

Performance-Energy Trade-off in Multi-Server Queueing Systems with Setup Delay

Samuli Aalto Aalto University, Finland

LCCC Cloud Computing Workshop 7–9 May 2014 Lund, Sweden

Co-operation with

Esa Hyytiä, Pasi Lassila, Misikir Gebrehiwot (Aalto University)

Rhonda Righter (UC Berkeley)

2

Queueing models

• Single-server queue (M/G/1)

• Multi-server queue (M/M/n)

• Parallel queues

Introduction

Performance-energy trade-off

- Energy saved by switching the server off when idle
- However, performance impaired, if switching the server back on takes time (setup delay)

Cost model

- Performance:
 - E[7] = mean delay per job (in seconds)
 - E[X] = mean number of jobs $= \lambda \cdot E[7]$
 - Definition: delay = response time

- Energy:
 - E[*E*] = mean energy per job (in joules)
 - $E[P] = \text{mean power consumed} \\ = \lambda \cdot E[E]$

Power consumption levels:

$$0 = P_{\text{off}} < P_{\text{idle}} \le P_{\text{setup}} = P_{\text{busy}}$$

Introduction

Objective function

 Energy-Response-time-Weighted-Sum (ERWS): • General form:

 $E[T] + E[E]/\beta$

e.g. Wierman & al. (2009)

 Energy-Response-time-Product (ERP):

 $E[T] \cdot E[E]$

e.g. Gandhi & al. (2010b)

 $W_1 \cdot E[T]^{t_1} \cdot E[E]^{e_1} + W_2 \cdot E[T]^{t_2} \cdot E[E]^{e_2}$

by Maccio & Down (2013)

- ERWS:

$$w_1 = 1, t_1 = 1, e_1 = 0$$

 $w_2 = 1/\beta, t_2 = 0, e_2 = 1$
- ERP:
 $w_4 = 1, t_4 = 1, e_4 = 1$

$$W_1 = 1, \ t_1 = 1, \ 0, \ 1 = 1$$

 $W_2 = 0, \ t_2 = 0, \ e_2 = 0$

Part I Single-server queue with setup delays

Part I Single-server queue

Optimal switching on/off policy

Maccio & Down (2013)

- M/G/1-FIFO
 - Setup delay *D* generally distributed with mean 1/γ
- Control parameters:
 - Delayed switch-off for an exponential time with mean $1/\alpha$
 - Server switched on after k new job arrivals
- Objective function: Gen. form

 $w_1 E[T]^{t_1} E[E]^{e_1} + w_2 E[T]^{t_2} E[E]^{e_2}$

- Policies:
 - NEVEROFF: $\alpha = 0$
 - DELAYEDOFF: $0 < \alpha < \infty$
 - INSTANTOFF: $\alpha = \infty$

Theorem:

For ERWS objective function optimal policy is either NEVEROFF or INSTANTOFF

Similar result in
 Gandhi & al. (2010b) for
 ERP objective function

Optimal switching on/off policy

Gebrehiwot & al. (2014)

- M/G/1-FIFO
 - Setup delay *D* generally distributed with mean 1/γ
- Control parameters:
 - Delayed switch-off for a gen. distributed time with mean $1/\alpha$
 - Server switched on after k new job arrivals

- Policies:
 - NEVEROFF: $\alpha = 0$
 - DELAYEDOFF: $0 < \alpha < \infty$
 - INSTANTOFF: $\alpha = \infty$
 - Theorem: For gen. objective function optimal policy is either NEVEROFF or INSTANTOFF
- Objective function: Gen. form $w_1 E[T]^{t_1} E[E]^{e_1} + w_2 E[T]^{t_2} E[E]^{e_2}$
- NEVEROFF is better if
 *P*_{idle} is sufficiently small
 compared to *P*_{setup}

Part I Single-server queue

Part II Multi-server queue with setup delays

Part II Multi-server queue

Analysis of server farms with setup delays

Gandhi & al. (2010a)

- M/M/*n*
 - Setup delay *D* exponentially distributed
- Objective function: Separately E[7] and E[P]
- Policies:
 - ON/IDLE = NEVEROFF
 - ON/OFF = INSTANTOFF
 - ON/OFF/STAG = INSTANTOFF with "staggered bootup"

- Mixed policy:
 - ON/IDLE(t)
 switching idle server off only if
 nr of busy and idle servers > t

• Conclusions:

- "Under high loads, turning servers off can result in higher power consumption and far higher response times."
- "As the size of the server farm is increased, the advantages of turning servers off increase."

