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Teletraffic application: scheduling elastic flows

• Consider a bottleneck link in an IP network

– loaded with elastic flows, such as file transfers using TCP

– if RTTs are of the same magnitude, then approximately fair
bandwidth sharing among the flows

• Internet measurements propose that

– a small number of large TCP flows responsible for the largest 
amount of data transferred (elephants)

– most of the TCP flows made of few packets (mice)

• Intuition says that 

– favouring short flows reduces the total number of flows, and, 
thus, also the mean file transfer time

• How to schedule flows and how to analyse?

– Guo and Matta (2002), Feng and Misra (2003), Avrachenkov et 
al. (2004), Aalto et al. (2004a,2004b)
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Queueing model

• Assume that

– flows arrive according to a Poisson process with rate λ

– each flow has a random service requirement with distribution
function F(x), density function f(x) and hazard rate h(x)

– service time distribution is of type DHR (decreasing hazard
rate) such as hyperexponential or Pareto

• So, we have an M/G/1 queue at the flow level

– customers in this queue are flows (and not packets)

– service time = file size = the total number of packets to be sent

– attained service time = the number of packets sent

– remaining service time = the number of packets left

• Reference model: M/G/1/PS
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Scheduling disciplines at flow level

• PS = Processor Sharing

– Without any specific scheduling policy at packet level, the 
elastic flows are assumed to divide the bottleneck link
bandwidth evenly

• SRPT = Shortest Remaining Processing Time

– Choose a packet from the flow with least packets left

• FB = Foreground-Background = LAS = Least Attained Service

– Choose a packet from the flow with least packets sent

• MLPS = Multilevel Processor Sharing

– Choose a packet of a flow with less packets sent than a given 
threshold
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MLPS scheduling disciplines

• Definition: MLPS scheduling discipline

– introduced in Kleinrock (1976)

– based on the attained service times

– N+1 levels defined by N thresholds 0 < a
1
< … < a

N
< ∞

– between the levels, a strict priority is applied

– within a level, FB, PS, or FCFS is applied

• Examples: Two levels with threshold a

– FB+FB = FB = LAS

– FB+PS = FLIPS 

• Feng and Misra (2003)

– PS+PS = ML-PRIO 

• Guo and Matta (2002), Avrachenkov et al. (2004)
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Optimality results for M/G/1

• Schrage (1968)

– If the remaining service time is known, then
SRPT optimal minimizing the mean delay E[T]

• Yashkov (1978, 1987)

– If only the attained service time is known, then 
DHR implies that FB optimal minimizing the mean delay E[T]

• Remark: in this study we consider work-conserving (WC) and non-
anticipating (NA) service disciplines such as FB, MLPS and PS
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Earlier results: comparison to PS

• Aalto et al. (2004a): 

– Two levels with FB and PS allowed as internal disciplines
(but not FCFS) 

• Aalto et al. (2004b): 

– Any number of levels with FB and PS allowed as internal
disciplines (but not FCFS) 
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Idea of the proof

• Key variable: U
x
= unfinished truncated work with threshold x

– sum of remaining truncated service times min{S,x} of those 
customers who have attained service less than x

• Steps in the proof:

– First step: prove that for any π and π’

– Second step: prove that for any x (and t)

– Third step: prove that for any x (and t)
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Second step (1)

• Key problem: splitting PS

– π = PS+PS(a)

– π’ = PS

• Solution steps:

– By Prop. 10 in Aalto & al. (2004b), for any x ≤ a (and t)

– Known result for WC disciplines:

– Based on the known integral equation for the derivative of the 
conditional mean delay, for any x > a
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Second step (2)

• Known integral equation:

• Lemma needed:

– Based on the known expression:
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New results: comparison among MLPS disciplines

• Theorem 1 (not really a new one): 

– Any number of levels with all original internal disciplines allowed

• Theorem 2: 

– Any number of levels with all original internal disciplines allowed

– MLPS is derived from MLPS’ by splitting a level and copying the 
internal discipline

• Theorem 3: 

– Any number of levels with all original internal disciplines allowed

– MLPS is derived from MLPS’ by changing an internal discipline
from PS to FB (or from FCFS to PS)
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Theorem 2: Splitting a PS level (1)

• Proof based both on sample path and mean value arguments

• Prove that for all x,

– The tough nut!
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Theorem 2: Splitting a PS level (2)

• Key problem: splitting the highest level. For example, 

– MLPS = PS+PS+PS(a
1
, a

2
)

– MLPS’ = PS+PS(a
1
)

• Solution steps:

– By Prop. 6 in Aalto & al. (2004b), for any x ≤ a
2
and t

– Known result for WC disciplines:

– Tough new result based on the known integral equation for the 
derivative of the conditional mean delay: for any x > a

2

– Apply then Lemma presented in Slide 13
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Theorem 2: Splitting a PS level (3)

• Additional problem: splitting another level. For example, 

– MLPS = PS+PS+PS(a
1
, a

2
)

– MLPS’ = PS+PS(a
2
)

• Solution steps:

– Easily, for any x ≥ a
2
and t

– Truncate service times and prove by the ”splitting the highest
level” result that for any x < a

2
(and t)
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Theorem 2: Splitting an FCFS level (1)

• Proof based both on sample path and mean value arguments

• Prove that for all x,

– An easy exercise
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Theorem 2: Splitting an FCFS level (2)

• Problem: splitting any level. For example, 

– MLPS = FCFS+FCFS+FCFS(a
1
, a

2
)

– MLPS’ = FCFS+FCFS(a
2
)

• Solution steps:

– By definition, for any t

– Easily, for any x ≥ a
2
and t

– Easy result based on the known expression for the conditional
mean delay: for any x < a

2

– Apply then Lemma presented in Slide 13
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Theorem 3: Changing an internal discipline

• Proof based on sample path arguments

• Prove that for all x and t, 

– Tedious but straightforward
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Mean unfinished truncated work E[U
x
]

hyperexponential file size distribution
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Mean delay E[T]

hyperexponential file size distribution
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Mean delay E[T]

Pareto file size distribution (α = 2.2)
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Mean delay E[T]

Pareto file size distribution (α = 1.8)
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Mean delay E[T]

Pareto file size distribution (α = 2.5)
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Open issues

• Comparison of MLPS disciplines within class IMRL

– IMRL more general than DHR

– Is FB optimal within this class?

• Performance of MLPS disciplines in a network of queues

– simulations needed?

– stability problems?
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The End


