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Research problem

• Downlink data transmission 

in a wireless cellular system

• Traffic = elastic flows

– file transfers using TCP

• Scheduling decisions in each 

time slot

– time scale of milliseconds

• Traffic dynamics in a much 

longer time scale

– time scale of seconds/minutes

• Optimal time-slot-level scheduler 

for flow-level performance?
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Source: Hu et al. (2004)



Flow-level performance

• Performance is expressed as flow-level delay

– Mean flow delay describes 

how long, on the average, it takes to transfer a file

• Importance of the time scale

– Users do not care about time-slot or packet-level delays, 

but the flow-level delay, i.e., the total time to transmit a file
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Time-slot-level schedulers

• Channel-aware schedulers

– Channel conditions varying randomly for each user

– Scheduling based on channel information

– Scheduler may prefer users with a good channel

– Opportunistic scheduling

– Examples: MR, PF

• Size-based schedulers

– Scheduling based on flow size information

– Scheduler may prefer users with a short flow

– Example: SRPT

– Schrage (1968): SRPT optimal in the M/G/1 queue
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Fundamental trade-off

• Opportunistic scheduling

– Aggregate mean service rate increases with the number of 

users (opportunistic gain, multiuser diversity gain)

– However, a user with a long remaining service requirement 

blocks the other users

• SRPT

– The number of flows is reduced most efficiently

– However, opportunistic gain is lost due to suboptimal channel 

(later on also due to a smaller number of flows)
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Combining opportunistic and size-based

scheduling
• Tsybakov (2003)

– Dynamic programming approach (time-slot scale)

• Hu et al. (2004)
– Heuristic approach: TAOS (time-slot scale)

• Lassila and Aalto (2008)
– Another heuristic approach: SRPT-P (time-slot scale)

• Ayesta et al. (2010)
– Age-based information, Markovian system (time-slot scale)

• Sadiq and de Veciana (2010)
– Time-scale separation (flow scale)

– Transient system

– Optimality result for nested polymatroids
– Cf. optimality of SRPT-FM, Raj et al. (2004)
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Time-scale separation:

From the time-slot scale to the flow scale

• R(t) = (R1(t),…, Rk(t)) = rate vector in time slot t

• Ri(t) = instantaneous rate of user i

• Assume: Ri(t) is a stationary and ergodic process

• Assume: Scheduling policy p  Pk is stationary

• Define: The long-term throughput for user i:

• Define: The (opportunistic) capacity region: 
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Part 1

Optimal scheduling in scalable queues
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Scalable queue

• Service system where the service capacity is 

self-scalable depending on the current number of jobs

• When there are k jobs with sizes

choose a rate vector

and serve job i with rate cki

• Assume: Capacity regions Ck compact and symmetric
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Optimal scheduling problem

(transient system)

• Assume that there are n jobs in the system at time 0

• What is the optimal way to make the system empty?

• Objective: Minimize the mean delay (or flow time)

• Define: Flow time (or total completion time) for policy f

where ti is the completion time of job i

• Define: Operating policies
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Trivial case: One job

• Define: 

• Now
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Simple case: Two jobs

• If job 2 (i.e., the shorter one) completes first, then

• Otherwise

• Let us minimize (a function not depending on sizes!) 

12

*
1

1
*
1

21

22

2
*
122

2

22

2 )2()(2 1
211

c

s

c

c

c

s

cc

s

c

s
csT ==f

*
1

2
*
1

22

21

1
*
121

1

21

1 )2()(2 1
222

c

s

c

c

c

s

cc

s

c

s
csT ==f

22
1

2    ),2()(
*
1

21

22
Cg

c

c

c
= cc



Simple case: Two jobs (cont.)

• Geometric interpretation
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Simple case: Two jobs (cont.)

• Define: 

• Result: Now if

then (due to the symmetry property!)
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Simple case: Two jobs (cont.)

• Justification: 
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Simple case: Two jobs (cont.)

