon-
strated benefits to end users.

Model-based UI optimization refers to the use of com-
binatorial optimization methods to solve a UI design

 J A N U A R Y 2 0 1 7 41

APPROACHES TO COMPUTATIONAL
USER INTERFACE DESIGN

The concept of using computational methods
instead of manual exploration to generate

good designs was discovered more or less inde-
pendently in computer science, cognitive science,
and human–computer interaction (HCI). The fol-
lowing are different approaches to computational
user interface (UI) design.

TYPEWRITER LAYOUT AS A
QUADRATIC ASSIGNMENT PROBLEM
Rainer Burkard and his colleagues worked on the
optimization of typewriter layouts as early as
1977,1 formulating it as a quadratic assignment
problem (QAP). This finding was valuable be-
cause the problem could now be solved through
efficient solvers known for QAP. However, the
estimates of a typist’s time costs were not based
on empirical data, which made the task easier to
solve and the outcomes less valuable. Realistic
input data for a typist’s motor performance was
added a decade later.2

COGNITIVE MODELING AND OPTIMAL
PERFORMANCE ENGINEERING
Stuart Card and his colleagues proposed the first
simulations of a user for HCI in 1983 (GOMS).3
Instead of guesswork or expensive studies, a
designer could evaluate an interface by simulating
how users perceive, think, and act when complet-
ing tasks. Subsequent models (such as ACT-R)
extended this modeling to consider factors such
as errors and learning. However, the models
became difficult to use and extend. To aid prac-
titioners, mathematical simplifications (such
as KLM and GLEAN) and interactive modeling
environments (like CogTool and Distract-R) were
developed, but these were not combined with
algorithms that could generate designs.

A decade later, Donald L. Fisher proposed that
human factors researchers should not be satisfied
with a good solution but seek the optimal solution
using appropriate methods.4 However, because lit-
tle advice was given on central technical enablers
such as optimization, applications were limited to
parameter optimizations and simple mappings.

UI DESCRIPTION LANGUAGES
Software engineers have studied UI description
languages, formal abstractions of the UI and its
properties, operation logic, and relationships to
other parts of the system.5 These can be used to
compile UIs in different languages and port them
across platforms. However, because they lack a
rich notion of the user, they are limited to transfor-
mations instead of generation for given user-
related objectives.

OPTIMIZATION USING
DESIGN HEURISTICS
Design heuristics can be used as objectives
and constraints to drive UI optimization. Peter
O’Donovan and his colleagues formulated an
energy minimization approach to the design
of page layouts using heuristics like alignment,
visual importance, white space, and balance.6
This approach improves the visual appeal of
optimized layouts. However, heuristics offer no
link to end-user-related objectives such as task
completion time or aesthetic perception. Resolving
conflicts among multiple conflicting heuristics is a
recognized issue.

References
1. R.E. Burkard and J. Offermann, “Entwurf von Schreibmaschi-

nentastaturen mittels quadratischer Zuordnungsprobleme,”
Zeitschrift für Operations Research, vol. 21, no. 4, 1977,
pp. B121–B132 (in German).

2. L. Light and P. Anderson, “Designing Better Keyboards via
Simulated Annealing,” RIT Scholar Works, 1993; scholarworks
.rit.edu/cgi/viewcontent.cgi?article=1729&context=article.

3. S.K. Card, A. Newell, and T.P. Moran, The Psychology of Human-
Computer Interaction, Lawrence Erlbaum Associates, 1983.

4. D.L. Fisher, “Optimal Performance Engineering: Good, Better,
Best,” Human Factors: J. Human Factors and Ergonomics
Soc., vol. 35, no. 1, 1993, pp. 115–139.

5. J. Guerrero-Garcia et al., “A Theoretical Survey of User Inter-
face Description Languages: Preliminary Results,” Proc. 2009
Latin American Web Congress (LA-WEB 09), 2009, pp. 36–43.

6. P. O’Donovan, A. Agarwala, and A. Hertzmann, “Learning Lay-
outs for Single-page Graphic Designs,” IEEE Trans. Visualization
and Computer Graphics, vol. 20, no. 8, 2014, pp. 1200–1213.

