

- Optimal control of batch service queues
- Characterization of the output process for some fluid queues
- Blocking probabilities in dynamic multicast networks
- Other topics

Batch service queue

- In an ordinary queue
 - customers are served individually
- In a batch service queue
 - customers are served in batches of varying size
- Additional parameter needed:
 - -Q = service capacity = max nr of customers served in a batch

Control problem

• Given

- arrival process A(t) and
- service times S_n
- Determine
 - service epochs T_n
 - service batches B_n
- Operating policy $\pi = ((T_n), (B_n))$
 - should be admissible
- Usual operating policy:
 - after a service completion, a new service is initiated as soon as

$X(t) \ge 1$

- a service batch includes as many customers as possible

Queueing models considered

- M/G(Q)/1
 - Poisson arrivals
 - generally distributed IID service times
 - single server with service capacity Q
- M^X/G(Q)/1
 - compound Poisson arrivals
 - generally distributed IID service times
 - single server with service capacity Q

Known results

	Infinite service capacity Q = [∞]	Finite service capacity Q < [∞]
Linear holding costs z = h(x)	Case A : - Deb & Serfozo (1973) - Deb (1984)	Case B: - Deb & Serfozo (1973)
General holding costs z = h(x,w)	Case C : - Weiss (1979) - Weiss & Pliska (1982)	Case D

Research topics

Cases A and B: linear holding costs

- Deb & Serfozo (1973)
 - Poisson arrivals
 - average cost & discounted cost cases
- Deb (1984)
 - compound Poisson arrivals
 - discounted cost case only
- Result:
 - h(x) is "uniformly increasing"

=> a queue length threshold policy is optimal

• Note: Optimal threshold is always less or equal to Q

19-1-99	
---------	--

Α	В

- Queue length threshold policy π_x with threshold x:
 - after a service completion, a new service is initiated as soon as

$X(t) \ge x$

- a service batch includes as many customers as possible
- Note: the usual operating policy = π_1

В

Α

Research topics

Case C: general holding costs & infinite service capacity

- Weiss (1979),
 Weiss & Pliska (1982)
 - compound Poisson arrivals
 - average cost case only
- Result:
 - Z(t) is increasing (without limits when service is postponed forever)
 - => a cost rate threshold policy is optimal

С

- **Cost rate threshold policy** $\pi(z)$ with threshold z:
 - after a service completion, a new service is initiated as soon as

$Z(t) \ge z$

- a service batch includes as many customers as possible
 - infinite capacity => all waiting customers

С

Research topics

New results

	Infinite service capacity Q = [∞]	Finite service capacity Q < [∞]
Linear	Case A :	Case B :
holding costs	- Deb & Serfozo (1973)	- Deb & Serfozo (1973)
z = h(x)	- Deb (1984)	- Deb (1984)
General	Case C :	Case D :
holding costs	- Weiss (1979)	- Aalto (1997) [1]
z = h(x,w)	- Weiss & Pliska (1982)	- Aalto (1998) [2]

Research topics

- Cost rate threshold Q-policy $\pi_Q(z)$ with threshold z:
 - after a service completion, a new service is initiated as soon as

 $Z(t) \ge z$ or $X(t) \ge Q$

- a service batch includes as many customers as possible
 - finite capacity => min{X(t),Q}

Research topics

- Aalto (1998) [2]
 - **compound** Poisson arrivals
 - discounted cost case only
- Result:
 - FIFO queueing discipline
 - consistent holding costs,
 - no serving costs included (K = c = 0) and
 - bounded arrival batches

=> a general threshold Q-policy is optimal

 General threshold Q-policy π_Q(z, ζ) with threshold z and (increasing) value function ζ:

- after a service completion, a new service is initiated as soon as

 $Z(t) + \zeta(X(t)) \ge z \quad \text{or} \quad X(t) \ge Q$

- a service batch includes as many customers as possible
 - finite capacity => min{X(t),Q}

Contents

- Optimal control of batch service queues
- Characterization of the output process for some fluid queues
- Blocking probabilities in dynamic multicast networks
- Other topics

- On-off source with rate c₀
 - Idle periods ~ $Exp(\lambda)$
 - Active periods ~ F(t)
- $c_0 \le c_1 \implies input = output$
- Assumption:

 $c_0 > c_1$

=> output looks like another on-off source (with rate c_1)

- Result:
 - active periods on the output line ~
 busy periods in M/G/1 queue with arrival rate (1 - c)λ and service time distribution function F(ct)

2

on

on

on

F(t

F(t)

off

C₀

Fluid queue driven by multiple homogeneous on-off sources

• Assumption:

