

Outline

- Setup: network with hierarchically coded multicast streams
- Three approaches to calculate blocking probabilities
- Combinatorial convolution-truncation algorithm
- Numerical example
- Summary \& ongoing work

Setup

- Circuit-sw. network, or packet-sw. with strict quality guarantees
- A unique source offers a variety of channels $i \in I$
- hierarchically coded audio or video streams with two layers
- layer 1 = the most important substream, layer 2 = both substreams
- required capacity $d(l)$ on each link depends on layer l
- Each channel is delivered to user populations $u \in U$ by a multicast connection with dynamic membership
- Each multicast connection uses the same routing tree
- the source located at the root node
- users located at leaf nodes
- Physical links $j \in J$ with finite capacities C_{j}

Routing tree

Layered Multicast Connection With Dynamic Membership (1)

Layered Multicast Connection With Dynamic Membership (2)

Unlimited link capacities (1)

- Consider first a network with unlimited link capacities
- Let

$$
Y_{j i}=\text { "state of channel } i \text { on link } j " \in\{0,1,2\}
$$

- Note that

$$
Y_{j i}=\max \left\{Y_{u i} ; u \in U_{j}\right\}
$$

- Link state (for any link $j \in J$)

$$
\mathbf{Y}_{j}=\left(Y_{j i} ; i \in I\right) \in S:=\{0,1,2\}^{I}
$$

- Network state

$$
\mathbf{X}=\left(\mathbf{Y}_{u} ; u \in U\right)=\left(Y_{u i} ; u \in U, i \in I\right) \in \Omega:=\{0,1,2\}^{U \times I}
$$

Unlimited link capacities (2)

- Assume: independent and infinite user populations with Poisson request arrivals and exponential holding times
- Then we have

$$
P\{\mathbf{X}=\mathbf{x}\}=\prod_{u \in U} P\left\{\mathbf{Y}_{u}=\mathbf{y}_{u}\right\}=\prod_{u \in U} \prod_{i \in I} P\left\{Y_{u i}=y_{u i}\right\}
$$

where (by utilising $\mathrm{M} / \mathrm{M} / \infty$ model):

$$
p_{u i l}:=P\left\{Y_{u i}=l\right\}= \begin{cases}\exp \left(-\frac{\lambda_{u i 1}}{\mu}\right) \exp \left(-\frac{\lambda_{u i 2}}{\mu}\right), & l=0 \\ \exp \left(-\frac{\lambda_{u i 2}}{\mu}\right)\left(1-\exp \left(-\frac{\lambda_{u i 1}}{\mu}\right)\right), & l=1 \\ 1-\exp \left(-\frac{\lambda_{u i 2}}{\mu}\right), & l=2\end{cases}
$$

Unlimited link capacities (3)

- User population model (for a single channel at a single leaf node)
- two independent $M / M / \infty$ queues

Limited link capacities

- Consider now a network with limited link capacities C_{j}
- The set of possible network states, $\widetilde{\Omega}$, is clearly a subset of Ω
- Let $\widetilde{\mathbf{X}}$ denote the network state in this case, $\widetilde{\mathbf{X}} \in \widetilde{\Omega}$
- As the most detailed traffic process (telling how many users are active on each leaf node, channel and layer) is a reversible Markov process, the Truncation Principle applies and we have

$$
P\{\tilde{\mathbf{X}}=\mathbf{x}\}=\frac{P\{\mathbf{X}=\mathbf{x}\}}{P\{\mathbf{X} \in \widetilde{\Omega}\}}
$$

- So, due to the Truncation Principle, it is enough to analyse the (much easier) system with unlimited link capacities!

Blocking probability

- $B_{u r}=$ blocking probability for user population u, requested channel I and layer r

$$
B_{u r}:=1-P\left\{\widetilde{\mathbf{X}} \in \widetilde{\Omega}_{u r}\right\}=1-\frac{P\left\{\mathbf{X} \in \widetilde{\Omega}_{u r}\right\}}{P\{\mathbf{X} \in \widetilde{\Omega}\}}
$$

- where $\widetilde{\Omega}_{u r}$ is the set of non-blocking states for (u, I, r)
- How to calculate $B_{u r}$?