42 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OUTLOOK

problem formulated as a search prob-
lem by using predictive models of
human behavior and experience.
The significant benefit of model-
based UI optimization over previous
approaches is that it can find and pro-
pose UI designs that are both visu-
ally appealing and verifiably usable.
With model-based UI optimization,
a webpage design can be automati-
cally generated so that users regard
its items and colors as aesthetically
pleasing,3 and a programmer can task
an optimizer to design a full menu sys-
tem with hundreds of commands—
complete with hierarchy, groups, and

shortcuts—simply by listing its com-
mand names.4

MODEL-BASED UI
OPTIMIZATION
Like a civil engineer whose objective
is building a bridge with a certain
capacity and tolerance, a designer
can create a UI by defining how eas-
ily users should find their targets and
how they should perceive it aestheti-
cally. Technically, this is based on the
formulation of a design task math-
ematically using predictive mod-
els of human behavior as objectives.
Figure 1 shows examples of designs

generated with recent model-based
approaches to UI optimization,
including application menu design
and menu system design,4 gestural
input design,5 widget GUI design,6
scatterplot design7, and web layout
design.4 Figure 2 shows an overview
of model-based UI optimization from
a design team’s perspective.

UI DESIGN WITH AN
OPTIMIZER IN THE LOOP

Tools might encourage or enforce
user interfaces that were highly
usable, rather than today’s stance
that tools should be neutral… .8

Skype Dropbox YouTube

Skype Photoshop Stopwatch

Maps Alarm

Settings App store News

Contacts Mail Browser

Phone Messages

Facebook

Recorder

(a)

(b)

(c)

(d) (e) (f)

FIGURE 1. Examples of designs generated with recent model-based approaches to user interface (UI) optimization: (a) application
menu design, where the positions, colors, and sizes of icons are optimized for visual search, motor performance, color harmony, and
minimum clutter; (b) menu system design, where a hierarchy of items is organized into a menu optimized for visual search time and
consistency with other menus; (c) gestural input design, where commands are mapped to hand gestures to optimize for performance,
individuation of fingers, and learnability; (d) widget GUI design, where widget groups, types, and positions are decided based on users’
motor capabilities; (e) scatterplot design, where aspect ratio, marker sizes, and transparency are optimized for maximum performance
in tasks like correlation estimation by using perceptual models of brightness, contrast, and unit perception; and (f) web layout design,
where the elements of a page are positioned, colored, and sized to optimize visual search time, motor performance, color harmony,
and minimum clutter.

 J A N U A R Y 2 0 1 7 43

A starting point for re-envisioning UI
design with an optimizer in the loop is
the realization that the standard “fire
and forget” paradigm of optimization
methods is irreconcilable with design
practice. A designer cannot be asked
to provide all inputs to an optimizer
within a decimal point and come back
later for an answer. Designers con-
stantly change the problem defini-
tion and the design space,9 and mix
design sketching and evaluation with
reflection and sensemaking, draw-
ing from tacit knowledge. How might
design tasks be defined for a com-
puter, and how could the optimizer
positively encourage the designer to
adopt better designs without choking
creativity?8

To be used at all, optimization
requires effort to define or redefine a
task and assumptions. A considerable
amount of information is needed to
design a menu system, for example.4 A
key concern, therefore, is which aspects
of such work can be automated and
which should be left to the designer.

Figure 3 plots the automation con-
tinuum, exposing a tradeoff between
the designer’s and the optimizer’s
objectives. The design space, objec-
tives, and constraints that an opti-
mizer works with should be aligned
with—or at least not conflict with—
the designer’s view of them. However,
the designer might want to change this
data often, especially in early design
stages, which takes effort and could
break the design flow. Though a design
tool could hide some of the complexity
of controlling an optimizer by infer-
ring inputs, its outputs could easily
become misaligned with the design-
er’s objectives.

MenuOptimizer and SketchPlorer,
two initial optimizer concepts, explore
the two extremes of this continuum.

MenuOptimizer
The full-control MenuOptimizer com-
bines many support functions and
controls to assist a developer using Qt
Designer—a widely used integrated
development environment (IDE).4 A
developer designs a menu as usual, but
as command names are listed, Menu-
Optimizer proposes full menu systems
on a Pareto plot, including hierarchi-
cal assignment of menu items with
their various groupings into menus
and shortcuts. While the designer
edits the menus, MenuOptimizer also
suggests local improvements, such as
“Move this item here to improve user
performance by 6 percent.” To this
end, its objective function is based on
a menu-selection-performance model
and a heuristic for consistency, which
tries to keep the design close to those
of existing applications. An important
goal in the development of the system
was to make inputs to the optimizer
fully visible but seed it with mean-
ingful defaults to save editing time.
The designer can change design objec-
tives with sliders, change assumptions

about users and their tasks via interac-
tive bar plots, change scores for consis-
tency by means of a table, and so on.

