
Combining optimally opportunistic

and size-based scheduling in

scalable queues

Samuli Aalto, Aleksi Penttinen, Pasi Lassila, Prajwal Osti

Aalto University, Finland

6–8 July 2011

Stockholm, Sweden

INFORMS APS

Research problem

• Downlink data transmission

in a wireless cellular system

• Traffic = elastic flows

– file transfers using TCP

• Scheduling decisions in each

time slot

– time scale of milliseconds

• Traffic dynamics in a much

longer time scale

– time scale of seconds/minutes

• Optimal time-slot-level scheduler

for flow-level performance?

2

Source: Hu et al. (2004)

Flow-level performance

• Performance is expressed as flow-level delay

– Mean flow delay describes

how long, on the average, it takes to transfer a file

• Importance of the time scale

– Users do not care about time-slot or packet-level delays,

but the flow-level delay, i.e., the total time to transmit a file

3

Time-slot-level schedulers

• Channel-aware schedulers

– Channel conditions varying randomly for each user

– Scheduling based on channel information

– Scheduler may prefer users with a good channel

– Opportunistic scheduling

– Examples: MR, PF

• Size-based schedulers

– Scheduling based on flow size information

– Scheduler may prefer users with a short flow

– Example: SRPT

– Schrage (1968): SRPT optimal in the M/G/1 queue

4

Fundamental trade-off

• Opportunistic scheduling

– Aggregate mean service rate increases with the number of

users (opportunistic gain, multiuser diversity gain)

– However, a user with a long remaining service requirement

blocks the other users

• SRPT

– The number of flows is reduced most efficiently

– However, opportunistic gain is lost due to suboptimal channel

(later on also due to a smaller number of flows)

5

Combining opportunistic and size-based

scheduling
• Tsybakov (2003)

– Dynamic programming approach (time-slot scale)

• Hu et al. (2004)
– Heuristic approach: TAOS (time-slot scale)

• Lassila and Aalto (2008)
– Another heuristic approach: SRPT-P (time-slot scale)

• Ayesta et al. (2010)
– Age-based information, Markovian system (time-slot scale)

• Sadiq and de Veciana (2010)
– Time-scale separation (flow scale)

– Transient system

– Optimality result for nested polymatroids
– Cf. optimality of SRPT-FM, Raj et al. (2004)

6

Time-scale separation:

From the time-slot scale to the flow scale

• R(t) = (R1(t),…, Rk(t)) = rate vector in time slot t

• Ri(t) = instantaneous rate of user i

• Assume: Ri(t) is a stationary and ergodic process

• Assume: Scheduling policy p Pk is stationary

• Define: The long-term throughput for user i:

• Define: The (opportunistic) capacity region:

7

})({)(rrr == tRPpr iii
pp

}:),,{(1 k
k

kkC P= p pp

Part 1

Optimal scheduling in scalable queues

8

Scalable queue

• Service system where the service capacity is

self-scalable depending on the current number of jobs

• When there are k jobs with sizes

choose a rate vector

and serve job i with rate cki

• Assume: Capacity regions Ck compact and symmetric

9

kss 1

kkkkk Ccc =),,(1 c

Optimal scheduling problem

(transient system)

• Assume that there are n jobs in the system at time 0

• What is the optimal way to make the system empty?

• Objective: Minimize the mean delay (or flow time)

• Define: Flow time (or total completion time) for policy f

where ti is the completion time of job i

• Define: Operating policies

10

} allfor :),,({ 1 kCkknn == ccc f

 == n
i itT 1

ff

Trivial case: One job

• Define:

• Now

11

1
*
1

1*
1

11
*
1

max , ccG
Ccc

==

)(,min *
1

**
11

*

1

c===

ff

f
GsTT

Simple case: Two jobs

• If job 2 (i.e., the shorter one) completes first, then

• Otherwise

• Let us minimize (a function not depending on sizes!)