Calculation of blocking probabilities (1)

- 1st approach: closed form expression

$$
B_{u r}=1-\frac{\sum_{\mathbf{x} \in \widetilde{\Omega}_{u r}} P\{\mathbf{X}=\mathbf{x}\}}{\sum_{\mathbf{x} \in \widetilde{\Omega}} P\{\mathbf{X}=\mathbf{x}\}}
$$

- Problem: computationally extremely complex
- exponential growth both in U and $I\left(|\Omega|=3^{U I}\right)$

Calculation of blocking probabilities (2)

- 2nd approach: algorithm based on the (original) link state

$$
B_{u r}=1-\frac{\sum_{\mathbf{y} \in S} Q_{J, r}^{\prime}(\mathbf{y})}{\sum_{\mathbf{v} \in S} Q_{J}(\mathbf{y})}
$$

where probabilities $Q^{\prime}{ }_{J, r}(\mathbf{y})$ and $Q_{j}(\mathbf{y})$ can be calculated recursively (from the root link J back to leaf links u)

- Problem: still computationally complex
- linear growth in U but exponential growth in $I\left(|S|=3^{I}\right)$

Calculation of blocking probabilities (3)

- 3rd approach: algorithm based on a reduced link state

$$
B_{u r}=1-\frac{\sum_{\mathbf{k}^{\prime} \in S^{\prime}} \sum_{l} Q^{\prime}{ }_{J, r}\left(\mathbf{k}^{\prime}, l\right)}{\sum_{\mathbf{k} \in S^{\prime}} Q_{J}(\mathbf{k})}
$$

where probabilities $Q_{j}(\mathbf{k})$ and $Q^{\prime}{ }_{J, r}\left(\mathbf{k}^{\prime}, l\right)$ can be calculated recursively (from the root link J back to leaf links u)

- Problem: computationally reasonable $\left(\left|S^{\prime}\right|=(I+1)^{2}\right)$ but \ldots ... restrictive assumptions have to be made!

Restrictive assumptions

- (i) Users belong to two groups, according to which layer they subscribe to
- (ii) Channels are chosen with equal probabilities, i.e.,

$$
\lambda_{u i l}=\frac{\lambda_{u l}}{I} \quad \text { for all } i
$$

- Make channels statistically indistinguishable at each layer!
- But user populations and the network topology may still be unsymmetric

Consequences

- Channels statistically indistinguishable at each layer \Rightarrow
- Whenever there are k channels active at any layer l on any leaf link u, each possible index combination $\left\{i_{1}, \ldots, i_{k}\right\}$ is equally probable
- This and the independence of the user populations \Rightarrow
- Whenever there are k channels active at any layer l on any link j, each possible index combination $\left\{i_{1}, \ldots, i_{k}\right\}$ is equally probable
- Thus,
- Just count the total number of active channels at each layer
- Utilize combinatorics

Reduced link state

- Consider again a network with unlimited link capacities
- Let

$$
K_{j l}=\text { "number of channels at layer } l \text { on link } j "
$$

- Reduced link state (for any link $j \in J$)

$$
\mathbf{K}_{j}=\left(K_{j 1}, K_{j 2}\right) \in S^{\prime}:=\{0,1, \ldots, I\}^{2}
$$

- Due to the restrictive assumptions made, we have a multinomial distribution,

$$
\pi_{u}(\mathbf{k}):=P\left\{\mathbf{K}_{u}=\mathbf{k}\right\}=\frac{I!}{k_{1}!k_{2}!\left(I-k_{1}-k_{2}\right)!} p_{u 0}^{I-k_{1}-k_{2}} p_{u 1}^{k_{1}} p_{u 2}^{k_{2}}
$$

Algorithm(1)

- Key result 1:
- If link j has two downstream neighbouring links (s, t), then

$$
P\left\{\mathbf{K}_{j}=\mathbf{k}\right\}=\sum_{\mathbf{l}}^{\mathbf{l}} \sum_{\mathbf{x}} \sum_{\mathbf{x}} s(\mathbf{x}, \mathbf{y} \mid \mathbf{l}, \mathbf{m}) P\left\{\mathbf{K}_{s}=\mathbf{l}\right\} P\left\{\mathbf{K}_{t}=\mathbf{m}\right\}
$$

- In other words,

$$
\pi_{j}(\mathbf{k})=\left[\pi_{s} \otimes \pi_{t}\right](\mathbf{k})
$$

- Proved by a "sampling without replacement" argument

Algorithm (2)