Analysis of server farms with setup delays

Gandhi & al. (2010a)

Optimization of server farms with setup delay Gandhi & al. (2010b)

• M/M/*n*

- Setup delay deterministic
- Additional sleep states S with

$$0 = P_{\text{off}} < P_{\text{sleep}} < P_{\text{idle}}$$

and deterministic (setup) delays

$$0 = d_{\text{idle}} < d_{\text{sleep}} < d_{\text{off}}$$

Objective function: ERP

 $E[T] \cdot E[P]$

- Policies:
 - NEVEROFF
 - INSTANTOFF
 - SLEEP(S)
 - Probabilistic and other

Theorem:

For n = 1, optimal static control is either NEVEROFF, INSTANTOFF or SLEEP(S)

Robust policy:

 DELAYEDOFF with MRB (Most Recent Busy)

Optimization of server farms with setup delay Gandhi & al. (2010b)

Fig. 4. Dynamic capacity provisioning capabilities of INSTANTOFF, LOOKAHEAD and DELAYEDOFF. The dashed line denotes the load at time t, $\rho(t)$, the crosses denotes the number of servers that are busy or idle at time t, $n_{busy+idle}(t)$, and the dots represent the number of jobs in the system at time t, N(t),

Part II Multi-server queue

Part III Parallel queues with setup delays

Part III Parallel queues

Dispatching problem

- Dispatching
 - = Task assignment = Routing
 - Random job arrivals with random service requirements
 - Dispatching decision made upon the arrival

- Our setting: M/G/.
 - Poisson arrivals
 - generally distributed job sizes
 - heterogeneous servers with
 FIFO queueing discipline
 (NEVEROFF or INSTANTOFF)

Static dispatching policies

RND = Bernoulli splitting

- choose the queue pure randomly
- no size nor state information needed

SITA = Size Interval Task Assignment

- choose the queue with similar jobs
- based on the size of the arriving job, but no state information needed
- Harchol-Balter et al. (1999)

MDP approach

- Any static policy (RND, SITA) results in parallel M/G/1 queues
- Fix the static policy and determine relative values for all these parallel M/G/1 queues
- Dispatch the arriving job to the queue that minimizes the mean additional costs

- As the result, you get a better dynamic dispatching policy
- This is called
 First Policy Iteration (FPI)
 in the MDP theory
- Applicable for the ERWS objective function

Relative values

• Definition:

For a fixed policy resulting in a stable system, the value function v(x)gives the expected difference in the infinite horizon cumulative costs between

- the system initially in state *x*, and
- the system initially in equilibrium

Definition:

For a fixed policy resulting in a stable system, the relative value v(x) - v(0)gives the expected difference in the infinite horizon cumulative costs between

- the system initially in state *x*, and
- the system initially in state 0

Size-aware M/G/1 queue without setup delays Hyytiä et al. (2012)

• State description:

 $u = \Delta_1 + \ldots + \Delta_n$

- Δ_i = remaining service time of job *i*
- u = backlog = unfinished work

$$E[T] = E[S] + \frac{\lambda E[S^2]}{2(1-\rho)}$$
$$E[P] = (1-\rho)P_{\text{idle}} + \rho \cdot P_{\text{busy}}$$

ΠIC

Result: Size-aware relative values

$$v_T(u) - v_T(0) = \frac{\lambda u^2}{2(1-\rho)}$$

$$v_P(u) - v_P(0) = u \cdot (P_{\text{busy}} - P_{\text{idle}})$$

Size-aware M/G/1 queue with setup delays

Hyytiä et al. (2014a)

• State description:

 $u = \Delta_0 + \Delta_1 + \ldots + \Delta_n$

- Δ_i = remaining service time of job *i*
- Δ_0 = remaining setup delay
- *u* = virtual backlog
- Assume: Deterministic setup delay *d* and