12

*
1

1
*
1

21

22

2
*
122

2

22

2)2()(2 1
211

c

s

c

c

c

s

cc

s

c

s
csT ==f

*
1

2
*
1

22

21

1
*
121

1

21

1)2()(2 1
222

c

s

c

c

c

s

cc

s

c

s
csT ==f

22
1

2),2()(
*
1

21

22
Cg

c

c

c
= cc

Simple case: Two jobs (cont.)

• Geometric interpretation

13

Simple case: Two jobs (cont.)

• Define:

• Result: Now if

then (due to the symmetry property!)

14

)(min)(2
*
2

*
2

22

cc
c

ggG
C

==

*
2

*
1 GG

*
22

*
21

*
2

*
1

**
11

*
22

* cc),,(,min
2

===

ccff

f
GsGsTT

Simple case: Two jobs (cont.)

• Justification:

15

*
11

*
22

*
21

*
22

*
11

*
22

*
212

*
1

*
2

*
11

*
22

*
12

*
21

*
11

*
22

*
1221221

*
1122212

] [since),(

] [since

},min{

}),(,),(min{

*

GsGs

ccGsccgsT

GGGsGs

GsGsGsGs

GsccgsGsccgsT

=

=

=

f

f

Simple case: Two jobs (cont.)

• Required additional result:

16

0))((

0)2)((

)2()2(

)2()2(

*
1

*
2

*
21

*
22

*
22

*
21

*
22

*
22

*
21

11

*
1

*
22

*
1

*
21

*
1

*
22

*
1

*
21

*
1

*
22

*
21

*
1

*
21

*
22

GGccc

cc

cc

c

c

c

c

c

c

c

c

c

c

cc

c

c

Simple case: Two jobs (cont.)

• Equivalent condition:

• Suffient condition:

nested capacity regions

• Note: However, capacity

regions are not required

to be nested

17

*
12221

*
1

*
2

2

ccc

GG

General case: n jobs

• Define (recursively):

• Theorem 1: If

then

18

=

== 1

1
1)(),(min k

i ikickkkk
C

k GckggG
kk

kk

cc
c

**
1 nGG

),,(,min **
1

*
1

**
n

n
k kkGsTT

n

cc === =

ff

f

General case: n jobs (cont.)

• In addition,

• Thus, the optimal policy applies the SRPT-FM principle:

– the shortest job is served with the highest rate,

– the second shortest job is served with the second highest rate,

– etc.

• Note also that the optimal rate vector does not depend

on the absolute sizes (only on their order)

19

kcc kkk allfor **
1

Example:

Alpha-ball

• Let and consider capacity regions

• Now

20

}1:0{ 1 = =
k
j kjkk cC

c

)in g(increasin

)in g(increasin)1(

1
1

*

1

11

*

*

jc

kkkG

k

G
kj

k

j

=

=

Alpha = 1.0

(single-server queue)

21

Gk

0 5 10 15 20
0

5

10

15

20

ck , j

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Alpha = 1.2

22

Gk

0 5 10 15 20
0

5

10

15

ck , j

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Alpha = 2.0

23

Gk

0 5 10 15 20
0

1

2

3

4

5

6

7

ck , j

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Alpha = 5.0

24

Gk

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

ck , j

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Alpha = infinite

(infinite-server queue)

25

Gk

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

ck , j

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

Summary of Part 1

• Assumptions:
– Abstract capacity regions (time-scale separation)

– Transient system

• Results:
– Optimality result for compact and symmetric capacity regions

• includes nested polymatroids (cf. Sadiq and de Veciana (2010))

• requires an implicit condition related to capacity regions

– Optimal rate vectors for each phase

• applying the SRPT-FM principle

• Open questions:
– Is it possible to make the implicit condition explicit?

– Is it possible to implement the optimal policy at time-slot scale?

