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Background

• Internet measurements show that
– a small number of large TCP flows responsible for the 
largest amount of data transferred (elephants)

– most of the TCP flows made of few packets (mice)

• Intuition says that 
– favoring short flows reduces the total number of flows, 
and, thus, also the mean “file transfer” time

• How to schedule flows and how to analyse?
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Mathematical model

• Consider a bottleneck link loaded with elastic 
flows
– such as file transfers using TCP

• Assume that 
– flows arrive according to a Poisson process

– each flow has a random service requirement (= file size) 
with a general distribution

– Note: file sizes typically heavy-tailed such as Pareto ⇒
decreasing hazard rate

• So, we have a M/G/1 queue on the flow level
– Note: customers in this queue are flows (and not packets)
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Scheduling disciplines

• PS = Processor Sharing
– Without any specific scheduling policy, the elastic flows 
are assumed to divide the bottleneck link capacity evenly 
(= fairness in the ideal case)

• SRPT = Shortest Remaining Processing Time
– Choose a packet of the flow with least packets left

• FB = Foreground-Background
– Choose a packet of the flow with least packets sent

• MLPS = Multilevel Processor Sharing
– Choose a packet of a flow with less packets sent than a 
given threshold



6

Known optimality results for M/G/1

• If the number of packets left known, then 
– SRPT optimal minimizing the mean file transfer time

• If only the number of packets sent known, then 
– decreasing hazard rate implies that 

FB optimal among work-conserving scheduling disciplines
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MLPS scheduling disciplines

• Definition: MLPS scheduling discipline
– based on the attained service times (= #packets sent)

– thresholds 0 = a
0
< a

1
<… < a

N
< a

N+1
= ∞ define N+1

levels, with a strict priority between the levels

– within a level, either FB or PS is applied

• Example: Two levels with threshold a
– FB+FB = FB = LAS

– FB+PS = FLIPS 

• Feng and Misra (2003)

– PS+PS = ML-PRIO 

• Guo and Matta (2002), Avrachenkov et al. (2004)
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• Conclusion: 
– PS+PS seems to be better than FB 
in the asymptotic region (when decreasing hazard rate)
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• Conclusion: 
– PS+PS seems to be better than PS 
in the mean delay sense (when decreasing hazard rate)
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Problem that we solved

• Theorem: 
– With decreasing hazard rate, the order of the mean 
delays is as follows:
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Solution: general comments

• Steps in the proof:

– First: prove that for any disciplines D
1
and D

2

– Second: prove that for any x

• Key variable: U
x
= unfinished truncated work

– sum of remaining truncated service times min{S,x} of 

those customers who have attained service less than x
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Solution: mean value arguments (1)

• Proposition 1: 
– If no future information used, then 

• Proof:

– Start with a known result from Kleinrock (1976)

– Then, proceed along the lines of Feng and Misra (2003) 
but correcting their slight mistake
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Solution: mean value arguments (2)

• Proposition 2: 
– With decreasing hazard rate, 

• Proof:

– Follows directly from Proposition 1

– If hazard rate differentiable, then by partial integration
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Solution: mean value arguments (3)

• Proposition 3: 

– For any a and x, 

• Proof:

– Based on a known analytical result concerning the 
conditional mean delays by Kleinrock (1976):
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Solution: sample path arguments (1)

• Definition: 

– Unfinished truncated work for discipline D at time t:

– σ
x
D(t) = service rate of customers with attained service 

time less than x at time t

– N
x
D(t) = number of customers with attained service time 

less than x at time t
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Solution: sample path arguments (2)

• Definition: 

– Set D
x
* of scheduling disciplines: 

• Observation:

– By definition, for any D* in D
x
* and any x, t,
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Solution: sample path arguments (3)

• Proposition 4: 

– For any a, x, t,

• Proof:

– Clearly, for all x and a ≥ x,

– On the other hand, for all a ≤ x,
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Solution: sample path arguments (4)

• Give an example of x and t such that 

• Not so easy. But it is another story … 
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THE END