 $P_{\text{setup}} = P_{\text{busy}}$

• Mean values:

$$E[T] = E[S] + \frac{\lambda E[S^2]}{2(1-\rho)} + \frac{d(2+\lambda d)}{2(1+\lambda d)}$$
$$E[P] = \frac{\rho + \lambda d}{1+\lambda d} \cdot P_{\text{busy}}$$

Result: Size-aware relative values

$$v_T(u) - v_T(0) = \frac{\lambda u^2}{2(1-\rho)} - \frac{\lambda u d(2+\lambda d)}{2(1-\rho)(1+\lambda d)}$$

$$v_P(u) - v_P(0) = \frac{u}{1 + \lambda d} \cdot P_{\text{busy}}$$

Aalto University School of Electrical Engineering Part III Parallel queues

FPI policy Hyytiä et al. (2012, 2014a)

• For NEVEROFF servers:

Dispatch the job with service time *x* to queue *i* minimizing the mean additional costs:

 $a_T(u, x, i) = u + x +$ $v_T(u + x, i) - v_T(u, i)$ $a_P(u, x, i) =$ $v_P(u + x, i) - v_P(u, i)$

For INSTANTOFF servers:

Dispatch the job with service time *x* to queue *i* minimizing the mean additional costs:

 $\begin{aligned} a_T(u, x, i) &= u + x + d_i \cdot 1(u = 0) + \\ v_T(u + x + d_i \cdot 1(u = 0), i) - v_T(u, i) \\ a_P(u, x, i) &= \\ v_P(u + x + d_i \cdot 1(u = 0), i) - v_P(u, i) \end{aligned}$

Numerical results

Hyytiä et al. (2014a)

Table 2

Two-server system,

Numerical results

Hyytiä et al. (2014a)

Table 3

Four-server systems,

	Parameter		(a) Identical	(b) Linear e	(c) Squared e
	Service rates	$\nu_1,\ldots,\nu_4;$	1, 1, 1, 1	1, 1, 1, 1	1, 2, 3, 4
Arrieing Dispatcher	Running costs	$e_1,\ldots,e_4;$	1, 1, 1, 1	1, 2, 3, 4	1, 2, 9, 16
	Switching delay	$d_1,, d_4$:	1, 1, 1, 1	1, 1, 1, 1	1, 1, 1, 1

Numerical results

Hyytiä et al. (2014a)

Table 3

Four-server systems,

	Parameter		(a) Identical	(b) Linear e	(c) Squared e
	Service rates	$\nu_1,\ldots,\nu_4;$	1, 1, 1, 1	1, 1, 1, 1	1, 2, 3, 4
Articing Disputcher	Running costs	e ₁ ,, e ₄ ;	1, 1, 1, 1	1, 2, 3, 4	1, 2, 9, 16
	Switching delay	d_1, \ldots, d_4 :	1, 1, 1, 1	1, 1, 1, 1	1, 1, 1, 1

Other queueing disciplines

Hyytiä et al. (2014b)

- LIFO in the M/G/. setting with setup delays
- PS in the M/D/. setting with setup delays
- But it is another story ...

References

- Harchol-Balter, Crovella & Murta (1999)
 On Choosing a Task Assignment Policy for a Distributed Server System, JPDC
- Wierman, Andrew & Tang (2009) Power-aware speed scaling in processor sharing systems, in *IEEE INFOCOM*
- Gandhi, Harchol-Balter & Adan (2010a) Server farms with setup costs, *PEVA*
- Gandhi, Gupta, Harchol-Balter & Kozuch (2010b) Optimality analysis of energy-performance trade-off for server farm management, *PEVA*
- Hyytiä, Penttinen & Aalto (2012) Size- and state-aware dispatching problem with queue-specific job sizes, *EJOR*
- Maccio & Down (2013) On optimal policies for energy-aware servers, in MASCOTS
- Hyytiä, Righter & Aalto (2014a) Task assignment in a heterogeneous server farm with switching delays and general energy-aware cost structure, to appear in *PEVA*
- Hyytiä, Righter & Aalto (2014b) Energy-aware job assignment in server farms with setup delays under LCFS and PS, accepted to *ITC*
- Gebrehiwot, Lassila & Aalto (2014) Energy-aware queueing models and controls for server farms, ongoing work

The End