26

Part 2

Optimal time-slot-level scheduler

for the wireless cellular system

27

Time-slot-level model

• R(t) = (R1(t),…, Rk(t)) = rate vector in time slot t

• Ri(t) = instantaneous rate of user i

• Assume: Ri(t) is a stationary and ergodic process

taking values in a finite set

• Assume: Processes Ri(t) are IID

28

Time-slot-level schedulers

• Assume: Scheduling policy p Pk is stationary

• Define: The long-term throughput for user i:

• Define: The (opportunistic) capacity region:

• Note: Capacity regions are compact and symmetric

29

})({)(rrr == tRPpr iii
pp

}:),,{(1 k
k

kkC P= p pp

Weight-based schedulers

• Define: Weight-based scheduler p Pk allocates time

slot t to user i* for which

– where wi are the weights related to the scheduler

• Example: MR (which is the same as PF in our case)

– wi = 1 for all i

30

)(max)(** tRwtRw iiiii =

Connection between the two time scales

• Proposition 1:

– Proof is straightforward:

31

= i kiiCiii cwtRwE
kkcmax)]([max

)]([max

})({)(max

})({)(maxmax

tRwE

tRPrw

tRPprwcw

iii

iii

i iiii kiik

=

==

==

r

rr

r

rc
p

p

Recall the optimal scheduling problem

(transient system)

• Assume that there are n jobs in the system at time 0

• What is the optimal way to make the system empty?

• Objective: Minimize the mean delay (or flow time)

• Define: Flow time (or total completion time) for policy f

where ti is the completion time of job i

• Define: Operating policies

32

} allfor :),,({ 1 kCkknn == ccc f

 == n
i itT 1

ff

Recall the recursion for G*

(based on the flow-level model)

• Define (recursively):

• Open problem 1: Is it possible to show that in our case

• Open problem 2: If so, how to implement the optimal

operating policy with a the time-slot-scale scheduler:

33

=

== 1

1
1)(),(min k

i ikickkkk
C

k GckggG
kk

kk

cc
c

**
1 nGG

ikckii
k , allfor *
*

=
p

Key property

• Proposition 2:

– Proof by induction

34

kcGcGRGE i kiii kiiCiii kk
===

**** max][max c

Alternative recursion for G*

(based on the time-slot-level model)

• Define (recursively):

– Based on the equation:

35

)increasing since defined-(well)(

)}{}{1()(

1*

0

1

1

*

kkk

k

i
iikk

fkfG

drrRGPraRPaf

=

=

=

kdrrRGPRGE
k

i
iiii

ki
==

== 0 1

**

,...,1
)}{1(]max[

Key result

• Proposition 3:

– Proof by induction

– Idea briefly on the following slide

• Corollary: Solution of the optimal scheduling problem

36

**
1 nGG

),,(,min **
1

*
1

**
n

n
k kkGsTT

n

cc === =

ff

f

kcc kkk allfor **
1

Idea of the proof

• Define:

• Easily: hk1a is non-decreasing and satisfies

• It remains to show that

37

]1)[()(

max

}{11

*
,...,1

1 kk XaRkkk

iikik

XaREah

RGX

=

=

=

1)1(][)(1
*

11 === kkXXEGh kkkk

1)(*
1 kk Gh

Optimal time-slot-level scheduler

for flow-level performance

• Theorem 2: The optimal operating policy f can be

implemented by a sequence of weight-based schedulers

p k defined by weight vectors

– Proof based on Propositions 1 and 2

• Summary: The optimal time-slot-level scheduler

allocates time slot t to user i* for which

38

),,(**
1 kk GG =w

)(max)(*
*

*
* tRGtRG iiiii =

Related reading

• S. Aalto, A. Penttinen, P. Lassila and P. Osti,

On the optimal trade-off between SRPT and

opportunistic scheduling, in ACM SIGMETRICS 2011

• S. Aalto, A. Penttinen, P. Lassila and P. Osti,

Optimal size-based opportunistic scheduler for wireless

systems, submitted, 2011

39

The End

40