- Definition of combinatorial convolution $\otimes: R\left(S^{\prime}\right) \times R\left(S^{\prime}\right) \rightarrow R\left(S^{\prime}\right)$
- Let f and g be any real-valued function on $S^{\prime}=\{0,1, \ldots, I\}^{2}$.
- Then define

$$
[f \otimes g](\mathbf{k})=\sum_{\mathbf{l}} \sum_{\mathbf{m}} \sum_{\mathbf{x}} s(\mathbf{x}, \mathbf{y} \mid \mathbf{l}, \mathbf{m}) f(\mathbf{l}) g(\mathbf{m})
$$

where $s(\mathbf{x}, \mathbf{y} \mid \mathbf{l}, \mathbf{m})$ is a combinatorial coefficient and vector \mathbf{y} is determined from vectors $\mathbf{k}, \mathbf{l}, \mathbf{m}$ and \mathbf{x} as follows:

$$
\left\{\begin{array}{l}
k_{1}=l_{1}+m_{1}-x_{1}-x_{2}-y_{1} \\
k_{2}=l_{2}+m_{2}-y_{2}
\end{array}\right.
$$

Algorithm (3)

Algorithm (4)

- Define (for all $j \in J$)
$Q_{j}(\mathbf{k})=P\left\{\mathbf{K}_{j}=\mathbf{k} ; D_{j^{\prime}} \leq C_{j^{\prime}}, j^{\prime} \in M_{j}\right\}$
$Q^{\prime}{ }_{j r}\left(\mathbf{k}^{\prime}, l\right)=P\left\{\mathbf{K}^{\prime}{ }_{j}=\mathbf{k}^{\prime}, Y_{j, I}=l ; D^{\prime}{ }_{j^{\prime}}+d(r) \leq C_{j^{\prime}}, j^{\prime} \in M_{j} \cap R_{u} ;\right.$

$$
\left.D_{j^{\prime}} \leq C_{j^{\prime}}, j^{\prime} \in M_{j}\right\}
$$

- where \mathbf{K}_{j}^{\prime} is the reduced link state without channel I, D_{j}, is the total demand and D_{j}^{\prime}, is the demand without channel I
- Then the blocking probability for class (u, I, r) is

$$
B_{u r}=1-\frac{P\left\{\mathbf{X} \in \tilde{\Omega}_{u r}\right\}}{P\{\mathbf{X} \in \widetilde{\Omega}\}}=1-\frac{\sum_{\mathbf{k}^{\prime} \in S^{\prime}} \sum Q^{\prime} Q_{J, r}\left(\mathbf{k}^{\prime}, l\right)}{\sum_{\mathbf{k} \in S^{\prime}} Q_{J}(\mathbf{k})}
$$

Algorithm (5)

- Recursion 1 to calculate the denominator $Q_{J}(\mathbf{k})$:

$$
Q_{j}(\mathbf{k})= \begin{cases}T_{j}\left[\pi_{j}\right](\mathbf{k}), & j \in U \\ T_{j}\left[\bigotimes_{j^{\prime} \in N_{j}}^{\otimes} Q_{j^{\prime}}\right](\mathbf{k}), & j \notin U\end{cases}
$$

- Definition of truncation operator $T_{j}: R\left(S^{\prime}\right) \rightarrow R\left(S^{\prime}\right)$
- Let f be any real-valued function on $S^{\prime}=\{0,1, \ldots, I\}^{2}$.
- Then define

$$
T_{j}[f](\mathbf{k})=f(\mathbf{k}) \cdot 1\left\{k_{1} d(1)+k_{2} d(2) \leq C_{j}\right\}
$$

Algorithm (6)

- Recursion 2 to calculate the numerator $Q^{\prime}{ }_{J, r}\left(\mathbf{k}^{\prime}, l\right)$:

$$
Q_{j r}^{\prime}\left(\mathbf{k}^{\prime}, l\right)= \begin{cases}T_{u r}^{\circ}\left[E \pi_{u}\right]\left(\mathbf{k}^{\prime}, l\right), & j=u \\ T_{j r}^{\circ}\left[Q_{D_{u}}^{\prime}(j), r^{\odot}{ }_{j^{\prime} \in N_{j} \backslash R_{u}}^{\otimes} Q_{j^{\prime}}\right]\left(\mathbf{k}^{\prime}, l\right), & j \in R_{u} \backslash\{u\}\end{cases}
$$

