

Flow-level stability and performance of channel-aware priority-based schedulers

Samuli Aalto Pasi Lassila

NGI 2010 2-4 June 2010 Paris, France

Outline

- Problem formulation
- Channel-aware priority-based schedulers
- Stability results
- Numerical study
- Conclusions

Introduction

- Downlink data transmission in a cellular system
- Traffic consists of elastic flows
 - file transfers using TCP
- Base station transmits to a single user in a time slot
 - decided by the scheduler
 - time scale of milliseconds
- Dynamic traffic setting
 - random arrivals and departures of users (= flows)
 - time scale of seconds
- Flow-level stability and performance of various schedulers?

Schedulers

- Non-channel-aware schedulers
 - Scheduling based on average rate information
 - Example: Round Robin (RR) scheduler
- Channel-aware schedulers
 - Scheduling based on instantaneous rate information
 - Examples: Maximum Rate (MR) scheduler, Relative Best (RB) scheduler, Proportional Fair (PF) scheduler

User model

- K user classes
- Class-k users have stationary IID rate processes $R_i(t)$
 - Mean rate r_k (bps)
 - Maximum rate r_k^* (bps)
- If user *i* scheduled at time slot *t*, the corresponding flow is served with rate $R_i(t)$

Channel-aware scheduling

- Base station
 - knows the instantaneous rates $R_i(t)$ of all active users *i*
 - can favor those users having instantaneously good channel
- Static setting
 - Queue length-based policies shown to have many desirable properties [Mandelbaum and Stolyar (2004), Stolyar (2005)]
- Not much work on dynamic setting
 - Seminal work on stability by [Borst (2005), Borst and Jonckheere (2006)]
 - Minimizing mean delay very difficult and hardly anything is known

Utility-based schedulers

- Base station knows
 - instantaneous rates $R_i(t)$ of all active users i
 - throughputs $T_i(t)$ of all active users i
- Definition: Scheduling based on
 - utility function $U(\theta)$
 - time slot t allocated to user i^* such that
 - $i^* = \arg \max_i R_i(t) U'(T_i(t))$
- Examples:
 - Alpha-fair schedulers
 - Proportional Fair (PF) scheduler

Alpha-fair schedulers

- Definition: Utility-based scheduler with utility function
 - $U(\theta; \alpha) = (1 \alpha)^{-1} \theta^{1 \alpha} \qquad (\alpha \neq 1)$
 - $U(\theta; 1) = \log \theta \qquad (\alpha = 1)$
 - originally defined in [Mo and Walrand (2000)]
- Example: Proportional Fair (PF) scheduler
 - alpha-fair scheduler with $\alpha = 1$
 - time slot t allocated to user i^* such that
 - $i^* = \arg \max_i R_i(t)/T_i(t)$
 - implemented in the HDR system [Viswanath et al. (2002)]

Dynamic traffic setting

- Class-*k* users (= flows) arrive
 - according to an independent Poisson process
 - with rate λ_k (flows per second)
- Flow sizes X_i IID
 - with mean x (bits)
- Flow *i* departs
 - as soon as all X_i bits of the flow have been transmitted

Traffic load

- Class-*k* bit arrival rate $\lambda_k x$ (bps)
- Traffic load $\rho_k^* = \lambda_k x/r_k^*$ (w.r.t. the maximum rate)
- Traffic load $\rho_k = \lambda_k x/r_k$ (w.r.t. the mean rate)
- Note: $\rho_k^* < \rho_k$

Known stability results

- Definition: Flow-level stability
 - The total number of flows does not explode!
- Necessary stability condition for non-channel-aware schedulers:
 - $\rho_1 + \ldots + \rho_K \le 1$ [classic queueing theory]
- Necessary stability condition for channel-aware schedulers:
 - $\rho_1^* + \ldots + \rho_K^* \le 1$ [Borst and Jonckheere (2006)]
- Sufficient stability condition for alpha-fair schedulers: – $\rho_1^* + ... + \rho_k^* < 1$ [Borst and Jonckheere (2006)]

Overview

- We study priority-based channel-aware schedulers
 - Priority can be any strictly increasing function of instantaneous rate
 - Includes as special cases many known channel-aware schedulers
- Stability
 - Achieving maximum stability region is a robustness property
 - We give a general condition when the necessary condition is also sufficient
 - When the necessary condition is not sufficient, we give a sufficient condition for some special cases
- Performance
 - We have also made simulation studies to gain insight on actual performance (including comparisons against alpha-fair policies)

Outline

- Problem formulation
- Channel-aware priority-based schedulers
- Stability results
- Numerical study
- Conclusions

Rate-based priority schedulers

- Base station knows
 - instantaneous rates $R_i(t)$ of all active users i
- Definition: Scheduling based on
 - class-specific increasing priority function $h_k(r)$
 - determines the instantaneous priority $P_i(t) = h_{k(i)}(R_i(t))$ of user *i*
 - time slot t allocated to user i^* such that

• $i^* = \arg \max_i P_i(t) = \arg \max_i h_{k(i)}(R_i(t))$

- Examples:
 - Weight-based priority schedulers [Borst (2005)]
 - CDF-based priority schedulers [Park et al. (2005)]

Weight-based priority schedulers (1)

- Definition: Rate-based priority scheduler with
 - linear priority functions $h_k(r) = w_k r$
- Examples:
 - Absolute rate priority schedulers (e.g. MR)
 - Relative rate priority schedulers (e.g. RB)
 - Proportional rate priority schedulers (e.g. PB)
 - MR, RB, and PB break ties within any priority class at random

Weight-based priority schedulers (2)