We tested this optimizer with com-
puter science students who were asked
to design a menu system for a software
design scenario. The students were
able to design menus they found sat-
isfactory with significantly less effort
(38 percent fewer clicks) than when
they did not use the optimizer. They
reported appreciating the optimiz-
er’s suggested improvements to the
menus. However, they used very few
aspects of the functionality for opti-
mizer control, and they complained
that the controls were effortful and
overwhelming. Objectives, for exam-
ple, were rarely changed.

SketchPlorer
To better support an exploratory
approach to design, we created
SketchPlorer, a minimum-effort (or
maximum- automation) concept.3 In
contrast to MenuOptimizer, it does not
require any additional input from the
designer other than indicating which

Optimizer

Generates

Evaluates

Designer
Defines task

Steers

Computer scientist

Defines

Behavioral scientist

Defines

De
si

gn
 to

ol

Predictive
model

FIGURE 2. Model-based UI optimization from a designer’s perspective. Predictive models
(mathematical or simulations) are used in an optimizer to evaluate generated designs
against designer-supplied objectives. The designer can steer and redefine the tasks inter-
mittently as results stream in. Initialization might require contributions from a computer
scientist to define the task and an optimizer, as well as from a behavioral scientist to
supply predictive models.

44 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OUTLOOK

elements are more important than
others. It infers the design space from
the way the designer places elements
on a canvas and uses that conclusion
to search the design space.

Because the designer’s objectives
are unknown, the optimizer produces
numerous suggestions, some of which
might match poorly. However, because
these are presented directly on a side
panel next to the canvas, they can eas-
ily be examined and those that are
irrelevant can be ignored. To rapidly
generate suggestions, SketchPlorer
uses a resource-sensitive optimization
strategy that quickly proposes solu-
tions using precomputed designs as
starting points, or explores the candi-
date space more broadly if more time
is available.

We tested Sketchplorer with 10 pro-
fessional designers who were asked to
design the wireframe sketch of a blog
page. Eight of the designers used the
optimizer’s redesign suggestions and
said they could sketch ideas quickly
with this feature. They also indicated
that they appreciated the exploration
functionality, with one participant
stating that he liked the way it at times
“turned [his] ideas upside-down.”

While not a conclusive result, our
experience with SketchPlorer shows
the benefits of inferring a designer’s
task and relying on his or her abil-
ity to quickly recognize good and bad

designs from a larger set of visualized
options, and to steer optimization
with choices from such sets.

EVALUATING DESIGNS
USING MODELS OF HUMAN
BEHAVIOR AND EXPERIENCE
The adoption of optimization methods
critically depends on the formulation
of a design problem as a search prob-
lem and a definition of a “good” design.
In this regard, UI optimization is an
application of engineering optimiza-
tion for discrete design problems,10
where a task consists of a finite set of
candidate designs, an objective func-
tion, and constraints. Two challenges
stand out.

First, defining a search space (or
design space) means defining the
design variables that make up the
design space. A design task is defined
as the task of finding the best combi-
nation of design decisions. For exam-
ple, keyboard design is defined as the
task of assigning letters to button slots
to maximize typing speed. Given n let-
ters and n keyslots, the goal is to mini-
mize the average time cost of selecting
letter l after k, weighted by the proba-
bility of that letter transition in a given
language. In the simplest version of the
keyboard layout design problem, the
search space is on the order of 4 × 1026.
A menu hierarchy, on the other hand,
can be organized in about (2n)! ways.

For 50 items, the size of the search
space is 100! ≈ 10158. Constraints can
be added to define feasible solutions
and decrease the search space, such
as “elements cannot overlap” or “ele-
ments must have a maximum size.”