- Definition of truncation operator $T^{\circ}{ }_{j r}: R\left(S^{\prime \prime}\right) \rightarrow R\left(S^{\prime \prime}\right)$
- Let f be any real-valued function on $S^{\prime \prime}=S^{\prime} \times\{0,1,2\}$.
- Then define

$$
T_{j r}^{\circ}[f]\left(\mathbf{k}^{\prime}, l\right)=f\left(\mathbf{k}^{\prime}, l\right) \cdot 1\left\{d(1) k_{1}^{\prime}+d(2) k_{2}^{\prime}+\max \{d(l), d(r)\} \leq C_{j}\right\}
$$

Algorithm(7)

- Definition of operation $\odot: R\left(S^{\prime \prime}\right) \times R\left(S^{\prime}\right) \rightarrow R\left(S^{\prime \prime}\right)$
- Let f and g be any real-valued function on $S^{\prime \prime}$ and S^{\prime}, respectively
- Then define

$$
[f \odot g]\left(\mathbf{k}^{\prime}, l\right)=\sum_{\mathbf{l}^{\prime}} \sum_{\mathbf{m}^{\prime}} \sum_{\mathbf{x}} s^{\prime}\left(\mathbf{x}, \mathbf{y} \mid \mathbf{l}^{\prime}, \mathbf{m}^{\prime}\right) \sum_{\max \left\{v_{1}, v_{2}\right\}=l} f\left(\mathbf{l}^{\prime}, v_{1}\right) E g\left(\mathbf{m}^{\prime}, v_{2}\right)
$$

where $s^{\prime}\left(\mathbf{x}, \mathbf{y} \mid \mathbf{l}^{\prime}, \mathbf{m}^{\prime}\right)$ is another combinatorial coefficient and vector \mathbf{y} is determined from vectors $\mathbf{k}^{\prime}, \mathbf{l}^{\prime}, \mathbf{m}^{\prime}$ and \mathbf{x} as before

Algorithm (8)

- Key result 2:
- If link j has two downstream neighbouring links (s, t), then

$$
P\left\{\mathbf{K}_{j}^{\prime}=\mathbf{k}\right\}=\sum_{\mathbf{l}^{\prime} \mathbf{m}^{\prime} \mathbf{x}} \sum s^{\prime}\left(\mathbf{x}, \mathbf{y} \mid \mathbf{l}^{\prime}, \mathbf{m}^{\prime}\right) P\left\{\mathbf{K}_{s}^{\prime}=\mathbf{l}^{\prime}\right\} P\left\{\mathbf{K}_{t}^{\prime}=\mathbf{m}^{\prime}\right\}
$$

- So, $s^{\prime}\left(\mathbf{x}, \mathbf{y} \mid \mathbf{l}, \mathbf{m}^{\prime}\right)$ is the same as $s(\mathbf{x}, \mathbf{y} \mid \mathbf{l}, \mathbf{m})$ but without channel I
- Definition of operator $E: R\left(S^{\prime}\right) \rightarrow R\left(S^{\prime}\right)$
- Let f be any real-valued function on S^{\prime}.
- Then define

$$
E[f]\left(\mathbf{k}^{\prime}, l\right)= \begin{cases}\frac{I-k_{1}^{\prime}-k_{2}^{\prime}}{I} f\left(\mathbf{k}^{\prime}\right), & l=0 \\ \frac{k_{l}^{\prime}+1}{I} f\left(\mathbf{k}^{\prime}+\mathbf{e}_{l}\right), & l>0\end{cases}
$$

Example network

- Comparison of execution times:

I	time $[s]$

4	4
8	32
12	228
16	1191
20	4727
24	15386

Summary and ongoing work

- Summary:
- "Combinatorial convolution-truncation" algorithm presented for the calculation of blocking probabilities in a network with hierarchically coded multicast streams
- approximate complexity $O\left(U I^{8}\right)$
- avoids exponential dependence on U and I but ...
- ... requires restrictive assumptions (all channels have to look the same)
- Ongoing work:
- generalisation of the algorithm for more layers, more groups of multicast channels, and other user population models (incl. general holding time distribution)
- development of an efficient simulation method (by the Inverse Convolution approach)

The End

60