- Definition: Absolute rate priority scheduler ($w_k = 1$):
 - time slot t allocated to user i^* such that
 - $i^* = \arg \max_i R_i(t)$
- Definition: Relative rate priority scheduler ($w_k = 1/r_k$):
 - time slot t allocated to user i^* such that

• $i^* = \arg \max_i R_i(t) / r_{k(i)}$

- Def: Proportional rate priority scheduler ($w_k = 1/r_k^*$):
 - time slot t allocated to user i^* such that
 - $i^* = \arg \max_i R_i(t) / r_{k(i)}^*$

CDF-based priority schedulers

- Definition: Rate-based priority scheduler with
 - non-linear priority functions $h_k(r) = F_k(r)$
 - where $F_k(r) = P\{R_k \le r\}$ is the stationary CDF of the corresponding rate process
- Example: CS breaks ties within any priority class at random

Outline

- Problem formulation
- Channel-aware priority-based schedulers
- Stability results
- Numerical study
- Conclusions

Rate model (1)

- Assumption: a finite number of possible rate values
- Class-*k* users
 - Maximum rate r_k^*
 - Second highest rate r_k^{**}
 - Maximum priority $p_k^* = h_k(r_k^*)$
 - Second highest priority $p_k^{**} = h_k(r_k^{**})$
- Note:
 - Proportional rate priority scheduler: $p_k^* = 1$ for all k
 - CDF-based priority scheduler: $p_k^* = 1$ for all k

Rate model (2)

• Example: Possible rate values for the HDR system

Index	Rate $(kbit/s)$
r_1	38.4
r_2	76.8
r_3	102.6
r_4	153.6
r_5	204.8
r_6	307.2
r_7	614.4
r_8	921.6
r_9	1228.8
r_{10}	1843.2
r_{11}	2457.6

Main result

- Consider a rate-based priority scheduler π
- Result 1: If $p_k^* > p_l^{**}$ for all $k \neq l$, then scheduler π is stable under condition
 - $-\rho_1^* + \ldots + \rho_K^* < 1$
 - i.e. the same condition as for the alpha-fair schedulers

- Intuitive proof:
 - Since $p_k^* > p_l^{**}$ for all $k \neq l$, all classes k will be served with their own maximum rate r_k^* at the stability limit

Corollaries (1)

• If $r_k^* = r_l^*$ for all k = l, then any absolute rate priority scheduler is stable under the given condition

 If r_k*/r_k > r_l**/r_l for all k ≠ l, then any relative rate priority scheduler is stable under the given condition

Corollaries (2)

 Any proportional rate priority scheduler is stable under the given condition

• Any CDF-based priority scheduler is stable under the given condition

Another result

- Consider a rate-based priority scheduler π that breaks ties within any priority class at random
- Result 2: If $p_k^* \ge p_l^{**}$ for all $k \ne l$, then scheduler π is stable under condition

$$-\rho_1^* + \ldots + \rho_K^* < 1$$

- Intuitive proof:
 - If $p_k^* = p_l^{**}$ for some $k \neq l$, the tie-breaking rule guarantees that class k will take over class l at the stability limit, and, thus, will be served with its own maximum rate r_k^*

Further stability conditions for K = 2

- Assumption: K = 2
- Consider a rate-based priority scheduler π that breaks ties within any priority class at random
- Result 3: If $p_2^* < p_1^{**}$, then scheduler π is stable under condition $- P\{h_1(M_1) > p_2^*\} + \rho_2^* < 1$

• Note: The condition above is more stringent than $-\ \rho_1{}^*+\rho_2{}^*<1$

Numerical example

Figure 1: Stability region as a function of ρ_1^* and ρ_2^* when $j_1 = 7$ (upper panel) and $j_1 = 4$ (lower panel).

Impact of a continuous rate distribution

- Consider the case where the rate distribution is continuous, however, with a bounded support
- Is the natural condition below sufficient for stability?

 $-\rho_1^* + \ldots + \rho_K^* < 1$

- Proportional rate and CDF-based priority schedulers are still stable under the given condition
- Absolute rate priority scheduler is stable if the classspecific rate distributions have the same support
- Relative rate priority scheduler needs a more stringent condition for stability

Outline

- Problem formulation
- Channel-aware priority-based schedulers
- Stability results
- Numerical study
- Conclusions

Numerical study

- Schedulers
 - Priority-based: MR, RB, PB and CS with random tie-breaking
 - Utility-based: PF ($\alpha = 1$) and PD ($\alpha = 2$)
 - Also, investigate impact of using SRPT-like tie-breaking rules

Parameters

- 2 user classes with flow arrival rates $\lambda_1 = \lambda_2 = 1/2$
- HDR transmission rates, i.e., 11 possible rate values
 - Class 1 flows can achieve 7 lowest rates
 - Class 2 flows can achieve all 11 rates
- Truncated geometric rate distributions with parameters

 $q_1 = 1, q_2 = 1/2$

Overall performance (mean delay)

Fairness (mean delay ratio)

Other performance comparisons

Outline

- Problem formulation
- Channel-aware priority-based schedulers
- Stability results
- Numerical study
- Conclusions

Conclusions

- Stability
 - Proportional rate and CDF-based priority schedulers do have the maximum stability region
 - Absolute rate priority schedulers don't necessarily have
 - Relative rate priority schedulers don't usually have
- Performance
 - MR and RB offer quite good performance but may become unstable
 - PB and CS policies are stable but very unfair
 - PF performs very well over a large region of loads (good overall)
 - PD can outperform PF at very high loads
 - SRPT-like tie-breaking heuristics do not work at the time-slot level
 - To minimize the mean delay, flow-level information can be used to tune the packet level schedulers

