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Outline

• Setup: network with hierarchically coded multicast streams
• Three approaches to calculate blocking probabilities
• Combinatorial convolution-truncation algorithm
• Numerical example
• Summary & ongoing work
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Setup

• Circuit-sw. network, or packet-sw. with strict quality guarantees

• A unique source offers a variety of channels i ∈ I
– hierarchically coded audio or video streams with two layers

– layer 1 = the most important substream, layer 2 = both substreams

– required capacity d(l) on each link depends on layer l

• Each channel is delivered to user populations u ∈ U by
a multicast connection with dynamic membership

• Each multicast connection uses the same routing tree
– the source located at the root node
– users located at leaf nodes

• Physical links j ∈ J with finite capacities Cj
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Routing tree

Source

Root link J

Leaf link u

User population u

Link j



5

Layered Multicast Connection With Dynamic Membership (1)

Source

Layer 2 user
Layer 1 user
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Layered Multicast Connection With Dynamic Membership (2)

Source

New layer 2 user
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Unlimited link capacities (1)

• Consider first a network with unlimited link capacities
• Let

• Note that

• Link state (for any link j ∈ J)

• Network state
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Unlimited link capacities (2)

• Assume: independent and infinite user populations with
Poisson request arrivals and exponential holding times

• Then we have

where (by utilising M/M/∞ model):
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Unlimited link capacities (3)

• User population model
(for a single channel at a single leaf node)

– two independent M/M/∞ queues
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Limited link capacities

• Consider now a network with limited link capacities Cj
• The set of possible network states, , is clearly a subset of Ω
• Let denote the network state in this case,
• As the most detailed traffic process (telling how many users are

active on each leaf node, channel and layer) is a reversible
Markov process, the Truncation Principle applies and we have

• So, due to the Truncation Principle, it is enough to analyse the
(much easier) system with unlimited link capacities!

}~{
}{

}~{
Ω∈

===
X

xX
xX

P

P
P

Ω~

X~ Ω∈ ~~X



11

Blocking probability

• Bur = blocking probability for user population u, requested
channel I and layer r

– where is the set of non-blocking states for (u,I,r)

• How to calculate Bur?
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Calculation of blocking probabilities (1)

• 1st approach : closed form expression

• Problem : computationally extremely complex
– exponential growth both in U and I (|Ω| = 3UI)
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Calculation of blocking probabilities (2)

• 2nd approach : algorithm based on the (original) link state

where probabilities Q’J,r(y) and Qj (y) can be calculated
recursively (from the root link J back to leaf links u)

• Problem : still computationally complex

– linear growth in U but exponential growth in I (|S| = 3I)
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Calculation of blocking probabilities (3)

• 3rd approach : algorithm based on a reduced link state

where probabilities Qj (k) and Q’J,r(k’ ,l) can be calculated
recursively (from the root link J back to leaf links u)

• Problem : computationally reasonable (|S’| = (I+1)2) but …
… restrictive assumptions have to be made!

�

� �

∈

∈−=

S'
J

S'' l
rJ

ur Q

l'Q'

B

k

k
k

k

)(

),(

1
,



15

Restrictive assumptions

• (i) Users belong to two groups, according to which layer they
subscribe to

• (ii) Channels are chosen with equal probabilities, i.e.,

– Make channels statistically indistinguishable at each layer!

– But user populations and the network topology may still be
unsymmetric
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Consequences

• Channels statistically indistinguishable at each layer �

– Whenever there are k channels active at any layer l on any leaf link
u, each possible index combination { i1,…,ik} is equally probable

• This and the independence of the user populations �

– Whenever there are k channels active at any layer l on any link j,
each possible index combination { i1,…,ik} is equally probable

• Thus,
– Just count the total number of active channels at each layer
– Utilize combinatorics
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Reduced link state

• Consider again a network with unlimited link capacities
• Let

• Reduced link state (for any link j ∈ J)

• Due to the restrictive assumptions made, we have a
multinomial distribution,
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Algorithm (1)

• Key result 1:
– If link j has two downstream neighbouring links (s,t), then

– In other words,

– Proved by a “sampling without replacement”
argument
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Algorithm (2)

• Definition of combinatorial convolution ⊗: R(S’)×R(S’) → R(S’)

– Let f and g be any real-valued function on S’ = {0,1,…,I} 2.

– Then define

where s(x,y|l,m) is a combinatorial coefficient and vector y is
determined from vectors k, l, m and x as follows:
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Algorithm (3)
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Algorithm (4)

• Define (for all j ∈ J)

– where K ’ j is the reduced link state without channel I,
Dj’ is the total demand and D’ j’ is the demand without
channel I

• Then the blocking probability for class (u,I,r) is
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Algorithm (5)

• Recursion 1 to calculate the denominator QJ (k):

• Definition of truncation operator Tj: R(S’) → R(S’)

– Let f be any real-valued function on S’ = {0,1,…,I} 2.

– Then define
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• Recursion 2 to calculate the numerator Q’J,r (k’, l):

• Definition of truncation operator T°jr : R(S’’) → R(S’’)

– Let f be any real-valued function on S’’ = S’×{0,1,2}.

– Then define
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Algorithm (7)

• Definition of operation ⋅ : R(S’’)×R(S’) → R(S’’)

– Let f and g be any real-valued function on S’’ and S’, respectively

– Then define

where s’(x,y|l’ ,m’ ) is another combinatorial coefficient and vector y
is determined from vectors k’ , l’ , m’ and x as before
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Algorithm (8)

• Key result 2:
– If link j has two downstream neighbouring links (s,t), then

– So, s’(x,y|l’ ,m’ ) is the same as s(x,y|l,m) but without channel I

• Definition of operator E : R(S’) → R(S’’)

– Let f be any real-valued function on S’.
– Then define
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Example network

• Comparison of execution times:

I time [s]
---------------------

4 4
8 32

12 228
16 1191
20 4727
24 15386
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Summary and ongoing work

• Summary:
– “Combinatorial convolution-truncation” algorithm presented for the

calculation of blocking probabilities in a network with hierarchically
coded multicast streams

• approximate complexity O(UI8)

• avoids exponential dependence on U and I but …

• … requires restrictive assumptions (all channels have to look
the same)

• Ongoing work:
– generalisation of the algorithm for more layers, more groups of

multicast channels, and other user population models (incl.
general holding time distribution)

– development of an efficient simulation method (by the Inverse
Convolution approach)
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The End