A decade ago, this field was lim-
ited to assignment problems (such as
the quadratic assignment problem
discussed in the sidebar). These prob-
lems can now be solved to a size of
1038 via known, efficient exact meth-
ods like branch and bound.2 Beyond
keyboards, recent work has looked at
expanding assignment formulations
to other design tasks involving placing
elements on a surface, such as menus4
and GUIs.3,6 The assignment prob-
lem has also turned out to be a viable
approach to some gesture design prob-
lems where hand postures or transi-
tions are mapped to commands.5

Beyond assignment tasks, our
group is researching scheduling
problems (for example, in notifica-
tion systems) and packing problems
(for example, in designs of pervasive
displays for public spaces). We are
working to formulate the problem
of selecting the functionality for an
application in early stage design as an
integer programming problem. Given
a set of N possible functions that
could be supported, we want to deter-
mine which subset strikes the best
balance among usability, usefulness,

Effort Misalignment

Full control
Designer controls
objectives and constraints,
and steers optimization

Full automation
System infers
objectives and constraints,
and steers optimization

Automatic redesign
suggestions

Sketching
canvas

High

Low

SketchPlorerMenuOptimizer

Real-time
suggestions on
redesigns on a
Pareto front

All objectives
and constraints
must be given

High

Low

FIGURE 3. Automation continuum. Interactive design tools using optimizers must automate some aspects of design work but leave
others to the designer. This introduces a tradeoff between the designer’s and the optimizer’s objectives (center). The full-control concept
MenuOptimizer (left) requires objectives and constraints to be specified upon any change in a designer’s task. SketchPlorer (right)
follows a minimum-effort optimization approach: the computer infers some aspects of the design task and suggests multiple redesigns
assuming different design objectives.

 J A N U A R Y 2 0 1 7 45

learnability, and commercial con-
siderations. Many other design tasks
remain to be defined in a similar way
and are linked to known problems in
computer science.

Second, defining a meaningful
objective function remains a signifi-
cant challenge. With few exceptions,
these functions consist of multiple
subobjectives. Figure 4 illustrates
an example of single- and multiple-
objective results using the Sketch-
Plorer optimizer.3 Note that there are
no surface-level heuristics used here;
instead, we used simulations and
mathematical models of how users
might perceive, experience, and react
to a layout.

It is preferable to use models of
human behavior and experience that
directly predict design objectives (for
example, usability or aesthetics) or cor-
relate with them instead of heuristics.
A model is basically a function that
maps a design in the design space to an
objective value relating to end users.
The goal is for the model to predict user
performance and experience. It should
also permit rapid execution in code.

Typical model types are re gres sion
models like Search- Decision- Pointing
(SDP)4 and stochastic models like the
Kieras–Hornof visual search model,3
but there are also neural simulations,
such as saliency maps. The challenge
in this sort of modeling is that it should
predict real behavioral tendencies for
any design in the design space. A model
must therefore reflect some relatively
universal psychological tendencies. As
HCI research has proposed only a few
general laws of this type,1 we need to
turn to behavioral science, social sci-
ence, neuroscience, and biomechanics.

Our approach is to relax the mod-
eling requirements: instead of trying
to build a comprehensive user model

or a set of design heuristics, each case
recruits models from a pool of basic
models based on which objectives are
most important. The studies men-
tioned above draw from mathe matical-
and simulation-based models of human
visual perception, attention, memory,
learning, motor control, biomechanics,
and choice.

However, in cases where models are
incomplete, invalid, or unavailable,
objective functions can also express
if-then rules such as design heuristics
(for example, “The state of the system
must be visible to users”). However,
using multiple heuristics introduces
the problem of weighing multiple inde-
pendent subobjectives in an objective
function against each other. This can
be done empirically, algorithmically
using tuning methods, or manually.

After the objective function is
defined, familiar com binatorial opti-
mization methods such as branch-
 and-bound2 or black-box methods
(such as ant colony optimization4) can
search this set much more efficiently
than a human designer can. The choice
depends on the designer’s needs.
Exact methods offer mathematical

guarantees for solutions but require
analysis of the objective function for
revealing simplifications and links to
known tasks in the optimization lit-
erature. Black-box methods, in con-
trast, can attack any design problem
but require empirical tuning of the
para meters and offer no guarantees.
Among the black-box methods used
for interface design are simulated
annealing, genetic algorithms, and
ant colony optimization.

BEYOND KEYBOARDS
Perhaps the most significant obstacle
to progress in this space has been mod-
eling, not algorithms. Thanks to an
increasing pool of models, we can now
optimize some of the most common
types of UIs.