 $c_0 \ge c_1$

- => output looks like another on-off source (with rate c_1) N
- Rubinovitch (1973): c₀ = c₁ =>
 - active periods on the output line ~
 busy periods in M/G/1 queue with arrival rate (N - 1)λ and service time distribution function F(t)
- Boxma & Dumas (1998), Aalto (1998) [4]:
 - active periods on the output line ~
 busy periods in M/G/1 queue with arrival rate (N - c)λ and service time distribution function F(ct)

Fluid queue driven by multiple heterogeneous on-off sources

• Assumption:

 $c_0^i \ge c_1$ for all *i*

=> output looks like another on-off source (with rate c₁)

• Kaspi & Rubinovitch (1975): $c_0^i = c_1$ for all i =>

- characterization of the active periods on the output line by Laplace transforms
- Boxma & Dumas (1998), Aalto (1998) [4]:
 - characterization of the active periods on the output line by Laplace transforms

Fluid queue driven by multiple exponential on-off sources (2)

• Input rate is modulated by the following birth-death process J(t):

- In general, the ouput rate is modulated by a 3-dimensional Markov jump process (with an infinite state space)
- However, if $c_0 > c_1$, then the output looks like an on-off source and it is modulated by the following birth-death process:

$$0 \xrightarrow{N\lambda} 1 \xrightarrow{(N-c)\lambda} (N-c)\lambda \xrightarrow{(N-c)\lambda} 3 \xrightarrow{(N-c)\lambda} c\mu$$

- note that, the active periods of output line ~ busy periods in M/M/1 queue with parameters (N-c) λ and c μ

Fluid queue driven by a Markov jump process (1)

• Input rate modulated by a (general) Markov jump process J(t)

 $r_0(t) = a(J(t))$

• Assumption 1:

 $a(j) \neq c_1$ for all j

- Assumption 2:
 - visits to underloaded $(a(j) < c_1)$ and overloaded $(a(j) > c_1)$ states constitute an alternating renewal process
- Aalto (1998) [3]:
 - characterization of the output rate process by constructing another Markov jump process, which modulates the output rate:

$$r_1(t) = d(\widetilde{J}(t))$$

Contents

- Optimal control of batch service queues
- Characterization of the output process for some fluid queues
- Blocking probabilities in dynamic multicast networks
- Other topics

Blocking probabilities in dynamic multicast networks

- Co-operation with Jorma Virtamo, Jouni Karvo and Olli Martikainen from Helsinki University of Technology
- Application:
 - TV or radio delivery via a telecommunication network
- Multicast communication can be implemented by
 - point-to-point connections,
 - static multicast connections, or
 - dynamic multicast connections

Point-to-point connections

- Flexible but ...
- ... wasting resources

Static multicast connections

- Saving resources but ...
- ... inflexible

Dynamic multicast connections

- Flexible
- Saving resources

- Networks with
 - point-to-point or
 - static multicast connections
 - can be modelled as loss networks, but not a network with
 - dynamic multicast connections
- Thus, new methods are needed to calculate blocking probabilities in dynamic multicast networks

Different types of blocking

- Call blocking
- $(b_{i}^{c} = 2/6 = 33\%)$
- Channel blocking $(B_i^c = 2/3 = 67\%)$
- Time blocking

 $(B_{i}^{t} = 8/20 = 40\%)$

Blocking in a single link

- Karvo, Virtamo, Aalto & Martikainen (1998a) BC'98:
 - method to calculate link occupancy distribution and different types of blocking probabilities in a single link with finite capacity
- Assumptions:
 - other links with infinite capacity
 - user populations in the leaves of the multicast tree subscribe to different channels i according to independent Poisson processes
 - channel subscription times (of user populations) generally distributed with channel-wise means
- Ideas:
 - active periods of channel i ~ busy periods in $M/G/\infty$ queue
 - channel blocking as call blocking in a generalized Engset system
 - time blocking based on link occupancy distrib'n in an infinite system

End-to-end blocking in a network

- Karvo, Virtamo, Aalto & Martikainen (1998b) submitted:
 - calculation of end-to end call blocking probabilities by applying the Reduced Load Approximation method
 - verification by simulations
- Results:
 - RLA seems to give an upper bound
 - results of approximations and simulations on the same scale
 - difference about 10 50 % (not totally satisfactory)

Open problems Method to calculate the end-to-end call blocking probability exactly Improved simulations methods

• Improved approximation methods for the end-to-end blocking

Contents

- Optimal control of batch service queues
- Characterization of the output process for some fluid queues
- Blocking probabilities in dynamic multicast networks
- Other topics

