# Multilevel Processor Sharing Scheduling Disciplines: Mean Delay Analysis 

Samuli Aalto<br>Networking Laboratory<br>Helsinki University of Technology<br>Joint work with<br>Urtzi Ayesta (INRIA) and Eeva Nyberg (HUT)

## Background

- File transfers in the Internet use TCP
- a file is splitted into packets which are sent (in a controlled way) from the source node to the destination node
- flow = packets related to a file
- due to the congestion control part of TCP, the network resources are shared fairly (in the ideal case)
- Internet measurements show that
- a small number of large TCP flows responsible for the largest amount of data transferred (elephants)
- most of the TCP flows made of few packets (mice)
- Intuition says that
- favoring short flows reduces the total number of flows, and thus, by Little's law, also the mean "file transfer" time


## Mathematical model

- Consider a bottleneck link loaded with elastic flows
- such as file transfers using TCP
- Assume that
- the flows arrive according to a Poisson process with rate $\lambda$
- each flow has a random service requirement (= file size) with a general distribution with mean $L$
- cumulative distribution function $F(x)$, tail distribution function $G(x)=1-F(x)$, density $f(x)$, hazard rate $h(x)=f(x) / G(x)$
- typically heavy-tailed such as Pareto $\Rightarrow$ decreasing hazard rate
- So, at the flow level, we have a M/G/1 queueing system
- customers = flows = file transfers (not individual packets!)
- delay = file transfer time
- service time $=$ file size / link capacity $C$
- service rate $=\mu=$ link capacity $C /$ mean file size $L$
- load $=\rho=\lambda / \mu$


## Scheduling disciplines

- PS = Processor Sharing
- Without any specific scheduling policy, the flows are assumed to divide the bottleneck link capacity evenly (= fairness in the ideal case)
- SRPT = Shortest Remaining Processing Time
- Choose a packet of the flow with least packets left
- LAS = Least Attained Service
- Choose a packet of the flow with least packets sent
- Also called: FB = Foreground-Background
- MLPS = Multilevel PS (cf. Kleinrock (1976))
- Choose a packet of the flow with less packets sent than a given threshold
- Notes:
- All of them are work-conserving disciplines
- Only SRPT uses "future" information


## Optimality results for M/G/1

- If the remaining service times (= number of packets left) are known for each customer (= flow), then
- Schrage (1968):

SRPT optimal minimizing the mean delay (= file transfer time)

- If only the attained service times (= number of packets sent) are known for each customer (= flow), then
- Yashkov (1978):

Decreasing hazard rate $\Rightarrow$ FB optimal among work-conserving scheduling disciplines

- Feng and Misra (2003): the same result as above proved (?) in another way
- Wierman et al. (2002):

Decreasing hazard rate $\Rightarrow$ FB better than PS

## MLPS scheduling disciplines

- Definition:
- Based on the attained service times
- Thresholds $0=a_{0}<a_{1}<\ldots<a_{N}<a_{N+1}=\infty$ define $N+1$ levels, with a strict priority between the levels
- Within a level, either FB or PS is applied
- Example: Two levels with threshold $a$
- $\mathrm{FB}+\mathrm{FB}=\mathrm{FB}=\mathrm{LAS}$
- FB+PS = FLIPS (Feng and Misra (2003))
- PS+PS = ML-PRIO (Guo and Matta (2002))


## Conditional mean delay formulas for M/G/1

- Notation: $T(s)=$ delay of a customer with service time $s$
- PS:

$$
E[T(s)]=\frac{s}{1-\rho}
$$

- FB:

$$
E[T(s)]=\frac{E\left[W_{s}\right]+s}{1-\rho_{s}}
$$

- PS+PS $(a)$ :

$$
E[T(s)]= \begin{cases}\frac{s}{1-\rho_{a}}, & s \leq a \\ \frac{E\left[W_{a}\right]+a}{1-\rho_{a}}+\frac{\alpha(s-a)}{1-\rho_{a}}, & s>a\end{cases}
$$

## Related queueing systems

- $\mathrm{M} / \mathrm{G} / 1$ with truncated service times $\min \{S, x\}$ :

$$
\begin{aligned}
& \rho_{x}=\lambda E[\min \{S, x\}] \\
& E\left[W_{x}\right]=\frac{\lambda E\left[(\min \{S, x\})^{2}\right]}{2\left(1-\rho_{x}\right)}
\end{aligned}
$$

- $\mathrm{M}^{\mathrm{X}} / \mathrm{G} / 1-\mathrm{PS}$ with modified service times $S$ :

$$
\begin{aligned}
& P\{\widetilde{S} \leq x\}=P\{S \leq a+x \mid S>a\} \\
& \begin{array}{l}
\alpha(x)=E[\widetilde{T}(x)] \text { satisfying } \\
\alpha^{\prime}(x)=\frac{\lambda}{1-\rho_{a}} \int_{0}^{x} \alpha^{\prime}(y) G(a+x-y) d y \\
\quad+\frac{\lambda}{1-\rho_{a}} \int_{0}^{\infty} \alpha^{\prime}(y) G(a+x-y) d y+c(x)+1
\end{array}
\end{aligned}
$$