• Required additional result: 
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Simple case: Two jobs (cont.)

• Equivalent condition:

• Suffient condition: 

nested capacity regions

• Note: However, capacity

regions are not required

to be nested
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General case: n jobs

• Define (recursively):

• Theorem 1: If

then
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General case: n jobs (cont.)

• In addition, 

• Thus, the optimal policy applies the SRPT-FM principle:

– the shortest job is served with the highest rate, 

– the second shortest job is served with the second highest rate, 

– etc.

• Note also that the optimal rate vector does not depend

on the absolute sizes (only on their order)
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Example:

Alpha-ball

• Let  and consider capacity regions

• Now
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Alpha = 1.0

(single-server queue)
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Alpha = 1.2
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Alpha = 2.0
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Alpha = 5.0
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Alpha = infinite

(infinite-server queue)
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Summary of Part 1

• Assumptions:
– Abstract capacity regions (time-scale separation)

– Transient system

• Results:
– Optimality result for compact and symmetric capacity regions

• includes nested polymatroids (cf. Sadiq and de Veciana (2010))

• requires an implicit condition related to capacity regions

– Optimal rate vectors for each phase

• applying the SRPT-FM principle

• Open questions:
– Is it possible to make the implicit condition explicit?

– Is it possible to implement the optimal policy at time-slot scale?
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Part 2

Optimal time-slot-level scheduler 

for the wireless cellular system
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Time-slot-level model

• R(t) = (R1(t),…, Rk(t)) = rate vector in time slot t

• Ri(t) = instantaneous rate of user i

• Assume: Ri(t) is a stationary and ergodic process

taking values in a finite set

• Assume: Processes Ri(t) are IID
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Time-slot-level schedulers

• Assume: Scheduling policy p  Pk is stationary

• Define: The long-term throughput for user i:

• Define: The (opportunistic) capacity region:

• Note: Capacity regions are compact and symmetric
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Weight-based schedulers

• Define: Weight-based scheduler p  Pk allocates time

slot t to user i* for which

– where wi are the weights related to the scheduler

• Example: MR (which is the same as PF in our case)

– wi = 1 for all i
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Connection between the two time scales

• Proposition 1:

– Proof is straightforward: 
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Recall the optimal scheduling problem

(transient system)

• Assume that there are n jobs in the system at time 0

• What is the optimal way to make the system empty?

• Objective: Minimize the mean delay (or flow time)

• Define: Flow time (or total completion time) for policy f

where ti is the completion time of job i

• Define: Operating policies

32

} allfor  :),,({ 1 kCkknn == ccc f

 == n
i itT 1

ff



Recall the recursion for G*

(based on the flow-level model)

• Define (recursively):

• Open problem 1: Is it possible to show that in our case 

• Open problem 2: If so, how to implement the optimal

operating policy with a the time-slot-scale scheduler:
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Key property

• Proposition 2:

– Proof by induction
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Alternative recursion for G*

(based on the time-slot-level model)

• Define (recursively):

– Based on the equation:
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Key result

• Proposition 3:

– Proof by induction

– Idea briefly on the following slide

• Corollary: Solution of the optimal scheduling problem
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Idea of the proof

• Define:

• Easily: hk1a is non-decreasing and satisfies

• It remains to show that
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Optimal time-slot-level scheduler

for flow-level performance

• Theorem 2: The optimal operating policy f can be

implemented by a sequence of weight-based schedulers

p k defined by weight vectors

– Proof based on Propositions 1 and 2

• Summary: The optimal time-slot-level scheduler

allocates time slot t to user i* for which
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Related reading

• S. Aalto, A. Penttinen, P. Lassila and P. Osti, 

On the optimal trade-off between SRPT and 

opportunistic scheduling, in ACM SIGMETRICS 2011

• S. Aalto, A. Penttinen, P. Lassila and P. Osti, 

Optimal size-based opportunistic scheduler for wireless 

systems, submitted, 2011
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The End
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