Menu design is a classic topic
in HCI. It was mathematically for-
mulated in the 1980s, but is now an
instance of the well-known assign-
ment problem wherein commands are
assigned to a vertical array to min-
imize selection time and maximize
familiarity. Extending this to menu
systems demands hierarchical assign-
ment and consideration of what makes

Visual search onlyColor clutter only

Color harmony only

All objectives
Grid quality only

(a) (b)

Selection time only

FIGURE 4. Results from (a) single- and (b) multiple-objective optimization in webpage
design using the SketchPlorer optimizer. A meaningful webpage layout can only be
designed when all objectives are considered together.

46 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OUTLOOK

a hierarchy consistent and how users
navigate such hierarchies.4 On the
other hand, interactive graphical lay-
outs must also consider the size and
horizontal position of elements, along
with their grouping and types. Deter-
mining how to do this has extended

the domain to widget layouts and web-
pages.3,6 Our ongoing work looks at
information visualizations, address-
ing them via perceptual optimization
(see Figure 1). Scatterplot design has
been formulated as the task of choos-
ing the design para meters (marker
size, aspect ratio, and so on) to maxi-
mize user performance in tasks such
as correlation estimation.7

Optimization can also provide solu-
tions to some difficult problems emerg-
ing in interface technology. Consider
in-air gestures, for example. Although
the human hand has numerous degrees
of freedom for motion, it is not yet clear
how to map these motions to input in
a way that is ergonomic, usable, and
learnable. We recently developed an
optimizer for gesture sets, defining a
gesture as a transition from one pos-
ture to another and minimizing the
movement time, accuracy, and learn-
ing costs involved (see Figure 1).5

Key questions to explore are
whether optimized designs are actu-
ally usable, and if so, how they com-
pare with those of human-designed
interfaces. Empirical evidence is only

emerging and centers on two topics:
keyboards and GUIs. The two-thumb
keyboard KALQ showed a 34 percent
improvement over baseline (Qwerty)
after training.11 The K5 multilingual
keyboard (see Figure 1) yielded a 24
percent improvement over Qwerty

on a touchscreen device.12 An opti-
mized mapping of n grams to a piano
keyboard allowed a trained typist to
type at rates comparable to the high-
est rates achieved with the Qwerty
keyboard.13 For graphical interfaces,
a design differentiated by SUPPLE for
a motor-impaired user (see Figure 1)
showed a 26 percent improvement
in speed and a 73 percent decrease in
errors from a manufacturer’s default.6
In the realm of application menus,
an optimized design was superior in
selection time and perceived color har-
mony to the Windows Phone default
design.3 Although it performed worse
in terms of clutter perception, this was
predicted by the models underlying
the optimized design. This example
illustrates a key benefit of model-based
approaches: they make empirically
verifiable predictions that might steer
the improvement of models.

REDESIGNING DESIGN
Perhaps the most startling propo-
sition made here is that essential
aspects of design—which has been
considered a very nuanced, tacit, and

dynamic human activity1,9—might be
expressed formally and attacked algo-
rithmically, even with a designer in the
loop. Algorithms that design UIs can
be intuitive and easy to use in design
tools, encouraging the adoption of
better designs and making designers
aware of the involved tradeoffs.

The wider implications of this
development can only be speculated.
Optimization will enable novices to
create good designs without a pro-
fessional designer in the loop. In the
MenuOptimizer study, for example,
computer science students were able
to design satisfactory menu systems
by simply typing in command names
and choosing a design from the opti-
mizer. However, designers also stand
to benefit from the ability to improve
low-level interface design. This might
not only improve quality but also free
up resources to focus on the “uncom-
putable“ aspects of design—creative
problems involving incomplete or con-
tradictory knowledge, a large num-
ber of stakeholders who differ in their
opinions, and severe constraints.1

Perhaps most importantly, for the
first time in the history of UI design,
researchers can talk about optimiza-
tion as an engineering discipline, dis-
cussing the optimality of a design or its
sensitivity to assumptions. What does it
mean for this field when a design team
can prove that their design is 5 percent
better than a competitor’s? What if opti-
mizers can show that there is no feasible
solution to a problem? In this scenario,
computational and engineering sci-
ences will play a much greater role in UI
design than ever before.