## Conditional mean delay E[T(s)]




Note: exponential service time distribution

## Asymptotic properties of the conditional mean delay E[T(s)]



- Conclusion: PS+PS seems to be better than FB in the asymptotic region (when hazard rate decreasing)


## Mean delay E[T]



- Conclusion: PS+PS seems to be better than PS in the mean delay sense (when hazard rate decreasing)


## Problem

- Theorem: With decreasing hazard rate,

$$
E\left[T^{\mathrm{FB}}\right] \leq E\left[T^{\mathrm{FB}+\mathrm{PS}}\right] \leq E\left[T^{\mathrm{PS}+\mathrm{PS}}\right] \leq E\left[T^{\mathrm{PS}}\right]
$$

- Steps in the proof:
- First: prove that for any work-conserving disciplines $D_{1}$ and $D_{2}$

$$
E\left[U_{x}^{D_{1}}\right] \leq E\left[U_{x}^{D_{2}}\right] \forall x \Rightarrow E\left[T^{D_{1}}\right] \leq E\left[T^{D_{2}}\right]
$$

- $T=$ delay
- $U_{x}=$ unfinished truncated work = sum of remaining truncated service times $\min \{S, x\}$ of those customers who have attained service at most $x$ time units
- Second: prove that for any $x$

$$
E\left[U_{x}^{\mathrm{FB}}\right] \leq E\left[U_{x}^{\mathrm{FB}+\mathrm{PS}}\right] \leq E\left[U_{x}^{\mathrm{PS}+\mathrm{PS}}\right] \leq E\left[U_{x}^{\mathrm{PS}}\right]
$$

## Solution: mean value arguments (1)

- Proposition 1: If no "future" information used, then

$$
E[T]=\frac{1}{\lambda} \int_{0}^{\infty}\left(E\left[U_{x}\right]\right)^{\prime} h(x) d x
$$

- Proof:
- Kleinrock (1976) by Little's formula:

$$
d E[N(y)]=\lambda G(y) d E[T(y)]
$$

- $N(y)=$ \#customers with attained service time at most $y$
- $T(y)=$ delay of a customer with service time $y$
- Easy to see:

$$
E\left[R_{x}(y)\right]=\frac{1}{G(y)} \int_{y}^{x} G(t) d t
$$

- $R_{x}(y)=\min \{S(y), x\}-\min \{y, x\}=$ remaining truncated service time of a customer with attained service time $y$
- $S(y)=$ service time of a customer with attained service time $y^{13}$


## Solution: mean value arguments (2)

- No "future" information used:

$$
E\left[U_{x}\right]=\int_{0^{-}}^{x^{-}} E\left[R_{x}(y)\right] d E[N(y)]
$$

- $U_{x}=$ unfinished truncated work:

$$
U_{x}=\sum_{i}\left(\min \left\{S_{i}, x\right\}-\min \left\{X_{i}, x\right\}\right)
$$

- $S_{i}=$ service time of customer $i$
- $X_{i}=$ attained service time of customer $i$
- By combining the results above, we finally get

$$
\left(E\left[U_{x}\right]\right)^{\prime}=\lambda G(x) E[T(x)]
$$

implying that

$$
E[T]=\int_{0}^{\infty} E[T(x)] f(x) d x=\frac{1}{\lambda} \int_{0}^{\infty}\left(E\left[U_{x}\right]\right)^{\prime} h(x) d x
$$

## Solution: mean value arguments (3)

- Proposition 2: With decreasing hazard rate,

$$
E\left[U_{x}^{D_{1}}\right] \leq E\left[U_{x}^{D_{2}}\right] \forall x \Rightarrow E\left[T^{D_{1}}\right] \leq E\left[T^{D_{2}}\right]
$$

- Proof:
- Follows directly from Proposition 1.
- If the hazard rate differentiable, then simply by partial integration:

$$
\begin{aligned}
E\left[T^{D_{1}}\right]-E\left[T^{D_{2}}\right] & =\frac{1}{\lambda} \int_{0}^{\infty}\left(E\left[U_{x}^{D_{1}}\right]-E\left[U_{x}^{D_{2}}\right]\right)^{\prime} h(x) d x \\
& =-\frac{1}{\lambda} \int_{0}^{\infty}\left(E\left[U_{x}^{D_{1}}\right]-E\left[U_{x}^{D_{2}}\right]\right) h^{\prime}(x) d x
\end{aligned}
$$

## Solution: mean value arguments (4)

- Proposition 3: For any $a$ and $x$,

$$
E\left[U_{x}^{\mathrm{PS}+\mathrm{PS}(a)}\right] \leq E\left[U_{x}^{\mathrm{PS}}\right]
$$