Many challenges arise. How
well can we capture design
problems formally? We can

OPTIMIZATION WILL ENABLE NOVICES
TO CREATE GOOD DESIGNS WITHOUT A
PROFESSIONAL DESIGNER IN THE LOOP.

 J A N U A R Y 2 0 1 7 47

now address some classic topics such as
assignment and packing, but what are
some other common problems in com-
puter science? How far can we push the
envelope in modeling human behav-
ior? Although the work described here
has been successful with basic sensory-
motor models and is expanding to cog-
nitive aspects, there is still a long way
to go to address the physical, social,
and cultural factors of interaction that
are key to emerging topics like AI, the
Internet of Things, and social media.
Finally, which aspects of design should
be automated and which should be left
to the designer? Carelessly designed
tools will lead to deskilling and avoid-
ance of responsibility, thereby under-
mining the potential benefits of opti-
mization. If such problems are solved,
the wider implications of this approach
are intriguing.

ACKNOWLEDGMENTS
This research was funded by the European
Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and
innovation program (grant agreement no.
637991) and the Academy of Finland proj-
ect COMPUTED.

REFERENCES
1. Y. Rogers, H. Sharp, and J. Preece,

Interaction Design: Beyond Human–
Computer Interaction, Wiley, 2011.

2. A. Karrenbauer and A. Oulasvirta,
“Improvements to Keyboard Optimi-
zation with Integer Programming,”
Proc. 27th Ann. ACM Symp. User Inter-
face Software and Technology (UIST
14), 2014, pp. 621–626.

3. K. Todi, D. Weir, and A. Oulasvirta,
“Sketchplore: Sketch and Explore
with a Layout Optimizer,” Proc.
Designing Interactive Systems (DIS 16),
2016, pp. 543–555.

4. G. Bailly et al., “MenuOptimizer:
Interactive Optimization of Menu
Systems,” Proc. 26th Ann. ACM Symp.
User Interface Software and Technology
(UIST 13), 2013, pp. 331–342.

5. S. Sridhar et al., “Investigating the
Dexterity of Multi-Finger Input for
Mid-Air Text Entry,” Proc. 33rd Ann.
ACM Conf. Human Factors in Comput-
ing Systems (CHI 15), 2015,
pp. 3643–3652.

6. K.Z. Gajos, J.O. Wobbrock, and D.S.
Weld, “Improving the Performance
of Motor-impaired Users with Auto-
matically Generated, Ability-based
Interfaces,” Proc. SIGCHI Conf.
Human Factors in Computing Systems
(CHI 08), 2008, pp. 1257–1266.

7. L. Micallef et al., “Towards Percep-
tual Optimization of the Visual
Design of Scatterplots,” to be pub-
lished in Proc. IEEE Pacific Visualiza-
tion Symp. (PacificVis 17), 2017.

8. B. Myers, S.E. Hudson, and R.
Pausch, “Past, Present, and Future of
User Interface Software Tools,” ACM
Trans. Computer-Human Interaction,
vol. 7, no. 1, 2000, pp. 3–28.

9. K. Dorst and N. Cross, “Creativity in
the Design Process: Co-evolution of
Problem–Solution,” Design Studies,
vol. 22, no. 5, 2001, pp. 425–437.

10. S.S. Rao, Engineering Optimization:
Theory and Practice, John Wiley &
Sons, 2009.

11. A. Oulasvirta et al., “Improving Two-
Thumb Text Entry on Touchscreen
Devices,” Proc. SIGCHI Conf. Human
Factors in Computing Systems (CHI 13),
2013, pp. 2765–2774.

12. X. Bi, B.A. Smith, and S. Zhai, “Multi-
lingual Touchscreen Keyboard
Design and Optimization,” Human–
Computer Interaction, vol. 27, no. 4,
2012, pp. 352–382.

13. A.M. Feit and A. Oulasvirta,
“PianoText: Redesigning the Piano
Keyboard for Text Entry,” Proc. 2014
Companion Publication on Designing
Interactive Systems (DIS Companion
14), 2014, pp. 129–132.

ABOUT THE AUTHOR

ANTTI OULASVIRTA is an associate professor at Aalto University. His research
interests include modeling and computational design of human–computer
interaction. He received a PhD in cognitive science from the University of Hel-
sinki. Contact him at antti.oulasvirta@aalto.fi.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