- Proof:
- From slide 7:

$$
E\left[T^{\mathrm{PS}+\mathrm{PS}}(s)\right]= \begin{cases}\frac{s}{1-\rho_{a}} \leq \frac{s}{1-\rho}=E\left[T^{\mathrm{PS}}(s)\right], & s \leq a \\ E\left[T^{\mathrm{FB}}(a)\right]+\frac{\alpha(s-a)}{1-\rho_{a}}, & s>a\end{cases}
$$

- Notation:

$$
\alpha^{*}=\inf _{x>0} \alpha^{\prime}(x)
$$

- From slide 8:

$$
\inf _{s>a}\left(T^{\mathrm{PS}+\mathrm{PS}}(s)\right)^{\prime}=\frac{\alpha^{*}}{1-\rho_{a}} \geq \frac{1}{1-\rho}=\left(T^{\mathrm{PS}}(s)\right)^{\prime}
$$

## Solution: mean value arguments (5)

- Notation:

$$
x^{*}=\inf \left\{s \geq a \mid E\left[T^{\mathrm{PS}+\mathrm{PS}}(s)\right] \geq E\left[T^{\mathrm{PS}}(s)\right]\right\}
$$

- For all $x \leq x^{*}$,

$$
\begin{aligned}
E\left[U_{x}^{\mathrm{PS}+\mathrm{PS}}\right] & =\int_{0}^{x} \lambda G(s) E\left[T^{\mathrm{PS}+\mathrm{PS}}(s)\right] d s \\
& \leq \int_{0}^{x} \lambda G(s) E\left[T^{\mathrm{PS}}(s)\right] d s=E\left[U_{x}^{\mathrm{PS}}\right]
\end{aligned}
$$

- For all $x>x^{*}$,

$$
\begin{aligned}
\left(E\left[U_{x}^{\mathrm{PS}+\mathrm{PS}}\right]\right)^{\prime} & =\lambda G(x) E\left[T^{\mathrm{PS}+\mathrm{PS}}(x)\right] \\
& \geq \lambda G(x) E\left[T^{\mathrm{PS}}(x)\right]=\left(E\left[U_{x}^{\mathrm{PS}}\right]\right)^{\prime}
\end{aligned}
$$

- Finally, since both PS and PS+PS are work-conserving, we have

$$
E\left[U_{\infty}^{\mathrm{PS}+\mathrm{PS}}\right]=E\left[U_{\infty}^{\mathrm{PS}}\right]
$$

## Solution: sample path arguments (1)

- Notation: unfinished truncated work for discipline $D$ at time $t$ :

$$
\begin{aligned}
U_{x}^{D}(t) & =\sum_{i=1}^{A(t)}\left(\min \left\{S_{i}, x\right\}-\min \left\{X_{i}(t), x\right\}\right) \\
& =\sum_{i=1}^{A(t)} \min \left\{S_{i}, x\right\}-\int_{0}^{t} \sigma_{x}^{D}(u) d u
\end{aligned}
$$

- $A(t)=$ \#arrivals up to time $t$
- $X_{i}=$ service time of customer $i$
- $\quad X_{i}(t)=$ attained service time of customer $i$ at time $t$
- $\sigma_{x}^{D}(t)=$ service rate of customers with attained service less than $x$ at time $t$
- For any scheduling discipline $D$,

$$
\begin{array}{ll}
\sigma_{x}^{D}(t)=0, & \text { if } N_{x}^{D}(t)=0 \\
\sigma_{x}^{D}(t) \leq 1, & \text { if } N_{x}^{D}(t)>0
\end{array}
$$

- $N_{x}{ }^{D}(t)=$ \#customers with attained service less than $x$ at time $t$


## Solution: sample path arguments (2)

- Definition: set $D_{x}^{*}$ of scheduling disciplines:

$$
D \in D_{x}^{*} \Leftrightarrow \sigma_{x}^{D}(t)=1 \text {, if } N_{x}^{D}(t)>0
$$

- By definition, for any $D^{*}$ in $D_{x}^{*}, x, t$,

$$
U_{x}^{D^{*}}(t)=\min _{D} U_{x}^{D}(t)
$$

- Proposition 4: For any $a, x, t$,

$$
U_{x}^{\mathrm{FB}}(t) \leq U_{x}^{\mathrm{FB}+\mathrm{PS}(a)}(t) \leq U_{x}^{\mathrm{PS}+\mathrm{PS}(a)}(t)
$$

- Proof:
- Clearly, for all $x$ and $a \geq x$,

$$
\mathrm{FB}, \mathrm{FB}+\mathrm{PS}(a) \in D_{x}^{*}
$$

- On the other hand, for all $a \leq x$,

$$
\sigma_{x}^{\mathrm{FB}+\mathrm{PS}(a)}(t) \equiv \sigma_{x}^{\mathrm{PS}+\mathrm{PS}(a)}(t)
$$

## Solution: sample path arguments (3)

- Give an example of $x$ and $t$ such that

$$
U_{x}^{\mathrm{PS}+\mathrm{PS}}(t)>U_{x}^{\mathrm{PS}}(t)
$$

- Not so easy. But it is another story ...



